Programowanie wspóªbie»ne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie wspóªbie»ne"

Transkrypt

1 1 Zadanie 1: Programowanie wspóªbie»ne wiczenia 12 Przestrzenie krotek cz. 2 Przychodnia lekarska W przychodni lekarskiej pracuje L > 0 lekarzy, z których ka»dy ma jedn z 0 < S L specjalno±ci, przy czym mo»e by wielu lekarzy tej samej specjalno±ci a dla danej specjalno±ci istnieje co najmniej jeden lekarz j posiadaj cy. Do przychodni lekarskiej zapisanych jest P pacjentów. Lekarze s identykowani unikalnymi liczbami z przedziaªu 0... L 1, pacjenci liczbami z przedziaªu 0... P 1, za± specjalno±ci liczbami z przedziaªu 0... S 1. Ka»dy pacjent w p tli niesko«czonej zaªatwia void wlasnezdrowesprawy(int pid), po czym zgªasza si do lekarza. Pacjent mo»e»yczy sobie wizyty u konkretnego lekarza lub dowolnego lekarza konkretnej specjalno±ci. Ponadto pacjenci mog by uprzywilejowani b d¹ zwykli. Pacjent oczekuje, a» lekarz go przyjmie, po czym odbywa si void wizyta(int lid), gdzie lid jest identykatorem lekarza przyjmuj cego pacjenta. Ka»dy lekarz natomiast w p tli niesko«czonej void pijekawe(int lid) a nast pnie przyjmuje pacjenta. W pierwszej kolejno±ci próbuje przyj pacjenta uprzywilejowanego, je±li tacy oczekuj na wizyt. Je±li nie ma czekaj cych pacjentów uprzywilejowanych, to lekarz przyjmuje dowolnego pacjenta (tj. zwykªego lub uprzywilejowanego) lub czeka, je±li nie ma»adnych pacjentów, których mógªby przyj. Przyj cie pacjenta to void badanie(int pid), gdzie pid jest identykatorem badanego pacjenta. W danej chwili lekarz mo»e bada co najwy»ej jednego pacjenta. Lekarz nie mo»e czeka, je±li oczekuje pacjent, którego mógªby przyj. Pacjenci uprzywilejowani mog zagªodzi zwykªych. Celem zadania jest zaimplementowanie procesów lekarza i pacjenta. Do wyboru lekarza przez pacjenta nale»y u»y funkcji void wybor(bool czylekarz, int id, bool uprzyw). Funkcja informuje, czy pacjent wybraª lekarza czy specjalizacj (czylekarz), jaki jest identykator tego/tej lekarza/specjalizacji (id) i czy pacjent czekaj c na wybran wizyt jest uprzywilejowany (uprzyw). process lekarz(int lid, int sid) { / identykatory lekarza i specjalno±ci / int pid; do { pijekawe(lid); if (! tstryfetch("zgloszenie?d %d %d %d", &pid, true, lid, sid)) tsfetch("zgloszenie?d?d %d %d", &pid, NULL, lid, sid); tsput("zaproszenie %d %d", pid, lid); badanie(pid); while (1); process pacjent(int pid) { / identykator pacjenta / int lsid ; bool czylekarz, uprzyw; do { wlasnezdrowesprawy(pid); wybor(&czylekarz, &lsid, &uprzyw); if (czylekarz) / "dziura" na pozycji identykatora specjalno±ci / tsput("zgloszenie %d %d %d?d", pid, uprzyw, lsid); else / "dziura" na pozycji identykatora lekarza / tsput("zgloszenie %d %d?d %d", pid, uprzyw, lsid); tsfetch("zaproszenie %d?d", pid, &lsid); wizyta( lsid );

2 2 while (1); W powy»szym rozwi zaniu nale»y zwróci uwag na dziurawe krotki. Dla przypomnienia, krotka z dziur na danej pozycji pasuje na tej pozycji do dowolnego wzorca. Zadanie 2: Porównywanie liczb W przestrzeni krotek znajduje si L > 0 liczb caªkowitych, to jest krotek w formacie "LICZBA %d". Do dyspozycji jest 1 < N L procesów, ka»dy z unikalnym identykatorem z przedziaªu 0... N 1. Ka»dy z procesów ma za zadanie wybra jedn z liczb (przy czym dwa procesy nie mog wybra tej samej liczby), porówna wybran liczb ze wszystkimi innymi L 1 liczbami, obliczaj c ile spo±ród nich jest wi kszych od wybranej liczby, a nast pnie umie±ci wynik oblicze«w przestrzeni krotek i zako«czy dziaªanie. Celem zadania jest napisanie tre±ci takiego procesu. Mo»na zaªo»y,»e po zako«czeniu oblicze«krotki z liczbami nie b d ju» potrzebne. process proc(int id) { int moja, tmp, wynik; tsfetch("liczba?d", &moja); tsput("tmp %d %d", id, moja); for (int i = id + N; i < L; i += N) { tsfetch("liczba?d", &tmp); tsput("tmp %d %d", i, tmp); wynik = 0; for (int i = 0; i < L; ++i) { tsread("tmp %d?d", i, &tmp); if (tmp > moja) ++wynik; tsput("wynik %d %d", moja, wynik); Kluczowym pomysªem w powy»szym rozwi zaniu jest zorganizowanie krotek z liczbami tak, aby mo»na byªo efektywnie po nich iterowa. Odbywa si to poprzez numerowanie krotek. Takie numerowanie mo»na zaimplementowa na wiele sposobów. Zaprezentowane rozwi zanie stara si zbalansowa prac poszczególnych procesów, zakªadaj c i» wszystkie one dziaªaj z podobn pr dko±ci. Zadanie 3: Zliczanie krotek W przestrzeni krotek znajduje si pewna liczba krotek w formacie "KROTKA %d", gdzie "%d" mo»e mie dowoln caªkowit warto±. Celem zadania jest napisanie wspóªbie»nego programu licz cego te krotki. Do dyspozycji jest N > 0 procesów, identykowanych unikalnymi liczbami z przedziaªu 0... N 1. W rezultacie swojego dziaªania ka»dy proces powinien wypisa liczb krotek "KROTKA %d" w przestrzeni i zako«czy dziaªanie. Nale»y przyj,»e po zako«czeniu ostatniego procesu wszystkie krotki "KROTKA %d" powinny nadal znajdowa si w przestrzeni krotek. Natomiast jakiekolwiek inne krotki wytworzone przez procesy mog pozosta w przestrzeni jedynie je±li ich liczba jest staªa. process zliczacz(int id) { int n = 0; int v, c; / zainicjalizuj obliczanie / if (id == 0) { tsput("wynik d %d", 0, 0);

3 3 / policz lokalnie tyle krotek ile mo»esz / while (tstryfetch("krotka?d", &v)) { ++n; tsput("tmp %d", v); / dodaj swój wynik do wyników reszty / tsfetch("wynik?d?d", &c, &v); tsput("wynik %d %d", c + 1, v + n); tsread("wynik %d?d", N, &n); / przywró oryginalne krotki / while (tstryfetch("tmp?d", &v)) tsput("krotka %d", v); printf ("WYNIK PROCESU %d = %d\n", id, n); W powy»szym rozwi zaniu, w liczeniu bior udziaª wszystkie procesy (w miar mo»liwo±ci). Najpierw wyci gaj one z przestrzeni krotek wszystkie krotki. Ka»dy proces liczy lokalnie, ile krotek udaªo mu si wyci gn, otrzymuj c lokalny wynik cz ±ciowy. Nast pnie te wyniki cz ±ciowe s sumowane dla wszystkich procesów, co daje sumaryczn liczb krotek w przestrzeni. Nale»y tak»e zwróci uwag na instrukcj tsread. Wstrzymuje ona wszystkie procesy do momentu, gdy wszystkie wyniki cz ±ciowe zostaªy dodane do wyniku globalnego. Sumowanie wyników cz ±ciowych w zaprezentowanym rozwi zaniu odbywa si w sekcji krytycznej proces najpierw wyci ga krotk z wynikiem globalnym z przestrzeni, dodaje do wyniku globalnego swój wynik lokalny, a nast pnie umieszcza zwi kszony wynik globalny ponownie w przestrzeni. Kolejne procesy modykuj wi c wynik globalny sekwencyjnie. Innymi sªowy, czas obliczania wyniku globalnego maj c dane wyniki lokalne jest proporcjonalny do liczby procesów, co mo»e by nieefektywne. Poni»sze rozwi zanie to poprawia. process zliczacz2(int id) { int n = 0; int v; / policz lokalnie tyle liczb ile mo»esz / while (tstryfetch("krotka?d", &v)) { ++n; tsput("tmp %d", v); / globalna redukcja sumy lokalnych wyników / tsfetch("wynik %d?d", id + skok, &v); n += v; tsput("wynik %d %d", id, n); / wczytaj globalny wynik / tsread("wynik %d?d", 0, &n); / przywró oryginalne liczby / while (tstryfetch("tmp?d", &v)) tsput("krotka %d", v); printf ("WYNIK PROCESU %d = %d\n", id, n); W ulepszonym rozwi zaniu sumowanie wyników cz ±ciowych odbywa si w czasie proporcjonalnym do logarytmu z liczby procesów. Ostateczny wynik globalny produkowany jest przez proces o indeksie 0, przez co zmienia si tak»e nieznacznie instrukcja wstrzymuj ca tsread. Warto tak»e

4 4 zauwa»y, i» w ulepszonym rozwi zaniu sumaryczna liczba instrukcji na krotkach "WYNIK %d %d %d" jest mniejsza jedynie o 1 od sumarycznej liczby instrukcji na tych krotkach w rozwi zaniu poprzednim. Efektywno± ulepszonego rozwi zania bierze si st d, i» u»ywa ono wielu takich krotek, przez co dost p do nich mo»e odbywa si wspóªbie»nie. Zadanie 4: Od±miecanie krotek (je±li starczy czasu) Celem zadania jest wykorzystanie poprzedniego rozwi zania do zaimplementowania efektywnej, samo-od±miecaj cej si bariery wykonywanej przez N > 0 procesów indeksowanych od 0 do N 1. Genez problemu jest fakt, i» niektóre programy mog pozostawia w przestrzeni krotki, które ju» nigdy nie zostan u»yte ±mieci. Dla przypomnienia, bariera to operacja wykonywana przez wszystkie N procesów w ten sposób, i»»aden proces nie mo»e zako«czy jej wykonywania o ile wszystkie procesy nie rozpocz ªy jej wykonywania. Maj c dan instrukcj bariery, od±miecanie nieu»ywanych krotek mo»e by zaimplementowane nast puj co po zako«czeniu oblicze«generuj cych takie krotki procesy wykonuj instrukcj bariery, po której nast puje od±miecanie wygenerowanych krotek przy wykorzystaniu przez ka»dy proces instrukcji tstryfetch, dopóki zwraca ona true dla danego wzorca, i tak dalej dla kolejnych wygenerowanych wcze±niej wzorców krotek. Mamy wtedy gwarancj,»e od±miecane krotki nie b d ju» potrzebne. Baz dla bariery mo»e by poprzednie rozwi zanie, jak poni»ej. void bariera(int id) { tsfetch("bariera %d", id + skok); tsput("bariera %d", id); tsread("bariera %d", 0); Rozwi zanie opiera si na hierarchicznym, logarytmicznym czekaniu a» wszystkie procesy dotr do bariery. Jako ostatni dociera proces 0, st d instrukcja wstrzymuj ca tsread. To rozwi zanie ma dwie wady. Po pierwsze, b dzie ono dziaªaªo jedynie raz. Przy drugim wywoªaniu, krotka "BARIERA 0" b dzie ju» w przestrzeni, wi c instrukcja wstrzymuj ca si nie zablokuje. Po drugie, usuni cie tej krotki z przestrzeni nie jest takie proste. Dokªadniej, musimy mie gwarancj,»e ju»»aden inny proces nie b dzie jej potrzebowaª. To sugeruje, i» powinni±my mie kolejn barier. Poprawione rozwi zanie rozwi zuje te dwa problemy nast puj co. Po pierwszy, bariery maj swoje numery (epoki) ka»de wywoªanie funkcji bariery zwi ksza numer epoki. Po drugie, kolejne wywoªanie bariery usuwa (w odpowiednim momencie) krotki bariery z poprzedniej epoki. void bariera2(int id) { static int epoka = 0; tsfetch("bariera %d %d", epoka, id + skok); tsput("bariera %d %d", epoka, id); tsread("bariera %d %d", epoka, 0); if (id == 0) tstryfetch("bariera %d %d", epoka 1, 0); W tym rozwi zaniu, funkcja bariery mo»e by woªana wielokrotnie. Po ka»dym jej zako«czeniu przez wszystkie procesy, w przestrzeni krotek pozostanie dokªadnie jedna krotka "BARIERA %d %d" liczba nieod±mieconych krotek bariery b dzie staªa, niezale»nie od tego, ile razy funkcja bariery byªa poprzednio woªana. Niemniej jednak takie rozwi zanie mo»e by nadal niezadowalaj ce.

5 Poni»sze rozwi zanie eliminuje t wad, zwi kszaj c dwukrotnie (ale nie asymptotycznie) zªo-»ono± operacji bariery. void bariera3(int id) { for (int faza = 1; faza <= 2; ++faza) { tsfetch("bariera %d %d", faza, id + skok); if (faza == 1) { tsput("bariera %d %d", faza, id); tsread("bariera %d %d", faza, 0); else { if (id!= 0) tsput("bariera %d %d", faza, id); else tsfetch("bariera %d %d", faza 1, 0); Rozwi zanie opiera si na dwóch fazach. Je±li jakikolwiek proces rozpoczyna faz drug, to wszystkie procesy, wª czaj c w to proces 0, wykonaªy ju» instrukcj tsput z fazy pierwszej zapewniona jest wªa±ciwo± bariery. Je±li natomiast proces 0 w fazie drugiej wykonuje ostatni instrukcj tsfetch dla krotki wygenerowanej w fazie pierwszej, to wszystkie pozostaªe procesy wykonaªy tsput z fazy drugiej, zako«czyªy wi c faz pierwsz, a zatem usuwana przez proces 0 krotka z fazy pierwszej nie b dzie ju» potrzebna»adnemu procesowi do tsread z fazy pierwszej. Innymi sªowy, po zako«czeniu funkcji przez proces 0 w przestrzeni nie zostanie»adna krotka "BARIERA %d %d". 5

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Zadanie 1: Programowanie wspóªbie»ne wiczenia 11 Przestrzenie krotek cz. 1 Obliczanie caªki oznaczonej Rozwa»my iteracyjne obliczanie caªki oznaczonej na przedziale [a, b] metod trapezów. Krok iteracji

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Programowanie wspóªbie»ne wiczenia 5 monitory cz. 1 Zadanie 1: Stolik dwuosobowy raz jeszcze W systemie dziaªa N par procesów. Procesy z pary s nierozró»nialne. Ka»dy proces cyklicznie wykonuje wªasnesprawy,

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Programowanie wspóªbie»ne wiczenia 2 semafory cz. 1 Zadanie 1: Producent i konsument z buforem cyklicznym type porcja; void produkuj(porcja &p); void konsumuj(porcja p); porcja bufor[n]; / bufor cykliczny

Bardziej szczegółowo

Rozwi zania klasycznych problemów w Rendezvous

Rozwi zania klasycznych problemów w Rendezvous Cz ± I Rozwi zania klasycznych problemów w Rendezvous 1 Producenci i konsumenci Na pocz tek rozwa»my wersj z jednym producentem i jednym konsumentem, dziaªaj cymi w niesko«czonych p tlach. Mechanizm komunikacji

Bardziej szczegółowo

Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie

Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie Cz ± II Podziaª pracy 1 Tablica sortuj ca Kolejka priorytetowa to struktura danych udost pniaj ca operacje wstawienia warto±ci i pobrania warto±ci minimalnej. Z kolejki liczb caªkowitych, za po±rednictwem

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

P tle. Rozdziaª Wst p. 4.2 P tle P tla for(...);

P tle. Rozdziaª Wst p. 4.2 P tle P tla for(...); Rozdziaª 4 P tle 4.1 Wst p Niniejszy rozdziaª zawiera opis p tli w j zyku C, wraz z przykªadowymi programami oraz ich obja±nieniem. 4.2 P tle P tla to element j zyka programowania, pozwalaj cy na wielokrotne,

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a

Bardziej szczegółowo

ALGORYTMY SORTOWANIA DANYCH

ALGORYTMY SORTOWANIA DANYCH ALGORYTMY SORTOWANIA DANYCH W zagadnieniu sortowania danych rozpatrywa b dziemy n liczb caªkowitych, b d cych pierwotnie w losowej kolejno±ci, które nale»y uporz dkowa nierosn co. Oczywi±cie sortowa mo»emy

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Lekcja 5 Programowanie - Nowicjusz

Lekcja 5 Programowanie - Nowicjusz Lekcja 5 Programowanie - Nowicjusz Akademia im. Jana Dªugosza w Cz stochowie Programowanie i program wedªug Baltiego Programowanie Programowanie jest najwy»szym trybem Baltiego. Z pomoc Baltiego mo»esz

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wska¹niki, tablice dynamiczne wielowymiarowe

Wska¹niki, tablice dynamiczne wielowymiarowe Rozdziaª 11 Wska¹niki, tablice dynamiczne wielowymiarowe 11.1 Wst p Identycznie, jak w przypadku tablic statycznych, tablica dynamiczna mo»e by tablic jedno-, dwu-, trójitd. wymiarow. Tablica dynamiczna

Bardziej szczegółowo

Subversion - jak dziaªa

Subversion - jak dziaªa - jak dziaªa Krótka instrukcja obsªugi lstelmach@gmail.com Stelmisoft 12/07/2010 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 Spis tre±ci Czym jest Czym jest repozytorium 1 Czym jest Czym jest repozytorium

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Lekcja 6 Programowanie - Zaawansowane

Lekcja 6 Programowanie - Zaawansowane Lekcja 6 Programowanie - Zaawansowane Akademia im. Jana Dªugosza w Cz stochowie Wst p Wiemy ju»: co to jest program i programowanie, jak wygl da programowanie, jak tworzy programy za pomoc Baltiego. Na

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo

0.1 Hierarchia klas. 0.1.1 Diagram. 0.1.2 Krótkie wyjaśnienie

0.1 Hierarchia klas. 0.1.1 Diagram. 0.1.2 Krótkie wyjaśnienie 0.1 Hierarchia klas 0.1.1 Diagram 0.1.2 Krótkie wyjaśnienie Po pierwsze to jest tylko przykładowe rozwiązanie. Zarówno na wtorkowych i czwartkowych ćwiczeniach odbiegaliśmy od niego, ale nie wiele. Na

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny

Wojewódzki Konkurs Matematyczny Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY 16 listopada 2012 Czas 90 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych. 2. Obok

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Przetwarzanie sygnaªów

Przetwarzanie sygnaªów Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie

Bardziej szczegółowo

ˆ tablice statyczne (o staªej ilo±ci elementów) ˆ tablice dynamiczne (o zmiennej ilo±ci elementów) 7.1 Tablice jednowymiarowe statyczne

ˆ tablice statyczne (o staªej ilo±ci elementów) ˆ tablice dynamiczne (o zmiennej ilo±ci elementów) 7.1 Tablice jednowymiarowe statyczne Rozdziaª 7 Tablice W niniejszym rozdziale zostan omówione tablice. Zostan zaprezentowane kody ¹ródªowe programów w j zyku C, pokazuj ce ich wykorzystanie w praktyce. Istnieje kilka rodzajów tablic w C,

Bardziej szczegółowo

Model obiektu w JavaScript

Model obiektu w JavaScript 16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Rekurencyjne struktury danych

Rekurencyjne struktury danych Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi

Bardziej szczegółowo

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy.

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy. 1 Klasy. Klasa to inaczej mówi c typ który podobnie jak struktura skªada si z ró»nych typów danych. Tworz c klas programista tworzy nowy typ danych, który mo»e by modelem rzeczywistego obiektu. 1.1 Denicja

Bardziej szczegółowo

Wzorce projektowe strukturalne cz. 1

Wzorce projektowe strukturalne cz. 1 Wzorce projektowe strukturalne cz. 1 Krzysztof Ciebiera 19 pa¹dziernika 2005 1 1 Wst p 1.1 Podstawowe wzorce Podstawowe wzorce Podstawowe informacje Singleton gwarantuje,»e klasa ma jeden egzemplarz. Adapter

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ZAJ CIA 4. Podstawowe informacje o algorytmie. Operatory relacyjne i logiczne, instrukcja warunkowa if

ZAJ CIA 4. Podstawowe informacje o algorytmie. Operatory relacyjne i logiczne, instrukcja warunkowa if ZAJ CIA 4. Podstawowe informacje o algorytmie. Operatory relacyjne i logiczne, instrukcja warunkowa if. ALGORYTM Algorytm jest przepisem opisuj cym krok po kroku rozwi zanie problemu lub osi gni cie jakiego

Bardziej szczegółowo

Podstawy JavaScript. Dawid Poªap. Dawid Poªap Technologia informacyjna Grudzie«, / 13

Podstawy JavaScript. Dawid Poªap. Dawid Poªap Technologia informacyjna Grudzie«, / 13 Podstawy JavaScript Dawid Poªap Dawid Poªap Technologia informacyjna Grudzie«, 2017 1 / 13 Plan na reszt zaj z TI Dzisiaj podstawy podstaw programowania w konsoli. W nowym roku na stronie internetowej

Bardziej szczegółowo

Baza danych - Access. 2 Budowa bazy danych

Baza danych - Access. 2 Budowa bazy danych Baza danych - Access 1 Baza danych Jest to zbiór danych zapisanych zgodnie z okre±lonymi reguªami. W w»szym znaczeniu obejmuje dane cyfrowe gromadzone zgodnie z zasadami przyj tymi dla danego programu

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Bazy danych, 4. wiczenia

Bazy danych, 4. wiczenia Bazy danych, 4. wiczenia 2007-10-23 1 Plan zaj PL/SQL, cz ± II: tabele kursory sªu» ce do zmiany danych, procedury, funkcje, pakiety, wyzwalacze. 2 Tabele Deklaracja TYPE t_tab IS TABLE OF VARCHAR(20)

Bardziej szczegółowo

Wybrane zadania z programowania wspóªbie»nego

Wybrane zadania z programowania wspóªbie»nego Wybrane zadania z programowania wspóªbie»nego Cz ± I Semafory Drukarki W biurowcu Semso dziaªa N rm. Znajduje si tam równie» 0 < K N drukarek, z których korzystaj wspólnie pracownicy rm. Zasady korzystania

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Podstawy modelowania w j zyku UML

Podstawy modelowania w j zyku UML Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 2 Zwi zki mi dzy klasami Asocjacja (ang. Associations) Uogólnienie, dziedziczenie (ang.

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

MiASI. Modelowanie systemów informatycznych. Piotr Fulma«ski. 18 stycznia Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

MiASI. Modelowanie systemów informatycznych. Piotr Fulma«ski. 18 stycznia Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska MiASI Modelowanie systemów informatycznych Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 18 stycznia 2010 Spis tre±ci 1 Analiza systemu informatycznego Poziomy analizy 2

Bardziej szczegółowo

Lekcja 9 Liczby losowe, zmienne, staªe

Lekcja 9 Liczby losowe, zmienne, staªe Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

Przykªadowe tematy z JiMP

Przykªadowe tematy z JiMP Przykªadowe tematy z JiMP 1. Prosz napisa program, który dokona konwersji swojego argumentu wywoªania z punktw na centymetry, (77.27 pt = 1 cal = 2.54 cm) tzn. np. wywoªanie: c:\>pkt 144.54 = 5.08 cm spowoduje

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Programowanie i struktury danych

Programowanie i struktury danych Programowanie i struktury danych Wykªad 3 1 / 37 tekstowe binarne Wyró»niamy dwa rodzaje plików: pliki binarne pliki tekstowe 2 / 37 binarne tekstowe binarne Plik binarny to ci g bajtów zapami tanych w

Bardziej szczegółowo

Programowanie obiektowe w C++ Wykªad 4

Programowanie obiektowe w C++ Wykªad 4 Programowanie obiektowe w C++ Wykªad 4 dr Lidia St pie«akademia im. Jana Dªugosza w Cz stochowie L. St pie«(ajd) Programowanie obiektowe w C++ 1 / 26 Dziedziczenie - podstawy Denicja klasy dziedzicz cej

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki

Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Imi i nazwisko:... Nr indeksu:... Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Egzamin wst pny na studia II stopnia na kierunku INFORMATYKA Test próbny 19 lutego 2010 roku W ka»dym

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

7.3 Tablice jednowymiarowe dynamiczne

7.3 Tablice jednowymiarowe dynamiczne 7.3 Tablice jednowymiarowe dynamiczne Tablice statyczne nie daj nam mo»liwo±ci decydowania o ich wymiarach podczas dziaªania programu. Oznacza to»e musimy zna wielko± tablicy na poziomie tworzenia aplikacji.

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny

Wojewódzki Konkurs Matematyczny sumaryczna liczba punktów (wypeªnia sprawdzaj cy) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych.

Bardziej szczegółowo

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe 1 Wprowadzenie 1.1 rodowisko programistyczne NetBeans https://netbeans.org/ 1.2 Dokumentacja j zyka Java https://docs.oracle.com/javase/8/docs/api/

Bardziej szczegółowo

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

LZNK. Rozkªad QR. Metoda Householdera

LZNK. Rozkªad QR. Metoda Householdera Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

2 Skªadnia polece«w pliku

2 Skªadnia polece«w pliku Interpreter opisu dziaªa«platformy mobilnej wtyczki 1 Ogólny opis zadania Nale»y napisa program, który b dzie w stanie przeczyta z pliku tekstowego sekwencj polece«ruchu, a nast pnie zasymulowa dziaªanie

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP

Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP Spotkania z Pythonem Cz ± 1 - podstawy - rozwi zania zada«michaª Alichniewicz Studenckie Koªo Automatyków SKALP Gda«sk 2014 Dzi kuj za uwag! Na licencji Creative Commons Attribution-NonCommercial-ShareAlike

Bardziej szczegółowo

Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI

Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI Marcn Šabudzik AGH-WFiIS, al. Mickiewicza 30, 30-059, Kraków, Polska email: labudzik@ghnet.pl www: http://fatcat.ftj.agh.edu.pl/

Bardziej szczegółowo

PROE wykład 7 kontenery tablicowe, listy. dr inż. Jacek Naruniec

PROE wykład 7 kontenery tablicowe, listy. dr inż. Jacek Naruniec PROE wykład 7 kontenery tablicowe, listy dr inż. Jacek Naruniec Prosty kontener oparty na tablicach Funkcja dodawanie pojedynczego słonia do kontenera: 1 2 3 4 5 6 7 11 12 13 14 15 16 17 21 22 23 24 25

Bardziej szczegółowo

EDUKARIS - O±rodek Ksztaªcenia

EDUKARIS - O±rodek Ksztaªcenia - O±rodek Ksztaªcenia Zabrania si kopiowania i rozpowszechniania niniejszego regulaminu przez inne podmioty oraz wykorzystywania go w dziaªalno±ci innych podmiotów. Autor regulaminu zastrzega do niego

Bardziej szczegółowo

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym. ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów

Bardziej szczegółowo

Zarządzanie Zasobami by CTI. Instrukcja

Zarządzanie Zasobami by CTI. Instrukcja Zarządzanie Zasobami by CTI Instrukcja Spis treści 1. Opis programu... 3 2. Konfiguracja... 4 3. Okno główne programu... 5 3.1. Narzędzia do zarządzania zasobami... 5 3.2. Oś czasu... 7 3.3. Wykres Gantta...

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej Międzyszkolny Konkurs Matematyczny dla klasy trzeciej Cele konkursu : - rozwijanie zainteresowań matematycznych u dzieci w młodszym wieku szkolnym; - wdrażanie do logicznego myślenia; - zwiększanie efektywności

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska Zarządzanie projektami wykład 1 dr inż. Agata Klaus-Rosińska 1 DEFINICJA PROJEKTU Zbiór działań podejmowanych dla zrealizowania określonego celu i uzyskania konkretnego, wymiernego rezultatu produkt projektu

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Dokªadna arytmetyka liczb rzeczywistych w j zyku Python

Dokªadna arytmetyka liczb rzeczywistych w j zyku Python Dokªadna arytmetyka liczb rzeczywistych w j zyku Python Marcin Ciura Zakªad Oprogramowania 28 marca 2007 Marcin Ciura (Zakªad Oprogramowania) Dokªadna arytmetyka liczb rzeczywistych 28 marca 2007 1 / 24

Bardziej szczegółowo

Funkcje. Piotr Zierhoffer. 7 października Institute of Computer Science Poznań University of Technology

Funkcje. Piotr Zierhoffer. 7 października Institute of Computer Science Poznań University of Technology Funkcje Piotr Zierhoffer Institute of Computer Science Poznań University of Technology 7 października 2012 Funkcje Funkcja podprogram. Nazwany blok kodu realizujacy jakieś zadanie. sin(x), arccos(x), min(a,

Bardziej szczegółowo

Teoria grafów i jej zastosowania. 1 / 126

Teoria grafów i jej zastosowania. 1 / 126 Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? ZADANIE 1. (4pkt./12min.) Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? 1. Wszelkie potrzebne dane

Bardziej szczegółowo