Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym"

Transkrypt

1 Ćwiczenie 4 : Spektrometr promieniowania gamma z licznikiem scyntylacyjnym Oskar Gawlik, Jacek Grela 24 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie licznika scyntylacyjnego NaI(Tl), wyznaczenie energetycznej zdolności rozdzielczej w zależności od energii oraz identyfikacja izotopów promieniotwórczych. 1.2 Teoretyczne podstawy Detektor scyntylacyjny - działanie Do detekcji promieniowania użyto licznika scyntylacyjnego NaI(Tl). Jest to detektor którego działanie opiera się na wybijaniu elektronów przez jonizujące cząstki bądź przez promieniowanie EM (dzięki zjawisku Comptona oraz absorpcji fotoelektrycznej). Idea urządzenia została przedstawiona poniżej: Rys.1 Detektor scyntylacyjny. Proces zliczania rozpoczyna się od wlotu fotonu przez okno do scyntylatora, który stanowi objętość czynną. Tam, zgodnie z teorią pasmową ciał stałych, pod wpływem energii promieniowania EM dochodzi do wybicia elektronu z pasma walencyjnego (tzw. jonizacja pierwotna) do pasma przewodnictwa (pociąga on za sobą, w wyniku jonizacji wtórnej, inne elektrony). Obrazuje to obszar 1. na Rys.1. Elektrony w takim stanie dążą do zminimalizowania własnej energii, co uzyskują poprzez znalezienie dziury w paśmie niższym i rekombinację na ten poziom. Jednocześnie emitują odpowiednie promieniowanie EM (widać to na obszarze 2.). Ponieważ rozpatrujemy detektor w postaci kryształu jodku sodu z domieszką talu, wspomniane wcześniej elektrony będą przechodzić na lokalny poziom energetyczny zapewniony przez domieszkę - odpowiadać temu będzie światło niebieskie (w przypadku niedomieszkowanym byłby to ultrafiolet UV). Jest to spowodowane najwyższą wydajnością konwersji fotoelektrycznej w fotokatodzie dla takiego właśnie światła. Powstałe promieniowanie przechodzi przez optyczny element do fotokatody, gdzie zostaje wybity fotoelektron który dostaje się do fotopowielacza. Tam, pod wpływem zewnętrznego pola elektrycznego, elektrony zostają przyspieszane i trafiając na kolejne tzw. dynody wybijają kaskadowo elektrony (obszar 3.). Cały proces kończy się w momencie wysłania sygnału z anody zbiorczej w celu dalszej obróbki. Kluczową własnością opisywanego zjawiska jest zależność wtórnego promieniowania widzialnego którego dociera do fotokatody od energii pierwotnego fotonu. 1

2 1.2.2 Charakterystyka licznika 1. W licznikach scyntylacyjnych, podobnie jak w gazowych licznikach proporcjonalnych, powstają tzw. piki ucieczki, są one jednak stosunkowo małe a energia przesunięcia (28.6[keV ]) również uniemożliwia ich wykrycie. 2. Przy detekcji promieniowania występuje duże tło komptonowskie, które znacznie pogarsza zdolność rozdzielczą oraz uniemożliwia identyfikację fotonów o energii mniejszej od danego piku. 3. Istnieje także zjawisko pików wstecznych czyli pików powstałych z oddziaływania Comptona elektronów i padającego promieniowania przy całkowitym odbiciu θ = π. Wtedy, zgodnie ze wzorem: hν hν = 1 + hν m ec (1 cos θ) 2 (1) Gdzie: h stała Plancka, ν częstotliwość promieniowania po oddziaływaniu, ν częstotliwość promieniowania prze oddziaływaniem, m e masa elektronu, c prędkość światła, θ kąt rozproszenia, Energia rozproszenia wstecznego będzie równa: Gdzie oznaczenia ze wzoru (1) pozostają w mocy. 1 hν = 1 hν + 2 (2) m ec 2 4. W licznikach scyntylacyjnych występują również piki zbiorcze czyli powstałe w wyniku nałożenia się dwóch pików o mniejszych energiach na siebie z powodu jednoczesnego zliczenia przez detektor. 1.3 Przebieg doświadczenia Zliczanie w każdym przypadku trwało 1 minut, do spisania wyników użyto komputera z kartą analizatora. Zbadano 4 izotopy: 6 Co, 137 Cs, 22 Na i 56 Mn, sód posłużył do cechowania detektora. Dodatkowo dokonano jednego pomiaru tła. 2

3 2 Eksperyment 2.1 Cechowanie Pierwszą czynnością, którą należy wykonać przy badaniu promieniotwórczości jest wycechowanie detektora przy pomocy znanego izotopu. W ten sposób sygnał z kanałów detektora mogą zostać przetłumaczone bezpośrednio na energię. Zbadano izotop 22 Na i przyporządkowano w programie obsługującym odpowiednie kanały do znanych pików energetycznych 1. Wykres zliczeń (wzbogacony o zidentyfikowane piki) został przedstawiony na Wyk.1 : kev kev kev ch [-] Poszukiwanie pików zestawiono w Tab.1 : Wyk.1 Zliczenia detektora n w funkcji kanału ch, zaznaczono odpowiednie piki. Tab.1 Tabela z wynikami cechowania. Izotop E [kev ] Kanał (ch) Opis 22 Na prom. γ 22 Na anihilacja β + 22 Na pik zbiorczy Gdzie: Izotop źródło fotonów o danej energii E, E [kev ] energia fotonów danego piku odczytana z zewnątrz 1, Kanał (ch) kanał detektora odpowiadający, w nieznany jeszcze sposób, energii, Opis więcej o naturze piku. Niepewności tych danych są nam nieznane, zarówno wspomniana tabela z energiami jak i program obsługujący całość eksperymentu nie wspominają o nich. Przyjmiemy więc, że wynoszą zero. 1 do identyfikacji pików użyto Tabeli 1.2, str. 17, z książki B. Dziunikowskiego i S. Kality Ćwiczenia laboratoryjne z jądrowych metod pomiarowych oraz Lederer, Hollander, Perlman Table of isotopes 3

4 Schemat przejść przedstawia Rys.2 : Rys.2 Schemat rozpadu 22 Na 2. Gdzie pokazano na jakie sposoby rozpada się pierwiastek, poziome linie pokazują stany energetyczne izotopu, strzałki obrazują możliwe kanały rozpadu. Wyliczono prostą kalibracji metodą regresji liniowej: Cechowanie ch [-] Wyk.2 Prosta cechowania, wyznaczona jako funkcja liniowa. O równaniu 3 : E = ( ±.2815) ch (1.186 ± 5.927) (3) Z prostej cechowania można wyznaczyć tzw. zero analizatora czyli energię dla której kanał wynosi. Ze wzoru (3) widać, że parametr ten jest równy liczbie wolnej w równaniu (3). 2 opracowano na podstawie książki Browne, Firestone Table of Radioactive Isotopes 3 użyto programu gnuplot 4

5 2.2 Energetyczna zdolności rozdzielczej jako funkcja energii fotonów Energetyczną zdolność rozdzielczą wyznaczymy z uzyskanych widm. Metodą półgraficzną na Wyk.3 wyznaczono ten parametr: de Wyk.3 Przybliżenie piku 22 Na o E = 511 [kev ], graficznie wyznaczona rozdzielczość energetyczna. Z wykresu wynika, że wynosi ona: de = 77 ± 2 [kev ] Niepewność wynika szacunkowo z rozdzielczości obrazka z którego wynik został uzyskany. Nie podejmowano bardziej zaawansowanych metod wyszukiwania tej wielkości. Zdolności energetyczne dla pozostałych pierwiastków były wyznaczane identycznie (liczono szerokości połówkowe dla pików pełnej absorpcji), nie włączono więc wykresów dla nich. Zestawiono szukane w Tab.2 : Tab.2 Tabela z energetycznymi zdolnościami rozdzielczymi. Izotop E [kev ] de [kev ] 22 Na ± 2 6 Co ± Cs ± 2 56 Mn ± 2 Na Wyk.4 widać wyraźną zależność między energią a zdolnością rozdzielczą: d Wyk.4 Energetyczna zdolność rozdzielcza de w funkcji energii piku E. 4 duża niepewność bo nachodzące na siebie dwa piki 5

6 2.3 Badanie izotopów Ostatnim etapem ćwiczenia jest zbadanie izotopów i identyfikacja ich pików. Do wszystkich schematów przejść przedstawionych w tej sekcji wspierano się książką Browne, Firestone Table of Radioactive Isotopes Kobalt kev kev 5 rozproszenie wsteczne ~26 kev 4 848? kev pik zbiorczy 2453 kev Wyk.5 Wykres 6 Co z naniesionymi zidentyfikowanymi pikami. Schemat przejść przedstawia Rys.3 : Rys.3 Schemat rozpadu 6 Co. 6

7 2.3.2 Cez kev rozproszenie wsteczne ~176 kev Wyk.6 Wykres 137 Cs z naniesionymi zidentyfikowanymi pikami. Schemat przejść przedstawia Rys.4 : Rys.4 Schemat rozpadu 137 Cs. 7

8 2.3.3 Mangan kev rozproszenie wsteczne ~193 kev kev ~262 kev Wyk.7 Wykres 56 Mn z naniesionymi zidentyfikowanymi pikami. Schemat przejść przedstawia Rys.5 : Rys.5 Schemat rozpadu 56 Mn. 8

9 3 Wnioski 1. Poniżej zestawiono wyniki eksperymentu z danymi pobranymi z niezależnych źródeł: W Tab.3 poniżej zestawiono wyniki i wartości tablicowe: Izotop Eksperyment [kev ] Źródło niezależne [kev ] Szczegóły 6 Co (piki 1173 i 1333) 5 pik wsteczny 1169 i Co z tablic b. słabe 6 Co z tablic 6 Co z tablic 6 Co ( ) pik zbiorczy 137 Cs (pik 662) 5 pik wsteczny Cs z tablic 56 Mn (pik 847) 5 pik wsteczny Mn z tablic 56 Mn z tablic 56 Mn z tablic niedokładny (patrz 5.) Wszystkie wartości energii w Tab.3 podano w [kev ]. Biorąc pod uwagę to, że licznik scyntylacyjny jest mało dokładny, efekty są zadowalające. Dodatkowo, widać że wzór (2) sprawdza się bardzo dobrze do obliczania pików wstecznych. 2. W Tab.4 zestawiono niepewności względne: u [%] E tab [kev] E eks [kev] Gdzie: u niepewność względna u = E tab E eks E tab w procentach, E tab tablicowa energia piku, E eks energia piku wyznaczona w ćwiczeniu. Nie widać korelacji energii i niepewności, jest ona utrzymana na podobnym poziomie. Jest to zapewne spowodowane dużą subiektywnością w wyborze maksimów (szczególnie w przypadku słabych bądź poszarpanych pików). 3. Piki wstecznego rozproszenia są trudne do dokładnego wyznaczenia z powodu wysokiego szumu dla energii w których on generalnie występuje (dyskusja tego faktu w części teoretycznej). W związku z tym, mają one odpowiednio większe niepewności (patrz Tab.4 ). 4. Pik 848 zidentyfikowany w kobalcie (Wyk.5 ) został opatrzony znakiem zapytania ponieważ z jednej strony istnieje przejście wyzwalające taką energię (Rys.3 ) ale jest ono bardzo mało prawdopodobne. Przeciwko temu, iż jest to faktyczny pik przemawiają również pozostałe wykresy na których wykres zachowuje się podobnie (tło komptonowskie?). 5. Mangan posiada jeszcze parę możliwych przejść (Rys.5 ) których nie stwierdzono. Niestety, nie zobaczono ich z powodu zbyt dużych energii. Dodatkowo, piki w wysokich energiach rozmywają się (zgodnie z relacją zdolności rozdzielczej i energii), co, w połączeniu z fluktuacjami, nie pozwala na dokładne wyznaczenie ich wartości. Wtedy (np. pik 262 [kev] w manganie) oznaczono tyldą na znak tego, że wartość nie została pobrana stricte z danych ale podparto się również rozumowaniem na podstawie wykresu. Jeśli w bliskim sąsiedztwie znajdowano 2 maksymalne wartości zliczeń n (przedzielone 3-4 pomiarami o mniejszych zliczeniach) to za pik uznawano średnią arytmetyczną z tych dwóch maksimów (zakładamy symetryczność piku). 5 obliczono ze wzoru (2) dla piku tablicowego (!), niepewności zaniedbano z powodu dokładnych wartości tablicowych stałych fundamentalnych 9

Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li)

Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) Oskar Gawlik, Jacek Grela 3 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009 Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009

Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009 Ćwiczenie LP1 Jacek Grela, Łukasz Marciniak 22 listopada 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

J8 - Badanie schematu rozpadu jodu 128 I

J8 - Badanie schematu rozpadu jodu 128 I J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

Badanie próbek środowiskowych

Badanie próbek środowiskowych J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo

Bardziej szczegółowo

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.

Bardziej szczegółowo

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 11 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego. Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące

Bardziej szczegółowo

Ćwiczenie nr 1 : Statystyczny charakter rozpadów promieniotwórczych

Ćwiczenie nr 1 : Statystyczny charakter rozpadów promieniotwórczych Ćwiczenie nr 1 : Statystyczny charakter rozpadów promieniotwórczych Oskar Gawlik, Jacek Grela 26 stycznia 29 1 Wstęp 1.1 Podstawy teoretyczne 1.1.1 Detektor Geigera-Müllera Jest to jeden z podstawowych

Bardziej szczegółowo

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,

Bardziej szczegółowo

C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA

C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA Wykonanie ćwiczenia Ćwiczenie będzie odbywało się z użyciem detektora germanowego technologii HPGe (high purity germanium lub hyperpure

Bardziej szczegółowo

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji Wyznaczanie energii promieniowania γ pochodzącego ze 6 źródła Co metodą absorpcji I. Zagadnienia 1. Procesy fizyczne prowadzące do emisji kwantów γ. 2. Prawo absorpcji. Oddziaływanie promieniowania γ z

Bardziej szczegółowo

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1 IM-8 Badanie absorpcji promieniowania gamma w materiałach I. Cel ćwiczenia Celem ćwiczenia jest pomiar współczynników absorpcji

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ ĆWICZENIE 2 BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie następujących charakterystyk sond promieniowania γ: wydajności detektora w funkcji odległości detektora

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

gamma - Pochłanianie promieniowania γ przez materiały

gamma - Pochłanianie promieniowania γ przez materiały PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

WYZNACZANIE ZAWARTOŚCI POTASU

WYZNACZANIE ZAWARTOŚCI POTASU POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Fizyki

POLITECHNIKA WARSZAWSKA Wydział Fizyki POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia Opracował:

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Fizyki

POLITECHNIKA WARSZAWSKA Wydział Fizyki POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia 1.

Bardziej szczegółowo

BADANIE CHARAKTERYSTYK FOTOELEMENTU

BADANIE CHARAKTERYSTYK FOTOELEMENTU Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI

ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI Instrukcje do ćwiczeń laboratoryjnych CEL ĆWICZENIA Zapoznanie się z metodą spektrometrii promieniowania gamma

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 8 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar okresu połowicznego

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO Politechnika Poznańska, nstytut Chemii i Elektrochemii Technicznej, OZNACZANE WSPÓŁCZYNNKA POCHŁANANA PROMENOWANA GAMMA PRZY UŻYCU LCZNKA SCYNTYLACYJNEGO nstrukcję przygotował: dr, inż. Zbigniew Górski

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA

POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA Opiekun ćwiczenia: Jerzy Żak Miejsce ćwiczenia:

Bardziej szczegółowo

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji

Bardziej szczegółowo

(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok

(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok (2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do Wydział Fizyki, 2009 r. Spis Treści 1. Zjawisko fluorescencji rentgenowskiej (XRF)... 2 2. Detekcja promieniowania

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia

Bardziej szczegółowo

II Pracownia Fizyczna - część: Pracownia Jądrowa. Ćwiczenie nr 8

II Pracownia Fizyczna - część: Pracownia Jądrowa. Ćwiczenie nr 8 II Pracownia Fizyczna - część: Pracownia Jądrowa Ćwiczenie nr 8 Pomiar i analiza widm monoenergetycznego promieniowania gamma za pomocą detektora scyntylacyjnego z oprogramowaniem Genie 2000. 1. Cel ćwiczenia:

Bardziej szczegółowo

Sebastian Gajos Dominik Kaniszewski

Sebastian Gajos Dominik Kaniszewski Sebastian Gajos Dominik Kaniszewski 13.06.006 Imię i nazwisko Data Ćw.1 Spektometria scyntylacyjna promieniowania Υ. Temat ćwiczenia ocena podpis 1. Część teoretyczna: Prawo rozpadu promieniotwórczego.

Bardziej szczegółowo

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2 Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również

Bardziej szczegółowo

Detekcja widma promieniowania gamma emitowanego ze źródła 2 2 Na za pomocą licznika scyntylacyjnego

Detekcja widma promieniowania gamma emitowanego ze źródła 2 2 Na za pomocą licznika scyntylacyjnego Opracował: Jerzy Dryzek Detekcja widma promieniowania gamma emitowanego ze źródła 2 2 Na za pomocą licznika scyntylacyjnego I. Cel ćwiczenia Zapoznanie się z zasadą działania spektrometru do pomiaru widma

Bardziej szczegółowo

Oddziaływanie Promieniowania Jonizującego z Materią

Oddziaływanie Promieniowania Jonizującego z Materią Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i

Bardziej szczegółowo

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu. SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach

Bardziej szczegółowo

Korpuskularna natura światła i materii

Korpuskularna natura światła i materii Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Ćwiczenie 57 Badanie absorpcji promieniowania α

Ćwiczenie 57 Badanie absorpcji promieniowania α Ćwiczenie 57 Badanie absorpcji promieniowania α II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLĄSKI W KATOWICACH Cele doświadczenia Głównym problemem, który będziemy badać w tym doświadczeniu jest strata energii

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Ć W I C Z E N I E N R J-1

Ć W I C Z E N I E N R J-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Marek Kowalski

Marek Kowalski Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być

Bardziej szczegółowo

Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji.

Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. Ćwiczenie nr 5 Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. 1. 2. 3. 1. Ołowiany domek pomiarowy z licznikiem kielichowym G-M oraz wielopoziomowymi wspornikami. 2. Zasilacz

Bardziej szczegółowo

Pomiar maksymalnej energii promieniowania β

Pomiar maksymalnej energii promieniowania β Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 7 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar maksymalnej

Bardziej szczegółowo

Ćwiczenie 9. Pomiar bezwględnej aktywności źródeł promieniotwórczych.

Ćwiczenie 9. Pomiar bezwględnej aktywności źródeł promieniotwórczych. Ćwiczenie 9 Pomiar bezwględnej aktywności źródeł promieniotwórczych. Stanowisko 9 (preparaty beta promieniotwórcze) Stanowisko 9 (preparaty gamma promieniotwórcze) 1. Student winien wykazać się znajomością:

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne:

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności

Bardziej szczegółowo

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Radioaktywność w środowisku Rok akademicki: 2030/2031 Kod: STC-2-212-OS-s Punkty ECTS: 2 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Ochrona środowiska w energetyce

Bardziej szczegółowo

obowiązuje w r. akad / 2020

obowiązuje w r. akad / 2020 POLITECHIKA ŚLĄSKA WYDZIAŁ CHEMICZY KATEDRA FIZYKOCHEMII I TECHOLOGII POLIMERÓW obowiązuje w r. akad. 2019 / 2020 OZACZAIE AKTYWOŚCI I OKRESU PÓŁTRWAIA SUBSTACJI PROMIEIOTWÓRCZEJ Opiekun ćwiczenia: dr

Bardziej szczegółowo

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X IM-20 Jakościowa i ilościowa analiza składu materiałów za pomocą XRF XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo