Rachunek Prawdopodobieństwa Zestaw 1 Katarzyna Lubnauer Hanna Podsędkowska Model klasyczny prawdopodobieństwa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rachunek Prawdopodobieństwa Zestaw 1 Katarzyna Lubnauer Hanna Podsędkowska Model klasyczny prawdopodobieństwa"

Transkrypt

1 Rachunek Prawdopodobieństwa Zestaw Katarzyna Lubnauer Hanna Podsędkowska Model klasyczny prawdopodobieństwa. Losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć prawdopodobieństwo, że otrzymamy wyraz MATEMATYKA chłopców i 3 dziewczynki ustawiam w szereg. Opisać przestrzeń zdarzeń elementarnych i obliczyć prawdopodobieństwo, że a) chłopcy stoją obok siebie b) chłopcy i dziewczynki stoją na zmianę. 3. Cyfry 0,,2,...,9 ustawiono losowo. Opisać przestrzeń zdarzeń elementarnych i obliczyć prawdopodobieństwo, że a) między 0 i 9 stoją dokładnie 4 cyfry b),2,3,4 będą stały obok siebie. 4. Przy okrągłym stole usiadło dziesięć kobiet i dziesięciu mężczyzn. Opisać przestrzeń zdarzeń elementarnych i obliczyć prawdopodobieństwo, że osoby tej samej płci nie siedzą koło siebie. 5. Na półce stoją 3 słowniki 2 tomowe: angielsko-polski, angielsko-rosyjski i rosyjskopolski. Jaka jest szansa, że po losowym ustawieniu książek na półce poszczególne tomy słowników będą stały w swoim sąsiedztwie, nie przedzielone innymi słownikami. 6. Firma produkuje samochody w ilości 5 n sztuk dziennie, wśród których n jest czerwonych, 2 n jest czarnych, a reszta srebrna. Samochody kolejno, w sposób losowy wyjeżdżają z terenu zakładu. Jakie jest prawdopodobieństwo, że wszystkie samochody jednego koloru wyjeżdżają jeden za drugim? 7. Z grupy 25 osób w której jest 0 kobiet i 5 mężczyzn wybrano a) 3 osoby na stanowisko starszego specjalisty. b) 3 osoby do zarządu firmy (prezesa, wiceprezesa ds. marketingu i wiceprezesa ds. produkcji) Dla każdego z przypadków opisać przestrzeń zdarzeń elementarnych i obliczyć prawdopodobieństwo, że wśród wybranych są dokładnie 2 kobiety 8. W pudełku jest 6 śrubek dobrych i 2 złe. Opisać przestrzeń zdarzeń elementarnych i obliczyć prawdopodobieństwo, że wśród 4 wybranych śrubek są 3 dobre i zła. 9. W urnie jest 8 ponumerowanych kul białych i 4 ponumerowane kule czarne, losujemy 3 kule bez zwrotu. Jakie jest prawdopodobieństwo, że: a) będzie wśród nich jedna czarna b) będą miały same parzyste numery.

2 0. W przedsiębiorstwie produkuje się silniki do ciągników siodłowych, spośród których k jest silnikami diesla, a m benzynowymi ( k 3m ). Wylosowani do kontroli m silników, jakie jest prawdopodobieństwo, że jeden z nich jest benzynowy.. Ze schroniska na szczyt prowadzą 3 szlaki: czarny, zielony i niebieski. Odbywam wycieczkę na szczyt i z powrotem wybierając szlaki losowo. a) Jakie jest prawdopodobieństwo iż będę wchodzić i schodzić tym samym szlakiem? b) Jakie jest prawdopodobieństwo iż będę wchodzić i schodzić zielonym szlakiem? 2. Rzucam 2 razy kostką symetryczną. Opisz przestrzeń zdarzeń elementarnych. Jakie jest prawdopodobieństwo a) wyrzucenia dwukrotnie tego samego? b) wyrzucenia w sumie 0 oczek? c) wyrzucenia w sumie 9 oczek? d) wyrzucenia dwukrotnie parzystej liczby oczek? 3. Rzucam n razy kostką symetryczną. Opisz przestrzeń zdarzeń elementarnych. Jakie jest prawdopodobieństwo e) wyrzucenia n -krotnie tego samego? f) wyrzucenia w sumie n oczek? g) wyrzucenia w sumie n oczek? h) wyrzucenia w sumie n 2 oczek? i) wyrzucenia w sumie n 3 oczek? j) wyrzucenia n jedynek, n 2 dwójek,, n 6 szóstek, gdzie k) * wyrzucenia w sumie s oczek n s 6n? n n2... n6 n? 4. Autobus zatrzymuje się na 0 przystankach. W autobusie jest 8 pasażerów, z których każdy musi wysiąść na jednym z przystanków. Opisz przestrzeń zdarzeń elementarnych. Jakie jest prawdopodobieństwo iż: a) każdy spośród 8 pasażerów wysiądzie na innym przystanku, b) wszyscy pasażerowie wysiądą na tym samym przystanku, c) wszyscy pasażerowie wysiądą na pierwszych trzech przystankach. 5. Do windy zatrzymującej się na 4 piętrach wsiadło 20 osób. Opisz przestrzeń zdarzeń elementarnych. a) Oblicz prawdopodobieństwo iż na każdym z pięter wysiądzie dokładnie 5 osób. b) Oblicz prawdopodobieństwo iż na pierwszym piętrze nikt nie wysiądzie identycznych koszulek układamy na 3 półkach. a) Policz jakie jest prawdopodobieństwo, że druga półka pozostanie wolna. b) Policz jakie jest prawdopodobieństwo, że na każdej z półek znajdzie się przynajmniej jedna koszulka. 7. Dzielimy 6 delicji szampańskich między 4 osoby. Oblicz jakie jest prawdopodobieństwo, że każda dostała a) po 4 ciasteczka? 2

3 b) przynajmniej 3 ciasteczka? Opisz przestrzeń zdarzeń elementarnych. 8. Z liczb -00 wylosowano 2 (mogą się powtarzać). Opisz przestrzeń zdarzeń elementarnych. Oblicz prawdopodobieństwo iż ich suma jest podzielna przez Jakie jest prawdopodobieństwo, że w losowo wybranej permutacji n elementowej, dwa ustalone elementy stoją koło siebie? 20. Z tali brydżowej zawierającej 52 karty losuje 4. Policz prawdopodobieństwo, że są wśród nich przynajmniej 2 damy. 2. Z talii zawierającej 52 karty (po 3 kart w każdym kolorze) losujemy 5 kart. Jakie jest prawdopodobieństwo że wszystkie będą jednego koloru. 22. Z tali brydżowej zawierającej 52 karty losuje 6. Policz prawdopodobieństwo, że są wśród nich karty wszystkich kolorów. 23. Co jest bardziej prawdopodobne: zdarzenie A - Wszystkie piki trafią do dwóch partnerów w brydża, czy zdarzenie B - Dwaj partnerzy w brydża nie będą mieli żadnych pików. 24. Mamy pięć biletów po zł, trzy bilety po 3 zł i dwa bilety po 5 zł. Wybieramy jednocześnie trzy bilety. Obliczyć prawdopodobieństwo, że: a) przynajmniej dwa z nich mają jednakową wartość b) wszystkie trzy bilety mają łączną wartość 7 zł.. Opisz przestrzeń probabilistyczną. 25. W urnie jest 5 ponumerowanych kul zielonych, 0 ponumerowanych kul niebieskich i 2 czerwone. Losowaliśmy 3 kule bez zwracania. Policz prawdopodobieństwo, że a) wylosowaliśmy kule w 3 kolorach, b) wylosowaliśmy kule w jednym kolorze. 26. Używając różnych cyfr ze zbioru 3,4,5,7,9 Z utworzono liczbę trzycyfrową. Opisz przestrzeń zdarzeń elementarnych. Oblicz prawdopodobieństwo, że: a) Jedną z cyfr jest 7. b) Jest to liczba parzysta. 27. Zbiór,2,3,...,4n podzielono w sposób losowo na dwie równoliczne grupy. Obliczyć prawdopodobieństwo, że a) W każdej grupie będzie tyle samo liczb parzystych, co nieparzystych. b) Wszystkie liczby podzielne przez n są w jednej grupie. c) Liczby podzielne przez n są w równych ilościach w obu grupach. 28. Rzucam 3 razy zwykłą kostką do gry, policz prawdopodobieństwo, że suma kwadratów wyników jest podzielna przez W szafce jest n par butów, z których losowo wybrano 2 r butów 2 r n. Obliczyć prawdopodobieństwo, że wśród wybranych butów: a) nie ma ani jednej pary, b) jest dokładnie jedna para c) są dokładnie dwie pary 30. Każdy z n patyków przełamano na 2 części: długą i krótką, otrzymano w ten sposób 2 n patyków. Połączono je losowo w pary, policz prawdopodobieństwo, że 3

4 a) Wszystkie kawałki zostały połączone w pierwotnym układzie b) Wszystkie długie kawałki zostały połączone z krótkimi Prawdopodobieństwo geometryczne. Z odcinka 2,3 losujemy liczbę, policz prawdopodobieństwo, iż: a) wylosowana liczba będzie dodatnia b) kwadrat wylosowanej liczby będzie mniejszy od c) kwadrat wylosowanej liczby będzie większy od 2 d) będzie to liczba wymierna 2. Z odcinka,2 losujemy 2 liczby. Policz prawdopodobieństwo tego, że: a) ich suma jest dodatnia, b) ich maksimum jest mniejsze od, c) ich suma jest wymierna, d) jedna jest wymierna, e) obie są niewymierne. 3. Z odcinka 0,5 losujemy 3 liczby. Policz prawdopodobieństwo tego, że: a) ich minimum jest większe od 2, b) ich maksimum jest większe od 3, c) jedna z nich jest liczbą naturalną. 4. Z odcinka 0,2 wybrano losowo punkt x. Policz prawdopodobieństwo: a) Pmax x, b) Pmin x, a a 5. Z kwadratu jednostkowego wybrano losowo punkt o współrzędnych x, y. Policz prawdopodobieństwo: a) Pmax x, y b) Pmin x, y a a 6. Z odcinka jednostkowego wybrano trzy liczby: x, y, z Policz P x y z. prawdopodobieństwo: 2 7. Wyznaczyć prawdopodobieństwo, że pierwiastki równania x 2ax b 0 są rzeczywiste, jeśli a, b przyjmują z równym prawdopodobieństwem dowolne wartości z przedziału,. 8. Z kwadratu o boku 4 wybrano losowo punkt o współrzędnych y x,. Policz prawdopodobieństwo, że leży on w odległości nie mniejszej niż 2 od któregokolwiek wierzchołka kwadratu. 4

5 9. Z sześcianu o boku 2 wybrano punkt, jakie jest prawdopodobieństwo, że leży on w odległości nie większej niż od któregokolwiek wierzchołka sześcianu. 0. *Paradoks Bertranda. W kole o promieniu R poprowadzono w sposób losowy cięciwę. Wyznacz prawdopodobieństwo że długość jej nie przekracza boku trójkąta równobocznego wpisanego w to koło. a) Cięciwę losujemy ustalając punkt na obwodzie koła i losując drugi punkt b) Cięciwę losujemy poprzez wylosowanie z koła punktu będącego środkiem cięciwy c) Wymyśl inny sposób losowania cięciwy Porównaj otrzymane wyniki.. Na odcinku wybrano losowo dwa punkty, które dzielą go na trzy odcinki. Jakie jest prawdopodobieństwo, że można z tych 3 odcinków zbudować trójkąt? 2. Na stół o kształcie koła i promieniu 60 cm rzucono monetę o promieniu cm, która upadła na stół. Jakie jest prawdopodobieństwo, że moneta nie dotknęła brzegu stołu? 3. Zadanie Bufona o igle. Igłę o długości l rzucono na podłogę z desek o szerokości a l a. Jaka jest szansa, że igła przetnie krawędź deski? 4. Na okręgu o promieniu ustalamy punkt i losujemy 2 inne, następnie łączymy punkty tworząc trójkąt. Policz prawdopodobieństwo, tego że a) jest on ostrokątny b) jest on prostokątny c) jest on rozwartokątny Prawdopodobieństwo inne modele, prawdopodobieństwo warunkowe, badanie niezależności zdarzeń,prawdopodobieństwo całkowite i wzór Bayesa. Własności prawdopodobieństwa.. Niech A, B, C trzy zdarzenia (zbiory). Zapisz symbolami następujące zdarzenia: a) Zachodzi przynajmniej jedno z tych zdarzeń b) Nie zachodzi żadne z tych zdarzeń c) Zachodzi dokładnie jedno z tych zdarzeń d) Zachodzi tylko zdarzenie A e) Zachodzą dwa spośród tych zdarzeń 2. Rzucam 3 razy monetą dla której prawdopodobieństwo wyrzucenia reszki jest 2 razy większe niż orła. Opisz przestrzeń zdarzeń elementarnych. Policz prawdopodobieństwo wyrzucenia dokładnie 2 orłów. 3. Rzucam sześcienną kostką, która ma ściankę z oczkiem, 2 ścianki z 2 oczkami i 3 ścianki z 3 oczkami. Łącznie rzucam tyle razy ile oczek wypadło w pierwszym rzucie. Jakie jest prawdopodobieństwo wyrzucenia w sumie 4 oczek? 4. Trzy osoby A, B, C oddały kolejno po jednym strzale do tarczy i a, b, c prawdopodobieństwa trafienia wynoszą dla nich odpowiednio 0,. Zbuduj model probabilistyczny tego doświadczenia losowego. Kiedy będzie to model klasyczny? Jakie jest prawdopodobieństwo, że dwa strzały były celne? 5

6 5. Rzucam kostką a następnie monetą tylokrotnie ile wypadło oczek na kostce. Opisz przestrzeń zdarzeń elementarnych. Znajdź prawdopodobieństwo wyrzucenia a) dokładnie 5 orłów. b) przynajmniej reszki 6. Do urny wkładam 5 kul zielonych, 4 niebieskie, oraz 2 białe. Z urny losuje kolejno 3 kule. Opisz przestrzeń zdarzeń elementarnych. Policz prawdopodobieństwo wylosowania kul we wszystkich kolorach. 7. Rzucam kostką do gry do momentu wyrzucenia 6-stki. Opisz przestrzeń zdarzeń elementarnych. Policz prawdopodobieństwo: a) rzucaliśmy parzystą ilość razy b) rzucaliśmy mniej niż 5 razy. 8. Rzucamy monetą do momentu wyrzucenia 2 razy pod rząd tej samej strony monety. Opisz przestrzeń zdarzeń elementarnych. Policz prawdopodobieństwo iż rzucaliśmy nieparzystą ilość razy. 9. Dwóch graczy A i B rzucają na zmianę monetą. Wygrywa ten z nich który pierwszy wyrzuci orła. Opisz przestrzeń zdarzeń elementarnych. Policz prawdopodobieństwo wygrania dla każdego z nich. 0. Trzech graczy A,B i C rzucają na zmianę monetą. Wygrywa ten z nich który pierwszy wyrzuci orła. Opisz przestrzeń zdarzeń elementarnych. Policz prawdopodobieństwo wygrania dla każdego z nich.. Rzucam 2 razy kostką do gry. Niech A zdarzenie polegające na wyrzuceniu szóstki w pierwszym rzucie, niech B zdarzenie polegające na wyrzuceniu lub 2 w drugim rzucie, zaś C zdarzenie polegające na wyrzuceniu w sumie 7 oczek. Zbadaj niezależność: a) Zdarzeń A i B b) Zdarzeń A i C c) Zdarzeń A, B, C razem. 2. Z odcinka,4 losuje dwie liczby. Niech A zdarzenie polegające na wylosowaniu dwóch liczb dodatnich, B zdarzenie polegające na tym, że druga z losowanych liczb jest ujemna, C zdarzenie polegające na tym, że pierwsza z wylosowanych liczb jest dodatnia. a) Zbadaj niezależność zdarzeń A i B. b) Zbadaj niezależność zdarzeń C i B. c) Policz A C P /. d) Policz B C P /. 3. Udowodnij, że A B PA PB P. 4. Niech będą zdarzeniami. Niech ponadto: A 0,5; PB 0,4; PC 0, 2 zdarzenia P oraz A, B, C niezależne. Policz prawdopodobieństwo: a) zachodzi przynajmniej jedno ze zdarzeń b) zachodzi dokładnie jedno ze zdarzeń c) nie zachodzi żadne z tych zdarzeń. d) zachodzą przynajmniej dwa ze zdarzeń 6

7 3 4 4 P A B, P A B, P A B. 5. Dane są P A, PB, A B. Uporządkować rosnąco 6. Mając dane zdarzenia niezależne Ai B o prawdopodobieństwach: P A 0,4 oraz P B 0,, znajdź: 6 a) A B P /, b) A B P, c) PA B '. 7. P A PB. Wykaż, że A B 8. Niech A B, C P zdarzenia Ai B niezależne, a ic P., zdarzenia oraz A 0,4; PB 0,5; PC 0, A rozłączne, P B C 0, prawdopodobieństwo tego, że: a) zachodzi przynajmniej jedno ze zdarzeń A, B, C b) nie zachodzi żadne z tych zdarzeń.. Policz, niech ponadto 9. Kontroler sprawdza partię zawierającą m wyrobów I gatunku i n wyrobów II gatunku, po sprawdzeniu pierwszych b n wybranych losowo z partii, okazało się, że wszystkie z nich są drugiego gatunku. Wybieramy losowo dwa spośród niesprawdzonych wyrobów. Obliczyć prawdopodobieństwo, że przynajmniej jeden jest drugiego gatunku. 20. Rzucamy trzema kostkami. Jakie jest prawdopodobieństwo, że na żadnej kostce nie wypadła 6, jeśli na każdej kostce jest inny wynik. 2. Mamy trzy krążki. Jeden z dwóch stron jest biały, drugi ma obie strony czarne a trzeci jedną czarną a drugą białą. Rzucaliśmy losowo wybranym krążkiem i na wierzchu wypadła biała strona. Policz prawdopodobieństwo, że po drugiej stronie jest kolor czarny Dane są P A B i PA B, PA \ B PB \ A. Oblicz P A PA \ B,. 23. Ania i Robert umówili się w pubie między 8.00 a 9.00, jakie jest prawdopodobieństwo, że Ania przyjdzie przed Robertem, jeśli Ania przyjdzie po 8.30? 24. Zbadaj kiedy zdarzenie jest niezależne samo od siebie. 25. *Uczestnik teleturnieju ma do wyboru jedną z trzech szkatułek, w dwóch są cukierki, w jednej zł, gracz wskazuje jedną ze szkatułek, prowadzący znający zawartość wszystkich pudełek, pokazuje zawartość jednej z pozostałych szkatułek (oczywiście z cukierkami) i pyta, czy gracz chce zmienić swój wybór. Co powinien zrobić gracz? 26. *Trzej więźniowie A, B, C czekają na egzekucję w więzieniu, przed wyborami prezydent postanowił jednego z nich ułaskawić. Wiadomość ta dotarła do więźniów, więzień A postanowił podpytać strażnika, który z nich zostanie ułaskawiony. Strażnik nie chcąc stracić pracy powiedział, że tego mu nie może powiedzieć, ale może mu zdradzić, że więzień C zostanie stracony. Więzień A ucieszył się, że jego szanse wzrosły do ½. Czy miał rację? 27. W czasie gry w brydża widzimy, że nie dostaliśmy ani jednego asa, jakie jest prawdopodobieństwo, że nasz partner też nie dostał żadnego? 7

8 28. W urnie znajduje się 3 kule białe i 7 czarnych. Losuje z urny 0 razy ze zwrotem. Policz prawdopodobieństwo tego, że: a) wylosuję 0 kul czarnych b) wylosuję 4 kule czarne c) wylosuję co najmniej 2 kule czarne. 29. Myśliwy trafia do dzika z prawdopodobieństwem p. Ile razy powinien strzelić 5 aby z prawdopodobieństwem większym niż 0,5 trafił dzika przynajmniej raz. 30. Losujemy ze zwrotem z urny zawierającej 2 kule białe i cztery czarne. Ile razy powinniśmy losować, aby z prawdopodobieństwem większym niż 0,6 trafić czarną kulę przynajmniej raz. 3. Rzucono 0 razy symetryczną kostką. Jakie jest prawdopodobieństwo, że w ostatnim rzucie wypadnie 3, jeśli wiadomo, że a) otrzymano 4 trójki, b) w pierwszych 9 rzutach wypadły same trójki? 32. *Zadanie Banacha o zapałkach. Pewien matematyk nosi w kieszeniach (lewej i prawej) po jednym pudełku zapałek. Ilekroć chce zapalić papierosa, sięga do losowo wybranej kieszeni. Jaka jest szansa, że gdy po raz pierwszy wyciągnie puste pudełko to w drugim będzie k zapałek?( k=,2,3,...,m gdzie m jest liczbą zapałek w pełnym pudełku. Zakładamy, że początkowo matematyk ma 2 pełne pudełka.) 33. Rzucam kostką a następnie monetą tyle razy ile wypadło oczek na kostce. Policz prawdopodobieństwo: a) wyrzucenia 3 orłów, b) wyrzucenia 6 oczek jeśli wypadły 3 orły, c) wyrzucenia 6 oczek jeśli nie wypadł ani jeden orzeł 34. Z jednej urny zawierającej 4 białe, 3 zielone i 3 niebieskie kule do drugiej zawierającej 8 białych kul przekładamy dwie losowo wybrane kule. Następnie z drugiej urny losujemy kule. Policz prawdopodobieństwo iż: a) jest to kula biała, b) przełożyliśmy dwie kule białe jeśli wylosowana kula okazała się biała. 35. W urnie znajduje się a losów wygrywających, b losów przegrywających i c losów losuj dalej. Po losowaniu los wrzucamy z powrotem do urny. Korzystając z wzoru na prawdopodobieństwo całkowite policz prawdopodobieństwo wygranej dla a=00 i b= Dwaj gracze A i B rzucają na zmianę kostką symetryczną. Wygrywa ten z nich który pierwszy wyrzuci 6. Korzystając z wzoru na prawdopodobieństwo całkowite policz prawdopodobieństwo wygranej dla każdego z graczy. 37. Fabryka A produkuje samochodów rocznie, fabryka B produkuje samochodów a pozostałe samochodów pochodzi z importu. 0% samochodów z fabryki A jest niebieskich, 20% z fabryki B ma kolor niebieski i tylko 5% pochodzących z importu to samochody niebieskie. Policz prawdopodobieństwo iż: a) losowo wybrany samochód z tego rocznika jest niebieski b) losowo wybrany samochód z tego rocznika pochodzi z fabryki A jeśli okazał się niebieski. 8

9 38. Armata strzela do celu i trafia z prawdopodobieństwem 0,2. Prawdopodobieństwo zniszczenia celu przy k trafieniach wynosi. Policz prawdopodobieństwo 2 zniszczenia celu przy 0 strzałach. 39. Student zna odpowiedź średnio na co trzecie pytanie. Prawdopodobieństwo zdania 4 egzaminu przy k poprawnych odpowiedziach wynosi. Jakie jest 5 prawdopodobieństwo zdania egzaminu, na którym student dostanie 5 pytań. 40. Kot i mysz wędrują po kracie n na n (rys ), Startują z przeciwległych rogów i zmierzają do rogów przeciwległych. Poruszają się w tym samym tempie i zawsze do przodu. Jeśli spotkają się wygrywa kot, jeśli nie wygrywa mysz. Jakie jest prawdopodobieństwo zwycięstwa dla każdego z nich? Rys k k 4. W szafce jest 0 par kaloszy w0 różnych kolorach i tym samym rozmiarze. Człowiek nie rozróżniający kolorów dzieli je na pary: lewy z prawym. Jakie jest prawdopodobieństwo, że żadna para nie będzie jednokolorowa? 42. Na zabawie jest n par małżeńskich. W sposób losowy kobiety losują mężczyzn do tańca. Jakie jest prawdopodobieństwo, że żaden mąż nie tańczy ze swoją żoną? 43. Rzucam 00-krotnie monetą symetryczną. Policz prawdopodobieństwo wyrzucenia parzystej liczby orłów. Bibliografia: Wstęp do teorii prawdopodobieństwa - Jacek Jakubowski, Rafał Sztencel Rachunek Prawdopodobieństwa dla (Prawie) Każdego - Jacek Jakubowski, Rafał Sztencel Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach Włodzimierz Krysicki, Jerzy Bartos, Wacław Dyczka, Krystyna Królikowska, Mariusz Wasilewski Rachunek prawdopodobieństwa W. Szlenk 9

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa. Losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

Zestawy zadań z Metod Probabilistyki i Statystyki. dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek

Zestawy zadań z Metod Probabilistyki i Statystyki. dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek Zestawy zadań z Metod Probabilistyki i Statystyki dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek 21 lutego 2014 1 MODEL KLASYCZNY PRAWDOPODOBIEŃSTWA 1 Model klasyczny

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1. Zestaw 1. Zadanie. 1. Wyobraźnia jest ważniejsza od wiedzy A.Einstein Czy zdarzenia polegające na wyciągnięciu z talii liczącej 52 karty dowolnej karty pik (zdarzenie A) i wyciągnięciu asa (zdarzenie B)

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

dr Jarosław Kotowicz 14 października Zadania z wykładu 1

dr Jarosław Kotowicz 14 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia drugie Prawdopodobieństwo warunkowe i całkowite. Wzór Bayesa. Zdarzenia niezależne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 14 października 2011

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT)   NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła

Bardziej szczegółowo

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, 04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

Laboratorium nr 1. Kombinatoryka

Laboratorium nr 1. Kombinatoryka Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka 1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania 2. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania Zad.2.. Oblicz ile moŝna utworzyć z cyfr 0,, 2, liczb: a) dwucyfrowych, których cyfry mogą się powtarzać; b) trzycyfrowych o niepowtarzających się cyfrach;

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

METODY PROBABILISTYCZNE I STATYSTYKA

METODY PROBABILISTYCZNE I STATYSTYKA Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku

Bardziej szczegółowo

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

Podstawy metod probabilistycznych Zadania

Podstawy metod probabilistycznych Zadania Podstawy metod probabilistycznych Zadania 25 marca 2009 Zadanie 1 Czy jest możliwe, by P(A B) = 0, 9, P(A) = 0, 8, P(B) = 0, 3, i zdarzenia A i B były niezależne. Zadanie 2 Zdarzenia A i B są niezależne

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3. Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,

Bardziej szczegółowo

dr Jarosław Kotowicz 29 października Zadania z wykładu 1

dr Jarosław Kotowicz 29 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia czwarte Schematy rachunku prawdopodobieństwa. Prawdopodobieństwo geometryczne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 29 października 20 Spis

Bardziej szczegółowo

KOMBINATORYKA I P-WO CZ.1 PODSTAWA

KOMBINATORYKA I P-WO CZ.1 PODSTAWA KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i

Bardziej szczegółowo

Skrypt 30. Prawdopodobieństwo

Skrypt 30. Prawdopodobieństwo Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów. PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda 1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ha 2014/2015

BAZA ZADAŃ KLASA 3 Ha 2014/2015 BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta

Bardziej szczegółowo

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne?

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne? Zad. Rzucamy 0 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 0 razy orzeł i B reszka wypadła dokładnie 0 razy są zależne? Zad. Badania statystyczne przeprowadzone wśród studentów wykazały,

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo

Zadanie 1. Na diagramie Venna dla 3 zbiorów zaznacz:

Zadanie 1. Na diagramie Venna dla 3 zbiorów zaznacz: Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C A B C Zadanie 1 Na diagramie Venna dla 3 zbiorów zaznacz: A B C A B C A B C Zadanie 1

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA P A = A Ω PRAWDOPOD OBIEŃSTW O W A RUNKOWE P(A B) P A B =, P B 0 PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B P A B = P A B = P

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)

Bardziej szczegółowo

ćwiczenia z rachunku prawdopodobieństwa

ćwiczenia z rachunku prawdopodobieństwa ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6 Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna

Bardziej szczegółowo

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora. Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń

Bardziej szczegółowo

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie: Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)

Bardziej szczegółowo

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad. 1. (1 pkt) Ile jest wszystkich liczb naturalnych dwucyfrowych, w których

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A) W czasie trwania egzaminu zdający może korzystać z

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ. I. Kombinatoryka i rachunek prawdopodobieństwa ) Ile liczb pięciocyfrowych można utworzyć, wykorzystując wszystkie cyfry liczby 476? ) Pięciu przyjaciół

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..

Bardziej szczegółowo

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie

Bardziej szczegółowo

Matematyka dyskretna zestaw II ( )

Matematyka dyskretna zestaw II ( ) Matematyka dyskretna zestaw II (17-18.10.2016) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak,

Bardziej szczegółowo

Prawdopodobieństwo GEOMETRYCZNE

Prawdopodobieństwo GEOMETRYCZNE Prawdopodobieństwo GEOMETRYCZNE Zadanie 1. Skoczek spadochronowy skacze nad kwadratową wyspą o boku 20km. Na środku wyspy znajduje się prostokątne lądowisko o wymiarach 2x3 km. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo