Oddziaływanie Promieniowania Jonizującego z Materią

Wielkość: px
Rozpocząć pokaz od strony:

Download "Oddziaływanie Promieniowania Jonizującego z Materią"

Transkrypt

1 Oddziaływanie Promieniowania Jonizującego z Materią Plan Prawdopodobieństwo - revisited Bayes Modele P.D.F., parametry rozkładów Kilka użytecznych przykładów Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej 14/04/2015 1

2 zagadnienia wstępne/organizacja zajęć źródła promieniowania mechanizmy oddziaływania (fizyka) pojęcie przekroju czynnego wybrane zagadnienia statystyczne wybrane metody detekcji eksperymenty fizyczne symulacje oddziaływania promieniowania z materią tory pomiarowe 2

3 Pojęcie podstawowe (1) Interpretacja prawdopodobieństwa a) Obiektywne prawd. podejście częstościowe: A, B, - różne, możliwe wyniki doświadczenia - zakładamy, że możemy powtórzyć doświadczenie w sposób kontrolowany - P(A), P(B), możemy wówczas zdefiniować jako: - bardzo użyteczny sposób na szacowanie prawd. - np. opis rozpadu substancji promieniotwórczej - mechanika kwantowa 3

4 Pojęcie podstawowe (2) Interpretacja prawdopodobieństwa (patrz wykład 1) b) Subiektywne prawd. A, B, - różne hipotezy (niektóre prawdziwe, niektóre fałszywe) - w zasadzie oba podejścia zgodne z aksjomatami - prawd. subiektywne (zależne od obserwatora) może niepokoić - statystyka jest częścią matematyki, obliczanie prawd. zajścia zdarzenia A powinno być jednoznaczne - popatrzmy na prosty przypadek rzutu kostką do gry 4

5 Pojęcie podstawowe (3) Rzucamy symetryczną (uczciwą) kostką do gry jak wyznaczyć prawd. P(1) =? Przy powyższych założeniach: P(1) = P(2) = = P(6) = 1/6 Mówimy, że poszczególne prawd. P(i) są stałe, ale wynik każdego rzutu jest zmienną losową ZL (dokładna definicja ZL podczas wykładu nr 3) Jak możemy sprawdzić wartość P(i)? - eksperyment: rzucamy kostką N razy - przyjmiemy: 5

6 Pojęcie podstawowe (4) Rzucamy symetryczną (uczciwą) kostką do gry jak wyznaczyć prawd. P(1) =? Wynik jaki przyjęliśmy powyżej wydaje się rozsądny (logiczny?) Czy aby na pewno?? Obiektywność prawd. jest UŁUDĄ! - formuła, którą otrzymaliśmy zakłada, że każde zdarzenie elementarne jest tak samo prawdopodobne - czyli: eksperyment składa się z ciągu identycznych prób - dlaczego zakładamy domyślnie, że prawd. nie może się zmienić? - oraz, co można powiedzieć o symetrii kostki, gdy wykonamy 5, 20, 100 rzutów? 6

7 Pojęcie podstawowe (5) prób pokaźna próbka - powyższa symulacja pokazuje duże wahania (fluktuacje) - czy kostka staje się bardziej uczciwa w funkcji liczby rzutów? - fluktuacje bardzo istotne dla opisu częstościowego, istnieje ogromna maszyneria dedykowana do radzenia sobie z tym 7

8 Prawd. warunkowe Prawdopodobieństwo miara naszej wiary ZAWSZE zależy od dodatkowych informacji (background information) W zasadzie, zawsze powinniśmy myśleć o P(X) w kategoriach prawd. warunkowego! Zdarzenie X szacujemy To są dodatkowe informacje W zależności od stanu swojej wiedzy, obserwatorzy A i B mogą wyznaczyć różne wartości P(X I) subiektywność Subiektywny Arbitralny Jeżeli obaj posiadają taką samą wiedzę, powinni wyznaczyć takie same wartości prawdopodobieństwa W tym sensie, podejście subiektywne (będziemy je od tej pory nazywać Bayesowskim) jest bardziej naturalne 8

9 Prawd. warunkowe Rozumowanie dedukcyjne Przyczyna Teoria, zwykle kompletna, nie zawierająca stwierdzeń fałszywych Możliwe skutki Przewidywania wysnute na podstawie teorii Rozumowanie indukcyjne Możliwe Przyczyny Konkurujące teorie/modele Obserwacje Który z nich jest najbardziej wiarygodny? 9

10 Twierdzenie Bayes a (1) Wróćmy do rachunków formalnie definiujemy prawd. warunkowe dla zdarzenia A (to prawd. próbujemy oszacować) pod warunkiem, że zaszło zdarzenie B (to znamy a priori, stało się na pewno, dodatkowa informacja); często nazywane czwartym aksjomatem prawd. Np. rzucamy kostką do gry, A # oczek < 3, B - # oczek parzysta P(A) P(A B) B jest dodatkową informacją! P(# < 3 # parzysta) = P((# < 3) (# parzyste))/p(# parzyste) = 1/3 Wnioski: - A i B są niezależne - Nie mylić ze zdarzeniami rozłącznymi! - Gdy niezależne: (dodatkowa info. nie zmienia prawd. zajścia A) 10

11 Twierdzenie Bayes a (2) Bezpośrednio z definicji prawd. warunkowego: oraz, więc: Twierdzenie Bayes a ( ) (jednocześnie stary i nowy temat) 11

12 Twierdzenie Bayes a (3) Jeżeli możemy podzielić P.Z.E. na zdarzenia wzajemnie rozłączne: Wtedy zdarzenie B można wyrazić: Prawd. całkowite Tw. Bayes a 12

13 Twierdzenie Bayes a (4) p(param data) p(data param) * p(param) posterior likelihood prior 13

14 Zmienna Losowa (1) Prob. - P: A P(A) [0, 1] P 1 A 0 Prob. wprowadzone formalnie jako funkcja przypisująca każdemu Z.E. liczbę rzeczywistą zawsze większą od 0 i mniejszą od 1 - Aksjomaty nie precyzują w jaki sposób przypisywać Z.E. wartości prob. - Dla konkretnego przypadku sami musimy zadecydować jak to zrobić - Np. rzut kostką: P(i) = 1/6, rzut monetą P(i) = ½, - i: liczba oczek na danej ścianie kostki, orzeł lub reszka, 14

15 Zmienna Losowa (2) Np. rzut kostką: P(i) = 1/6, rzut monetą P(i) = ½, W obu przypadkach mamy jakieś i szansa na uogólnienie? X + x i i - Zdefiniujmy nową funkcję - X (zmienna losowa, funkcja losowa): X: x i X(x i ) 15

16 Zmienna Losowa (3) Rozważmy dwa poniższe przykłady: podwójny rzut monetą (symetryczną) = {OO, OR, RO, RR} (O orzeł, R reszka) niech X reprezentuje liczbę wyrzuconych orłów: Z.E OO RO OR RR pojedynczy rzut kostką = {1, 2, 3, 4, 5, 6} (liczba wyrzuconych oczek) mamy: X(1) = 1, X(2) = 2, X(6) = 6; X(i) = i Ogólnie: Z.L. jest funkcją, zdefiniowaną na Z.Z.E, która każdemu Z.E. przypisuje liczbę X nie wprowadzamy żadnych ograniczeń co do wartości Z.L. w zasadzie dowolne przyporządkowanie np. dla kostki równie dobre będzie: X(1) = -1000, X(2) =, X(3) = log 10 (223), zawsze kierujemy się względami praktycznymi 16

17 Zmienna Losowa (4) Niech Z.L. przyjmuje wartości X = {x 1, x 2, x n } Wiemy, że x 1 odpowiada pewnemu Z.E., więc możemy przypisać jej prob.: lub ogólnie: P(X = x 1 ) = f(x 1 ) P(X = x j ) = f(x j ), j = 1, 2,, n Funkcję f(x j ) nazywamy rozkładem prawdopodobieństwa (R.P), lub rozkładem gęstości prawdopodobieństwa (P.D.F.) Formalnie: funkcję f(x) nazywamy funkcją prawdopodobieństwa (R.P.) jeżeli: 1) 2) suma w 2) rozciąga się po wszystkich możliwych wartościach x, dla zmiennej dyskretnej są to oczywiście wszystkie X = x j, dla wszystkich pozostałych mamy: f(x) = 0 17

18 Zmienna Losowa (4) Przykład rozważmy rzut parą kostek do gry, niech zmienną losową będzie suma oczek na obu kostkach X = (suma oczek na K1 + suma oczek na K2) Z.Z.E. składa się z 36 dwójek (oczka na K1, oczka na K2) = {(1,1), (1,2),, (5,6), (6,6)} każde Z.E. tak samo prawdopodobne: P( j ) = 1/36 czyli X = 2 odpowiada (1,1), P(X = 2) = f(2) = 1/36, itd. 18

19 Zmienna Losowa (5) X + 1 x i i 0 - Z.L. jest jednym z najważniejszych pojęć statystyki R.G.P. jest podstawowym narzędziem stosowanym do opisu cech zjawiska losowego, które badamy statystyka opisowa (pojęcie histogramu Wykład 4) 19

20 Dystrybuanta Dystrybuantą (funkcja rozkładu prawdopodobieństwa całkowitego) zmiennej losowej X, posiadającej F.G.P. f(x) nazywamy funkcję: F(x) = P(X x) Dystrybuanta posiada następujące własności: 1) 2) 3) 4) 1) Z.L. przyjmuje dowolne wartości 2) Dystrybuanta jest funkcją niemalejącą 3) Zachowanie asymptotyczne całkowite prawdopodobieństwo 4) Dystrybuanta jest funkcją prawostronnie ciągłą 20

21 P.D.F i dystrybuanta P.D.F. rozkład gęstości prawd. Rozkład prawd. P(a < X < b) = F(b) F(a) 21

22 Zamiana zmiennych (1) Jeżeli zdefiniujemy pewną Z.L. X, to dowolna funkcja typu: jest również Z.L. Możemy łatwo wyobrazić sobie zastosowanie takiego odwzorowania! Typowe pytanie jakie pojawia się w związku z tym to: mamy Z.L X oraz jej R.G.P., jeżeli wiemy, że Y jest funkcją X to czy istnieje ogólny sposób wyrażenia R.G.P. dla Z.L. Y przez f(x)? TAK dzięki ogólnym regułom dotyczącym zamiany zmiennych! Popatrzmy na następujący przykład: oblicz całkę: 22

23 Zamiana zmiennych (2) Wygodnie jest dokonać zamiany zmiennych! i dalej: zobaczyliśmy tu kilka ciekawych rzeczy: 1) Zmiana skali!, jeżeli wyobrazimy sobie, że u i x wyrażają długość, to u jest 3x większe niż x 2) Aby dostać ten sam wynik poprawka na zmianę skali, stąd czynnik 1/3 przed całką! 3) W tym przypadku, zmiana skali jest stała na danym przedziale (może oczywiście też być funkcją) 23

24 Zamiana zmiennych (3) Wracamy do funkcji Z.L., nasze oryginalne pytanie: Pamiętając o poprzednich rozważaniach, wymagam aby: Normalizacja! Zamiana dla dwóch Z.L 24

25 Statystyka opisowa (1) Definiując pojęcia Z.L. oraz R.G.P. zakładaliśmy, że znamy postać funkcyjną rozkładu tej zmiennej W ogólności nie jest to prawda w praktyce, bardzo często nie jesteśmy w stanie określić dokładnej postaci funkcji R.G.P. możemy jedynie wyznaczyć ograniczoną liczbę parametrów takiego rozkładu. Parametry te, są zawsze wyznaczane na drodze eksperymentalnej Jednym z najważniejszych parametrów opisowych, znanym w statystyce jest wartość oczekiwana, zwana również wartością średnią. Załóżmy, że badamy dyskretną Z.L. przyjmującą wartości: dla której, funkcja R.G.P. zdefiniowana jest jak poniżej: 25

26 Statystyka opisowa (2) Wówczas, wartość oczekiwaną E[X] ( ), wyznacza się z zależności: Jeżeli, zmienna losowa X posiada rozkład płaski, wówczas prob. Pojawienia się jakiejkolwiek wartości Z.L. jest jednakowa, mamy wówczas: W tym przypadku E[X] nazywana jest średnią arytmetyczną. Poprzez analogię, dla ciągłej Z.L. wartość średnią wyznaczamy z zależności: Wartość średnia dla ciągłej Z.L. istnieje, gdy powyższa całka jest zbieżna! 26

27 Statystyka opisowa (3) Przykład Dla poniżej zdefiniowanej funkcji R.G.P. zmiennej losowej X wyznacz E[X] Wartość oczekiwana nazywana jest często miarą tendencji centralnej funkcji R.G.P. dla zmiennej losowej X Formułę definiującą E[X] możemy uogólnić w następujący sposób: Analogiczne równanie może zostać zapisana również dla dyskretnej Z.L. 27

28 Statystyka opisowa (4) Następną wielkością stosowaną do opisu R.G.P. jest wariancja, V[X], którą dla Z.L. X definiujemy jak poniżej: Wariancja jest nieujemną wielkością, której dodatni pierwiastek nazywamy odchyleniem standardowym, Mamy, odpowiednio dla dyskretnych i ciągłych Z.L. Istnieje, jeżeli całka jest skończona Jeżeli Z.L. X pochodzi z rozkładu płaskiego (analogia do E[X]), to: 28

29 Statystyka opisowa (5) Przykład Dla funkcji zdefiniowanej na stronie 13 wyznaczymy V[X] Wariancję możemy interpretować jako miarę rozrzutu (rozmycia) Z.L. X wokół jej wartości średniej Małe V[X] Duże V[X] 29

30 Statystyka opisowa (6) Własności (wybrane) wariancji 1) 2) 3) Np. własność 1): Ważna transformacja związana z wartością średnią oraz odchyleniem standardowym - Z.L. standaryzowana: X X* Dla tak zdefiniowanej zmiennej mamy: Jednostka standardowa 30

31 Momenty (1) Wartość oczekiwana zdefiniowana na ostatnim wykładzie: Wybierzmy funkcję g(x) jak poniżej: wówczas, wyrażenie nazywamy momentem rzędu r względem punktu a. Jeżeli wybierzemy punkt a jako: dostaniemy tzw. momenty centralne (szczególnie ważne w statystyce) 31

32 Momenty (2) W szczególności mamy: czyli, drugi moment centralny, możemy zidentyfikować jako wariancję Z.L. X Uwaga! Powyższe rozważania dotyczą oczywiście obu rodzajów Z.L. jakie dyskutowaliśmy, tzn. ciągłych i dyskretnych: Podobnie możemy zdefiniować momenty główne: 32

33 Momenty (3) Istnieje prosty związek, pomiędzy momentami centralnymi i głównymi: Zauważmy, że: Można również łatwo pokazać, że gdy wartość oczekiwana dla danej Z.L. E(X) = 0, wówczas momenty centralne równe są momentom głównym. To ciekawa obserwacja, np. dla zmiennej standardowej oba typy momentów są równe z definicji! 33

34 Momenty (4) Momenty zdefiniowane dla jednowymiarowych zmiennych losowych mogą być łatwo przeniesione do świata zmiennych wielowymiarowych. Zdefiniujmy zmienną losową posiadającą n-składowych: Funkcję R.G.P. oraz dystrybuantę oznaczymy jako: Momenty centralne, zdefiniujemy jak poniżej: W szczególności momenty drugiego rzędu zapiszemy jako: 34

35 Momenty (5) Dla wprawy popatrzmy na przypadek dwuwymiarowy: Zakładamy, że rozkład zmiennych X i Y opisany jest przez f(x,y) Wartości oczekiwane dla zmiennych X oraz Y definiujemy jako: Odpowiednio, wariancje: 35

36 Kowariancja i korelacja (1) Zarówno wartości oczekiwane jak i wariancje definiujemy podobnie jak w przypadku Z.L. jednowymiarowej. Nowością jest następujące wyrażenie mieszane to samo w postaci jawnej: Można pokazać, że prawdziwe są poniższe tożsamości: Z.L. niezależne 36

37 Kowariancja i korelacja (2) Kowariancja nie ma odpowiednika w przypadku jednowymiarowych Z.L. Zawiera ona informacje dotyczące liniowej zależności pomiędzy zmiennymi losowymi X 1 (X) oraz X 2 (Y), np. gdy zdarzenie: Tradycyjnie, najwygodniej jest wprowadzić wielkość bezwymiarową do określenia zależności pomiędzy Z.L. współczynnik korelacji Łatwo pokazać (np. korzystając z definicji Z.L. w postaci standardowej): 37

38 Kowariancja i korelacja (3) Uwaga! Jeżeli wsp. korelacji jest różny od zera, mówimy wówczas, że Z.L. są liniowo zależne skorelowane W przypadku, gdy wsp. korelacji jest równy 0 (zanika kowariancja) Z.L. nazywamy nieskorelowanymi liniowo (mogą jednak być zależne!) 38

39 Modele matematyczne (1) Rozkład dwumianowy Niezwykle użyteczny w zastosowaniach praktycznych, gdy mamy do czynienia, ze zdarzeniami dzielącymi dane populacje na pary alternatyw, np. urządzenie włączone/wyłączone, mężczyzna/kobieta, żywy/martwy itp. itd. Zdarzenia takie nazywamy próbami Bernoulliego. Badając ciąg takich prób i zakładając, że poszczególne próby są od siebie niezależne oraz charakteryzują się stałym prob. sukcesu, p, i porażki, q, dochodzimy do formuły: Pamiętając o tym, że (p+q) = 1, możemy pokazać, że dla rozkładu dwumiennego mamy: Np. rzucając trzema kostkami, prob. wyrzucenia dwóch piątek wynosi: 39

40 Modele matematyczne (2) Wartość oczekiwana i wariancja dla rozkładu dwumianowego: Istnieje dość duża liczba sposobów wyznaczenia E[X] oraz Var[X] dla rozkładu dwumianowego, poniżej dwie metody wyznaczenia wartości oczekiwanej i jedna dla wariancji. Dla pojedynczej próby, zmienna losowa X k przyjmuje postać: zmienną X można wyrazić przez X k : To samo, używając wprost definicji E[X]: 40

41 Modele matematyczne (3) Poniżej, rozkład dwumienny, dla N = 20 oraz różnych wartości p 41

42 Rozkład Poissona Modele matematyczne (4) Załóżmy, że pewien eksperyment polega na zbieraniu (akumulowaniu) danych (Z.L. dyskretna) w funkcji czasu. Zakładamy, że prob. każdego takiego zdarzenia jest małe << 1 i w przybliżeniu stałe w czasie. Np. rozpad promieniotwórczy, rejestracja promieniowania przez licznik Geigera, buforowanie danych nadchodzących losowo (derandomizacja). Zjawiska tego typu, reprezentują zdarzenia losowe, które mogą być opisane rozkładem: Normalizację, sprawdzamy sumując wszystkie przyczynki: Wartość oczekiwana: 42

43 Modele matematyczne (5) Oraz wariancja: 43

44 Modele matematyczne (6) Rozkładu Poissona można również użyć do numerycznego przybliżania rozkładu dwumianowego Jeżeli, rozważymy bardzo długi ciąg prób Bernoulliego, dla których prob. sukcesu jest niewielkie (czujemy oczywiście subiektywność tego stwierdzenia ), czyli: wówczas (dowód na ćwiczeniach): Przykład: badania firmy XProcessing wykazały, że prob. wyprodukowania wadliwego procesora wynosi 0.12 %. Procesory są wysyłane w pakietach po 2400 sztuk. Jakie jest prob., że wysłany pakiet zawiera dokładnie 1 wadliwy procesor? Używając rozkładu dwumianowego mamy (sukces to wadliwy procesor): 44

45 Modele matematyczne (7) Porównanie rozkładów: dwumiennego i Poissona 45

46 Modele matematyczne (8) Rozkład Gaussa (normalny) jest jednym z najczęściej używanych R.G.P. dla zmiennych losowych ciągłych. Definiujemy go jak poniżej: Można pokazać, że: 46

47 Modele matematyczne (9) Standaryzowany rozkład normalny: Rozkład normalny zestandaryzowany pokazany jest na poprzednim slajdzie. Obliczanie odpowiednich prob. Staje się łatwe z użyciem rozkładu zmiennej X*. N.p. prob., że zmienna X* zawarta jest w przdziale -1 < X* < 1: Istota zastosowań rozkładu normalnego związana jest z faktem, że w wielu przypadkach pomiarów eksperymentalnych, które naturalnie zawierają losowe niepewności pomiarowe, rozkład tych niepewności może z dobrym przybliżeniem być reprezentowany przez rozkład normalny. 47

48 Modele matematyczne (10) Dystrybuanta dla funkcji R.G.P. Gaussa jest podawana w postaci tabelarycznej (trudno się całkuje) por. slajd poprzedni. 48

49 Wnioskowanie statystyczne (1) Praktyczny problem chcemy wyciągnąć znaczące wnioski dotyczące własności (lub zbioru własności) pewnej (zwykle dużej) grupy/zbioru ludzi, zjawisk, przedmiotów etc. W statystyce, taką grupę/zbiór nazywamy populacją UWAGA Pojecie populacji, powinniśmy traktować ostrożnie, czasami mamy na myśli oczywiście bardziej potoczne znaczenie, np., populacja Szydłowca (badamy długość życia, zarobki etc.). Najczęściej jednak stosujemy to pojęcie bardziej ogólnie, np., populacją może być zbiór wszystkich krzeseł w danej sali wykładowej. KONIEC UWAGI Jeżeli populacja jest duża (np. trudno w praktyce zapytać każdego mieszkańca Szydłowca o zarobki ) możemy jedynie przeanalizować jej część zwaną wówczas próbą reprezentatywną lub próbą losową Chcemy więc wyciągnąć wnioski ilościowe na temat całej populacji używając wiadomości wyznaczonych przy użyciu próby losowej to jest podstawą wnioskowania statystycznego! Pobierania próby nazywamy próbkowaniem statystycznym istnieje cała gałąź statystyki zajmująca się teorią próbkowania! 49

50 Wnioskowanie statystyczne (2) Próbkowanie Możemy dokonywać próbkowania używając losowań z powtórzeniami lub bez powtórzeń. W języku wnioskowania statystycznego mówimy o tym, że dany przedstawiciel populacji może być reprezentowany w próbce wiele razy lub tylko raz. Ważna konsekwencja załóżmy, że mamy skończoną populację. Używając losowania z powtórzeniami możemy w zasadzie traktować ją jak populację nieskończoną istnieje bardzo ciekawa technika wnioskowania oparta na tej zasadzie bootstrap. Rozumiemy intuicyjnie, że jakość wyników zależy całkowicie od sposobu pobierania próby (reprezentatywność). Np., badając zarobki w Szydłowcu, możemy przeprowadzić ankietę wśród pracowników ZUS rezultaty będą znacząco obciążone! Podstawą do wybrania dobrej (reprezentatywnej próbki) jest zapewnienie (w jak największym stopniu) tego, aby każdy element populacji miał jednakową szansę znalezienia się w próbce (możemy użyć generatora liczb losowych). 50

51 Wnioskowanie statystyczne (3) Próba reprezen. Wnioskowanie dotyczące populacji Losowanie próbki Populacja 51

52 Wnioskowanie statystyczne (4) Parametry populacji Mówimy, że znamy populację, wtedy i tylko wtedy, gdy znana jest funkcja f(x) reprezentująca R.G.P. dla stowarzyszonej Z.L. X Np., interesuje nas rozkład X wysokości (wagi, itp.) studentów (N = 19000). Znajomość populacji oznacza więc, że znamy rozkład X czyli f(x)! Jeżeli, wysokość studentów posiada rozkład normalny, mówimy wówczas, że populacja charakteryzuje się rozkładem normalnym. Wiemy już, że R.G.P. posiada pewne istotne parametry, np., wartość oczekiwaną, wariancję, skośność itp. Jeżeli funkcja f(x) opisuje własności pewnej populacji to wielkości te stanowią tzw. parametry populacji. UWAGA parametry populacji, traktujemy zawsze jako (znane!) liczby stałe! 52

53 Statystyki (1) Mówimy, że pobieramy próby losowe z populacji aby użyć ich do wyznaczenia wielkości, które służą do estymowania (również testowania hipotez o tym później) parametrów populacji. Wysokość studentów pobieramy próbę o liczności n = 100 co się dzieje? - X Z.L. oznaczająca wysokość studentów - Pobieramy próbę: losujemy pierwszą osobę, dostajemy wysokość x 1 - Mamy więc, konkretną wartość dla zmiennej losowej X 1 - Powtarzamy tą operację dla 2, 3,, 50, 100 osoby (UWAGA! Dla N = i n = 100, losowanie ze zwracaniem i bez w zasadzie bez różnicy!) Mamy więc próbę: (x 1, x 2, x 3,, x 100 ), w naszym przypadku Z.L. X i są niezależne (i posiadają taki sam R.G.P) mamy więc: DEF Każda wielkość, wyznaczona na podstawie pobranej próby, służąca do estymacji parametru populacji nazywana jest statystyką. Formalnie, statystyka wyznaczona na podstawie pobranej próby jest funkcją Z.L. 53

54 Statystyki (2) Statystyka, zdefiniowana jak powyżej, jest sama zmienną losową. Wartości statystyk reprezentowane są, poprzez wartości Z.L. będących elementami pobranych prób: Zwykle, dla każdego estymowanego parametru populacji wyznaczamy odpowiednią statystykę na podstawie pobranej próby. Metoda wyznaczania statystyk podlega dość skomplikowanym regułom. Badamy tzw. wydajność i obciążenie danej statystyki (więcej przy omawianiu teorii estymacji). Umowa: parametry populacji oznaczamy literami greckimi:, 2, odpowiadające im statystyki oznaczamy literami z naszego alfabetu: m, s 2, Podsumowując Statystyka jest, w odróżnieniu od parametru populacji, Z.L. podlega więc rozkładowi Pobierając k prób, możemy stworzyć R.G.P. dla danej statystyki Dla takiego rozkładu możemy wyznaczyć wartość oczekiwaną, wariancję itp.. 54

55 Wartość oczekiwana z próby (1) Załóżmy, że pobraliśmy próbę o liczności n, wówczas dla tej próby mamy n zmiennych losowych, każda podlegająca temu samemu rozkładowi (albo inaczej losujemy zmienne z tego samego rozkładu): Wartością średnią pobranej próby nazywamy zmienną losową jak poniżej: Jeżeli, ciąg (x 1, x 2, x 3,, x 100 ) reprezentuje próbę, wówczas średnia próby wyraża się: 55

56 Wartość oczekiwana z próby (2) Dla średniej z prób: Dla wariancji: 56

57 Wariancja z próby Niech zmienne losowe: reprezentują losową próbkę o rozmiarze n, pobraną z pewnej populacji. Z.L., która reprezentuje wariancję próbki dana jest jak poniżej: Mamy jednak poważny problem z tak zdefiniowaną statystyką obciążenie Blisko wariancji populacji dla dużych próbek, możemy użyć lepszego, nieobciążonego estymatora wariancji w postaci: 57

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Wynik pomiaru jako zmienna losowa

Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba 3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane

Bardziej szczegółowo

Wnioskowanie bayesowskie

Wnioskowanie bayesowskie Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo