Opracowanie pytań Pracownia Dyplomowa, Marcin Czarnecki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Opracowanie pytań Pracownia Dyplomowa, Marcin Czarnecki"

Transkrypt

1 Opracowanie pytań Pracownia Dyplomowa, Marcin Czarnecki

2 Pytanie 111. Opisać 3 podstawowe obszary uzależnień komputerowych. Zagrożeniem dla zdrowia ze strony komputera jest uzależnienie się od niego zwane "komputeromanią". Jest to taka sama choroba jak narkomania czy alkoholizm. Środkami uzależniającymi są: 1. gry komputerowe, 2. Internet, 3. programowanie. Pierwszą przyczyną jest chęć poznania i śledzenia szybkiego rozwoju techniki informatycz nej, i tym samym spędzanie przy komputerze wielu godzin. Drugi element uzależnienia ma wymiar psychologiczny. Człowiek czuje się bezpiecznie w świecie komputerowym, bez względu na to kim jest, ile ma lat i jak wygląda, może się tutaj odnaleźć, i dosłownie oderwać się od rzeczywistości. W świecie wirtualnym (takim jaki oferują gry komputerowe) człowiek może dokonać wszyst kiego i to sprawia, że nie chce się od tego oderwać i świat realny spada na dalszy plan. Zjawisko "nadużywania" komputera stanowi już obecnie poważny problem natury medycznej i społecznej w Stanach Zjednoczonych. Pojawiły się już tam pierwsze próby opisu "choroby komputerowej". Pozbawieni dostępu do komputera przeżywają stany identyczne z zespołem abstynenckim, są pobudzeni, cierpią na zaburzenia snu, popadają w stany depresyjne, fantazjują na temat Internetu. Przyczyną tego jest fakt, że układ nerwowy dziecka (człowieka) podczas długotrwałej zabawy przy komputerze atakowany jest strumieniem wielobarwnego światła, ekscytującymi dźwiękami oraz huśtawką emocji wynikającą z przeżyć w wirtualnym świecie i wtedy dochodzić może do zaburzeń koncentracji, kłopotów z myśleniem, rozstroju emocjonalnego, wyobcowania z rzeczywistego świata, zaburzenia więzi uczuciowej z najbliższymi oraz do wielu innych zaburzeń osobowości określanych wspólnym mianem uzależnienia od komputera. Skrajnym przejawem tego zjawiska jest zaburzenie hierarchii wartości, gdzie na pierwszym miejscu stawiany jest kontakt z komputerem i temu podporządkowane jest całe pozakomputerowe życie. Dziecko wówczas traci umiejętność nawiązywania kontaktów z rówieśnikami, zawiązywania nowych przyjaźni, budowania i kształtowania więzi uczuciowej. Zwykle realni przyjaciele nie są mu już potrzebni, woli ich szukać w świecie wirtualnym. Ucieka przed realnym światem, stawiającym nieraz wiele wymagań, wyzwań i zadań do wykonania, w świat wirtualny, nierzeczywisty, ale prostszy, często kształtowany według własnych upodobań. Świat taki staje się z biegiem czasu jedyną uznawaną rzeczywistością. Wszystko co przeszkadza w niej trwać, staje się przeszkodą, którą trzeba za wszelką cenę usunąć. Komputerowy świat stwarza iluzję, namiastkę prawdziwego życia. Według Marca Griffithsa uzależnienia komputerowe można podzielić na pierwotne i wtórne. W pierwszym przypadku mamy do czynienia z potrzebą przeżycia emocji, uzyskania efektu pobudzenia, sprawdzenia swoich umiejętności. W drugim przypadku komputer jest traktowany jako forma ucieczki od rzeczywistości. Ponadto należy pamiętać, że ten rodzaj

3 uzależnienia ma negatywne konsekwencje dla zdrowia. Szczególnie groźne i uzależniające są gry komputerowe i Internet. Pytanie 112. Wymienić przynajmniej 3 polskie ustawy dotyczące środowiska informatycznego. Dla środowiska informatycznego najważniejszymi regulacjami prawnymi, które weszły w życie w minionych kilku latach, są ustawy: łączności z 1990 roku (z późniejszymi nowelizacjami), prawie autorskim i prawach pokrewnych z 1994 roku, zamówieniach publicznych z 1994 roku, ochronie danych osobowych z 1997 roku. Pytanie 113. Jaka jest zasadnicza różnica między ochroną własności intelektualnej i ochroną patentową? Podstawową bowiem różnicą prawa patentowego jako systemu ochrony partykularnej jest wyłączenie możliwości uzyskania patentu przez różne podmioty na wynalazki, które są do siebie podobne. Czyli mając coś opatentowanego nie można stworzyd czegoś podobnego posiadającego podobne algorytmy, funkcje itp. Natomiast w prawie autorskim chroniony jest tylko program, a nie algorytm itd. Jak cos jest chronione patentem to jest chronione jako patent i własnośd intelektualna, a jak cos jest chronione jako własnośd intelektualna, to niekoniecznie jest chronione patentem. Ochrona intelektualna to jest np. jak napiszemy książkę, prace, program i to jest chronione prawem autorskim, a ochrona patentowa polega na tym, ze jak znajdziemy jakiś patent to go patentujemy i wtedy jest ochrona patentowa Pytanie 114. Opisać na czym polega szpiegostwo komputerowe. Szpiegostwo definiuje się jako działanie przestępcze dokonywane na szkodę określonego państwa, polegające na wykonywaniu odpowiednich czynności na rzecz obcego wywiadu, a w szczególności na zbieraniu, przekazywaniu informacji organom obcego wywiadu lub na gromadzeniu i przechowywaniu informacji w celu przekazania obcemu wywiadowi. Artykuł 130 paragrafy 1 do 4 określają szpiegostwo komputerowe jako: Działanie w obcym wywiadzie przeciwko Rzeczypospolitej Polskiej

4 Działanie w obcym wywiadzie lub biorąc w nim udział, udziela informacji, które mogą wyrządzić szkodę Rzeczypospolitej Polskiej, Kto, w celu udzielenia obcemu wywiadowi wiadomości określonych w 2, gromadzi je lub przechowuje, włącza się do sieci komputerowej w celu ich uzyskania albo zgłasza gotowość działania na rzecz obcego wywiadu przeciwko Rzeczypospolitej Polskiej, Kierowanie lub tworzenie organizacji obcego wywiadu Pytanie 82. Własności funkcji: miejsca zerowe, ciągłość, pochodna. Niech funkcja f będzie określona w pewnym otoczeniu U punktu x 0 Funkcję f nazywamy ciągłą w punkcie x 0, jeżeli istnieje jej granica w tym punkcie i lim x xo f x = f x 0 Ciągłość funkcji f w punkcie x0 można zdefiniować na podstawie definicji Heinego i Cauchy'ego granicy funkcji w tym punkcie i otrzymać w ten sposób dwie równoważne definicje. Definicja Heinego Funkcja f jest ciągła w punkcie x 0 wtedy, gdy dla każdego ciągu (x n ) o wyrazach x n U, zbieżnego do x 0 lim x xo f x n = f x 0 Definicja Cauchy'ego Funkcja f jest ciągła w punkcie x 0 wtedy, i tylko wtedy, gdy ε>0 δ>0 x ( x x 0 < δ => f x f x 0 < ε) Każdy punkt x 0, w którym funkcja f jest ciągła nazywa się punktem ciągłości funkcji. Funkcja f(x) nazywa się funkcją nieciągłą, jeśli nie jest funkcją ciągłą, w co najmniej jednym punkcie swojej dziedziny. Funkcja f jest ciągła w przedziale otwartym (a, b), jeżeli jest ciągła w każdym punkcie x 0 (a,b) Funkcja f jest ciągła w przedziale domkniętym <a, b>, jeżeli spełnia następujące warunki Jest ciągła w (a,b) lim x a + f x = f a (funkcja prawostronnie ciągła w punkcie a), lim x a f x = f b (funkcja lewostronnie ciągła w punkcie b).

5 Miejsce zerowe (pierwiastek) funkcji to argument, dla którego dana funkcja przyjmuje wartość 0. Niech będzie przedziałem otwartym i funkcja. Jeśli dla pewnego istnieje skończona granica ilorazu różnicowego to mówimy, że jest różniczkowalna w punkcie. Z kolei punkt nazywamy punktem różniczkowalności funkcji. Wartość powyższej granicy nazywamy pochodną funkcji w punkcie i oznaczamy symbolem. Czasem używa się też symboli:

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 5

Pochodna funkcji: definicja, podstawowe własności wykład 5 Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Rachunek Różniczkowy

Rachunek Różniczkowy Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

PROJEKT SOCJALNY UZALEŻNIENIOM. Realizatorzy: Anna Osiewicz Aleksandra Zaborska Joanna Krzemińska Alicja Kowalska Joanna Trytek

PROJEKT SOCJALNY UZALEŻNIENIOM. Realizatorzy: Anna Osiewicz Aleksandra Zaborska Joanna Krzemińska Alicja Kowalska Joanna Trytek PROJEKT SOCJALNY UZALEŻNIENIOM Realizatorzy: Anna Osiewicz Aleksandra Zaborska Joanna Krzemińska Alicja Kowalska Joanna Trytek 1. Opis problemu Rodzina winna zaspokajać potrzeby fizjologiczne jak i psychologiczne

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Ciągłość funkcji. Seminarium dyplomowe powtórzenie wiadomości. Jan Kowalski. 22 maja Uniwersytet Mikołaja Kopernika w Toruniu

Ciągłość funkcji. Seminarium dyplomowe powtórzenie wiadomości. Jan Kowalski. 22 maja Uniwersytet Mikołaja Kopernika w Toruniu Seminarium dyplomowe powtórzenie wiadomości Uniwersytet Mikołaja Kopernika w Toruniu 22 maja 2013 1 Podstawowe definicje i fakty 2 funkcji w punkcie Definicja Niech f będzie funkcją określoną na zbiorze

Bardziej szczegółowo

Zagrożenia związane z użytkowaniem komputera i dostępem do Internetu. materiały pomocnicze dla Rodziców

Zagrożenia związane z użytkowaniem komputera i dostępem do Internetu. materiały pomocnicze dla Rodziców Zagrożenia związane z użytkowaniem komputera i dostępem do Internetu. materiały pomocnicze dla Rodziców Negatywne konsekwencje użytkowania komputera i dostępu do sieci internetowej można podzielić na kilka

Bardziej szczegółowo

Granica funkcji wykład 5

Granica funkcji wykład 5 Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel rok akademicki 03/04, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t:

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności

Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii Funkcje Część druga Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 GRANICA I CIĄGŁOŚĆ FUNKCJI Granica funkcji Funkcja f: R A R ma w punkcie x 0 granicę g wtedy i tylko wtedy gdy dla każdego ciągu

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Poradnia Psychologiczno-Pedagogiczna ul. Dr. Józefa Rostka 16 41-902 Bytom tel; 032 2819405, 032 2819406

Poradnia Psychologiczno-Pedagogiczna ul. Dr. Józefa Rostka 16 41-902 Bytom tel; 032 2819405, 032 2819406 Poradnia Psychologiczno-Pedagogiczna ul. Dr. Józefa Rostka 16 41-902 Bytom tel; 032 2819405, 032 2819406 mgr Zuzanna Krząkała- psycholog Poradni Psychologiczno-Pedagogicznej w Bytomiu Uzależnienie od gier

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Szkoła Podstawowa nr 24 STO w Warszawie BEZPIECZNY INTERNET. Program bezpieczeństwa w Internecie

Szkoła Podstawowa nr 24 STO w Warszawie BEZPIECZNY INTERNET. Program bezpieczeństwa w Internecie Szkoła Podstawowa nr 24 STO w Warszawie BEZPIECZNY INTERNET Program bezpieczeństwa w Internecie Warszawa 2005/2006 1 Spis treści 1. O programie 2. Cele 3. Treści 4. Realizacja programu 5. Plan pracy 6.

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

Szkodliwość gier komputerowych.

Szkodliwość gier komputerowych. Szkodliwość gier komputerowych. Są gry elektroniczne stymulujące rozwój intelektualny i emocjonalny dziecka. Lecz równocześnie pojawia się coraz więcej gier, które wywołują przemoc, nadużywanie władzy,

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Pochodna funkcji

Analiza matematyczna i algebra liniowa Pochodna funkcji Analiza matematyczna i algebra liniowa Pochodna funkcji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

PROGRAM PROFILAKTYKI PUBLICZNEGO PRZEDSZKOLA W STARYM PILCZYNIE

PROGRAM PROFILAKTYKI PUBLICZNEGO PRZEDSZKOLA W STARYM PILCZYNIE PROGRAM PROFILAKTYKI PUBLICZNEGO PRZEDSZKOLA W STARYM PILCZYNIE 1 Spis treści PODSTAWY PRAWNE TWORZENIA PRZEDSZKOLNEGO PROGRAMU PROFILAKTYKI... 3 WSTĘP... 4 CEL OGÓLNY:... 5 KIERUNKI DZIAŁAŃ PROFILAKTYCZNYCH:...

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2, Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Jak chronić dziecko przed uzależnieniem od komputera i od Internetu?

Jak chronić dziecko przed uzależnieniem od komputera i od Internetu? Jak chronić dziecko przed uzależnieniem od komputera i od Internetu? Większość rodziców i wychowawców uważa, że dzieci i młodzież mogą uzależnić się jedynie od określonych substancji chemicznych, np. alkoholu,

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji

Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji 2 grudnia 2014 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Szablon diagnostyczny numer 12: Autoprezentacja i radzenie sobie z lękiem społecznym (nieśmiałością)

Szablon diagnostyczny numer 12: Autoprezentacja i radzenie sobie z lękiem społecznym (nieśmiałością) Euro-Forum Marek Gudków Szablon diagnostyczny numer 12: Autoprezentacja i radzenie sobie z lękiem społecznym (nieśmiałością) Innowacyjny Program Nauczania Wczesnoszkolnego Autoprezentacja i radzenie sobie

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji 4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość

Zadania z analizy matematycznej - sem. II Funkcje, ich granice i ciągłość Zadania z analizy matematycznej - sem II Funkcje ich granice i ciągłość Zadanie 1 Wyznaczyć i naszkicować dziedziny naturalne podanych funkcji: a f y = 2 y 3 25 2 +y 2 16 b g y = ln1 2 y 2 c h y = ln 2

Bardziej szczegółowo

Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.

Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,

Bardziej szczegółowo

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji

Bardziej szczegółowo

Granica funkcji. 16 grudnia Wykład 5

Granica funkcji. 16 grudnia Wykład 5 Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

Spis treści. 1 Macierze Macierze. Działania na macierzach Wyznacznik Macierz odwrotna Rząd macierzy...

Spis treści. 1 Macierze Macierze. Działania na macierzach Wyznacznik Macierz odwrotna Rząd macierzy... Spis treści 1 Macierze 3 1.1 Macierze. Działania na macierzach.............................. 3 1.2 Wyznacznik.......................................... 6 1.3 Macierz odwrotna......................................

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

Wspólnotowy znak towarowy,

Wspólnotowy znak towarowy, 10 POWODÓW O W DLA KTÓRYCH WARTO KORZYSTAĆ Z SYSTEMU S WSPÓLNOTOWEGO O W O ZNAKU TOWAROWEGO O W O Wspólnotowy znak towarowy, znak towarowy zarejestrowany w Urzędzie Harmonizacji Rynku Wewnętrznego (OHIM)

Bardziej szczegółowo

Program Profilaktyczno-Wychowawczy Bezpieczna Szkoła. Wstęp

Program Profilaktyczno-Wychowawczy Bezpieczna Szkoła. Wstęp Program Profilaktyczno-Wychowawczy Bezpieczna Szkoła Wstęp Powstanie dwóch bardzo ważnych dokumentów tj.: Programu Wychowawczego Szkoły i Szkolnego Programu Profilaktyki sprawiły, że zaistniała potrzeba

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy

Bardziej szczegółowo

OCHRONA WŁASNOŚCI INTELEKTUALNEJ WYKŁAD 6. dr Jagoda Mrzygłocka- Chojnacka

OCHRONA WŁASNOŚCI INTELEKTUALNEJ WYKŁAD 6. dr Jagoda Mrzygłocka- Chojnacka OCHRONA WŁASNOŚCI INTELEKTUALNEJ WYKŁAD 6 dr Jagoda Mrzygłocka- Chojnacka POJĘCIE WŁASNOŚCI PRZEMYSŁOWEJ Własność przemysłowa dotyczy dóbr intelektualnych wykorzystywanych w działalności gospodarczej -

Bardziej szczegółowo

Program adaptacyjny. dla klasy I. Jestem pierwszakiem. w Szkole Podstawowej nr 28

Program adaptacyjny. dla klasy I. Jestem pierwszakiem. w Szkole Podstawowej nr 28 Szkoła Podstawowa nr 28 im. K. I. Gałczyńskiego w Białymstoku Program adaptacyjny dla klasy I Jestem pierwszakiem w Szkole Podstawowej nr 28 im. K. I. Gałczyńskiego w Białymstoku ,,Dzieci różnią się od

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo