Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
|
|
- Liliana Stasiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI
2 Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi. Drzewem spinaj cym nazywamy podgraf grafu G, który jest drzewem i zawiera wszystkie wierzchoªki grafu G. Je±li dany jest graf z wagami, to drzewo spinaj ce o najmniejszej sumie wag na kraw dziach b dziemy nazywali minimalnym drzewem spinaj cym.
3 Algorytm Prima mindrzewoprim(graf G) { T - graf bez kraw dzi i wierzchoªków Dodajemy do T dowolny wierzchoªek z G while( V(T) < V(G) ) { szukamy najl»ejszej kraw dzi pomi dzy wierzchoªkami z V(T) i V(G)/V(T) dodajemy wyszukan kraw d¹ wraz z incydentnym wierzchoªkiem z V(G)/V(T) do grafu T return T;
4 Alorytm Prima - szczegóªy implementacyjne Najwa»niejsz cz ±ci, jest algorytm wyznaczania kolejnej - najl»ejszej kraw dzi pomi dzy wierzchoªkami z V(T) i V(G)/V(T). Mo»emy stworzy kolejk priorytetow maj c jako elementy: wag najl»ejszej kraw dzi do T oraz s siada (wierzchoªek) z T poª czonego najl»ejsz kraw dzi. Stworzymy kolejk priorytetow na podstawie kopca.
5 Kolejka priorytetowa struct Sasiad { int idkolejka, prevwierz, waga; Sasiad(): idkolejka(-1), prevwierz(0), waga(0) { ; B dziemy rozpatrywali tablic struktur Sasiad. idkolejka wskazuje na miejsce w kopcu, gdzie znajduje si wierzchoªek; je±li idkolejka jest równa -1, to wierzchoªek jeszcze nie przebywaª w kolejce priorytetowej; je±li idkolejka jest równa -2, to wierzchoªek byª ju» w kolejce priorytetowej; waga waga najl»ejszej kraw dzi, która ª czy wierzchoªek opisany przez struktur Sasiad z wierzchoªkiem z grafu T; prevwierz wskazuje na wierzchoªek z grafu T, który s siaduje z wierzchoªkiem opisanym przez struktur Sasiad najl»ejsz kraw dzi.
6 Kolejka priorytetowa void fixheapup(int id, vector<int> &kopiec, vector<sasiad> &sasiad) { while(id>0) { int uid = (id-1)>>1; if( sasiad[ kopiec[id] ].waga >=sasiad[ kopiec[uid] ].waga ) return; int tmp = kopiec[id]; kopiec[id] = kopiec[uid]; kopiec[uid] = tmp; sasiad[kopiec[id]].idkolejka = id; sasiad[kopiec[uid]].idkolejka = uid; id = uid;
7 Kolejka priorytetowa void fixheapdown(vector<int> &kopiec, vector< Sasiad > &sasiad) { int id = 0, uid = 1; while(uid<kopiec.size()) { int minid = id; if(kopiec[minid].waga > kopiec[uid].waga) minid = uid; uid++; if(uid<kopiec.size() && kopiec[minid].waga > kopiec[uid].waga) minid = uid; if(minid==id) return; int tmp = kopiec[id]; kopiec[id] = kopiec[minid]; kopiec[minid] = tmp; sasiad[kopiec[id]].idkolejka = id; sasiad[kopiec[minid]].idkolejka = minid; id = minid; uid = (minid<<1)+1;
8 Kolejka priorytetowa int getminval(vector<int> &kopiec, vector< Sasiad > &sasiad) { int odp = kopiec[0]; sasiad[ odp ].idkolejka = -2; if(kopiec.size()==1) return odp; kopiec[0] = kopiec.back(); kopiec.pop_back(); sasiad[ kopiec[0] ].idkolejka = 0; fixheapdown(kopiec, sasiad); return odp;
9 Algorytm Prima struct Krawedz { int sasiad, waga; ; int mindrzewoprim(vector< list<krawedz> > G) { vector<sasiad> sasiad; sasiad.resize(g.size()); //ustawiamy 0 wierzchoªek jako korze«sasiad[0].idkolejka = -2; list<krawedz>::iterator beg, end=g[0].end(); for(beg=g[0].begin(); beg!=end; beg++) { int pos = kopiec.size(); sasiad[ beg->sasiad ].waga = beg->waga; sasiad[ beg->sasiad ].prevwierz = 0; sasiad[ beg->sasiad ].idkolejka = pos; kopiec.push_back( beg->sasiad ); fixheapup(pos, kopiec, sasiad);.
10 Algorytm Prima cd. while(kopiec.size()>0) { int minwierz = getminval(kopiec, sasiad); end = G[minWierz].end(); for(beg=g[minwierz].begin(); beg!=end; beg++) { if( sasiad[beg->sasiad].idwierz == -2 ) continue; int pos; if( sasiad[beg->sasiad].idwierz == -1 ) { pos = kopiec.size(); sasiad[ beg->sasiad ].idwierz = pos; kopiec.push_back( beg->sasiad ); else if(sasiad[beg->sasiad].waga>beg->waga) pos = sasiad[beg->sasiad].idkolejka; else continue; sasiad[ beg->sasiad ].waga = beg->waga; sasiad[ beg->sasiad ].prevwierz = minwierz; fixheapup(pos, kolejka, sasiad);
11 Dyskusja o algorytmie Prima Powy»szy algorytm nic nie zwraca, ale w zale»no±ci od potrzeby mo»emy otrzyma wag najl»ejszego drzewa: int suma = 0; for(i=1; i<sasiad.size(); i++) //sic! suma += sasiad[i].waga; albo drzewo. Zªo»ono± obliczeniowa tego algorytmu to O(m log n), gdzie n= V(G), m= E(G). Je±li u»yliby±my kopca Fibonacciego jako kolejki priorytetowej zªo»ono± wyniosªaby O(m + n log n).
12 Algorytm Kruskala mindrzewokruskal(graf G) { sortujemy kraw dzie grafu G ze wzgl du na wag T - graf bez kraw dzi z V(G) wierzchoªkami foreach(e in posortowane kraw dzie) { je±li dodanie e do T nie tworzy cyklu w grafie T, to dodajemy kraw d¹ e do T return T;
13 Algorytm Kruskala Sprawdzenie, czy dodanie kraw dzi doprowadzi do powstania cyklu, mo»na realizowa przez lasy zbiorów rozª cznych.
14 Lasy zbiorów rozª cznych Lasy zbiorów rozª cznych mo»na zaimplementowa za pomoc tablicy. Podstawow operacj b dzie wyszukiwanie korzenia z kompresj ±cie»ki. int znajdzkorzen(int v, vector<int> &las) { if(las[v]==v) return v; return las[v] = znajdzkorzen(las[v], las); Tablica las przechowuje odniesienie do ojca w zªa. Operacja znajdzkorzen powoduje spªaszczenie drzewa przy ka»dym wywoªaniu.
15 Dziaªanie lasów zbiorów rozª cznych TAblica
16 Algorytm Kruskala struct KrawedzKruskal { int u, v, waga; KrawedzKruskal(int tu, int tv, int tw): u(tu), v(tv), waga(tw) friend bool operator<(const KrawedzKruskal &a, const KrawedzKruskal &b) { return a.waga<b.waga; int mindrzewokruskal(vector< list<krawedz> > G) { list<krawedz>::iterator beg, end; vector<krawedzkruskal> sortkraw; for(int i=0; i<g.size(); i++) { beg = G[i].begin(); end = G[i].end(); for(; beg!=end; beg++) sortkraw.push_back( KrawedzKruskal(i,beg->sasiad,beg->waga) ); sort(sortkraw.begin(), sortkraw.end());.
17 Algorytm Kruskala. vector<int> las; las.resize(g.size()); for(int i=0; i<las.size(); i++) las[i]=i; int sumawag=0; for(int i=0; i<sortkraw.size(); i++) { int korzenu = znajdzkorzen(sortkraw[i].u, las); int korzenv = znajdzkorzen(sortkraw[i].v, las); if(korzenu==korzenv) continue; sumawag += sortkraw[i].waga; las[korzenu] = korzenv; return sumawag;
18 Przepªywy w sieciach Mamy dany graf skierowany G z dodatnimi wagami (przepustowo± ). Wyró»nijmy dwa wierzchoªki s i t. Przepustowo± b dziemy oznaczali przez c(, ). Je±li pomi dzy wierzchoªkami u, v nie ma kraw dzi, to c(u, v) = 0. Tak graf b dziemy nazywali sieci. Przepªywem nazywamy funkcj f : V V R speªniaj c : warunek przepustowo±ci: dla ka»dych u, v V f (u, v) c(u, v) warunek sko±nej symetryczno±ci: dla ka»dych u, v V f (u, v) = f (v, u) warunek zachowania przepªywu: dla ka»dego u V \{s, t f (u, v) = 0 v V
19 8 1 s t 9 8 1
20 Warto± przepªywu, maksymalny przepªyw Warto±ci przepªywu jest liczba f (s, v). v V Maksymalnym przepªywem sieci G jest przepªyw o maksymalnej warto±ci przepªywu.
21 Sie residualna Dla danej sieci G = (V, E) oraz przepªywu f (, ) mo»na stworzy przepustowo±ci residualne równe c f (u, v) = c(u, v) f (u, v) oraz sie residualn H = (V, E ), gdzie E = {(u, v) V 2 : c f (u, v) > s t s t
22 cie»ka powi kszaj ca cie»k powi kszaj c sieci G jest droga (prosta) pomi dzy wierzchoªkami s oraz t s t s t
23 Metoda FulkersonaForda FulkFordMetod(G, s, t) { foreach (u,v) in E(G) f(u,v)=f(v,u)=0; while( istnieje ±cie»ka powi kszaj ca pomi dzy s i t w sieci residualnej G f ) { p = ±cie»ka powi kszaj ca; c - minimalna warto± c f na ±cie»ce p; foreach (u,v) in p { f(u,v) += c; f(v,u) -= c;
24 Algorytm Edmondsa-Karpa Algorytm Edmondsa-Karpa jest realizacj metody Fulkersona-Forda. Algorytm znajduje najkrótsz ±cie»k powi kszaj c (pod wzgl dem liczby wierzchoªków).
25 8 1 s t 9 8 1
26 8 1 s t 9 8 1
27 5 s t 9 8 1
28 5 s t 9 8 1
29 5 s t 5 5
30 5 s t 5 5
31 2 7 s 6 1 t
Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska
Andrzej Jastrz bski Akademia ET I Graf Grafem nazywamy par G = (V, E), gdzie V to zbiór wierzchoªków, E zbiór kraw dzi taki,»e E {{u, v} : u, v V u v}. Wierzchoªki v, u V s s siaduj ce je±li s poª czone
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa
Minimalne drzewa rozpinaj ce
y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego
Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009
Wprowadzenie Drzewa Gomory-Hu Jakub Š cki 14 pa¹dziernika 2009 Wprowadzenie 1 Wprowadzenie Podstawowe poj cia i fakty 2 Istnienie drzew Gomory-Hu 3 Algorytm budowy drzew 4 Problemy otwarte Wprowadzenie
Algorytmy tekstowe. Andrzej Jastrz bski. Akademia ETI
Andrzej Jastrz bski Akademia ETI Wyszukiwanie wzorca Wyszukiwaniem wzorca nazywamy sprawdzenie, czy w podanym tekscie T znajduje si podci g P. Szukamy sªowa kot: Ala ma kota, kot ma ale. Algorytm naiwny
Wstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
TEORIA GRAFÓW. Graf skierowany dla ka»dej kraw dzi (oznaczanej tutaj jako ªuk) para wierzchoªków incydentnych jest par uporz dkowan {u, v}.
Podstawowe denicje: TEORIA GRAFÓW Graf (nieskierowany) G = (V, E) struktura skªadaj ca si ze: zbioru wierzchoªków V = {,,..., v n } oraz zbioru kraw dzi E = {e 1, e 2,..., e m }. Z ka»d kraw dzi e skojarzona
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
12: Znajdowanie najkrótszych ±cie»ek w grafach
12: Znajdowanie najkrótszych ±cie»ek w grafach Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3:
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Teoria grafów i sieci 1 / 188
Teoria grafów i sieci / Drzewa z wagami Drzewem z wagami nazywamy drzewo z korzeniem, w którym do ka»dego li±cia przyporz dkowana jest liczba nieujemna, nazywana wag tego li±cia. / Drzewa z wagami Drzewem
Podstawowe algorytmy grafowe i ich zastosowania
Podstawowe algorytmy grafowe i ich zastosowania Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany
Rekurencyjne struktury danych
Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi
Szukanie najkrótszych dróg z jednym ródłem
Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek
Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie
Cz ± II Podziaª pracy 1 Tablica sortuj ca Kolejka priorytetowa to struktura danych udost pniaj ca operacje wstawienia warto±ci i pobrania warto±ci minimalnej. Z kolejki liczb caªkowitych, za po±rednictwem
c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Najkrótsze drogi w grafach z wagami
Najkrótsze drogi w grafach z wagami Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania
Podstawowe algorytmy grafowe i ich zastosowania
Podstawowe algorytmy grafowe i ich zastosowania dr Andrzej Mróz (UMK w Toruniu) 2013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Minimalne drzewo rozpinaj ce
Minimalne drzewo rozpinaj ce Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz
Teoria grafów i sieci 1 / 58
Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo
Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry.
6: ±cie»ki Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3: dowolny graf () ±cie»ki dla wszystkich
Algorytmy zwiazane z gramatykami bezkontekstowymi
Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
Minimalne drzewo rozpinaj ce
Minimalne drzewo rozpinaj ce dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu dydaktycznego
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Najkrótsze drogi w grafach z wagami
Najkrótsze drogi w grafach z wagami dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Grafy i Zastosowania. 5: Drzewa Rozpinaj ce. c Marcin Sydow. Drzewa rozpinaj ce. Cykle i rozci cia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinaj ce Spis zagadnie«grafy i i lasy cykle fundamentalne i wªasno±ci cykli i rozci przestrzenie cykli i rozci * : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Teoria grafów i jej zastosowania. 1 / 126
Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d.
11: Twierdzenia Minimaksowe Spis zagadnie«wst p: Kojarzenie Maª»e«stw i i twierdzenia minimaksowe i pokrycia (Tw. Gallai) w grafach (tw. Berge'a) w grafach dwudzielnych (tw. Königa, ) Pokrycia macierzy
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
7. Teoria drzew - spinanie i przeszukiwanie
7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie
1 Stos: Stack i Stack<T>
1 Stos: Stack i Stack Przykªady z»ycia: Stos talerzy (aby wyci gn co± ze ±rodka, musimy wyci gn te z góry) Meble ªadowane do naczepy ci»arówki Osoby wsiadaj ce do samolotu i wysiadaj ce z niego. Piramida
Algorytmy i struktury danych
Algorytmy i struktury danych Cz ± druga Prowadz cy: dr Andrzej Mróz, Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika 1 / 82 Rekurencja Procedura (funkcja) rekurencyjna wywoªuje sam siebie.
Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Minimalne drzewa rozpinające
KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw
Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za
Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne.
Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. IIUWr. II rok informatyki. Przygotowaª: Krzysztof Lory± 1 Schemat ogólny. Typowe zadanie rozwi zywane metod zachªann ma charakter optymalizacyjny.
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Programowanie wspóªbie»ne
1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast
1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,
XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1
Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Stos LIFO Last In First Out
Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek)
Omówienie zada«potyczki Algorytmiczne 2015
Omówienie zada« Biznes Najszybsze rozwi zanie: Jarosªaw Kwiecie«(0:24) Na pocz tku mamy kapitaª P (megabajtalarów) i dochody 0 (megabajtalary/rok). W dowolnym momencie mo»emy kupi maszyn typu i, co kosztuje
Matematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
c Marcin Sydow Grafy i Zastosowania BFS DFS 4: Przeszukiwanie Grafów (BFS, DFS i zastosowania) DFS nieskierowane DFS skierowane Podsumowanie
4: Przeszukiwanie Grafów (, i zastosowania) Spis zagadnie«przeszukiwanie grafów (rola, schemat ogólny, zastosowania) realizacje (kolejka, stos, rekurencja) przeszukiwanie wszerz zastosowania przeszukiwanie
0.1 Hierarchia klas. 0.1.1 Diagram. 0.1.2 Krótkie wyjaśnienie
0.1 Hierarchia klas 0.1.1 Diagram 0.1.2 Krótkie wyjaśnienie Po pierwsze to jest tylko przykładowe rozwiązanie. Zarówno na wtorkowych i czwartkowych ćwiczeniach odbiegaliśmy od niego, ale nie wiele. Na
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Grafy i Zastosowania. 1: Wprowadzenie i poj cia podstawowe. c Marcin Sydow. Wprowadzenie. Podstawowe poj cia. Operacje na grafach.
1: i podstawowe Spis Zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu s siedztwo i incydencja izomorzm grafów stopnie wierzchoªków (w tym wej±ciowy i wyj±ciowy), lemat
Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie
8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Wykªad 1. Wprowadzenie do teorii grafów
Wykªad 1. Wprowadzenie do teorii grafów 1 / 112 Literatura 1 W. Lipski; Kombinatoryka dla programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowadzenie do algorytmów. 3 K. A. Ross, Ch. R. B.
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych
Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
ALGORYTMY SORTOWANIA DANYCH
ALGORYTMY SORTOWANIA DANYCH W zagadnieniu sortowania danych rozpatrywa b dziemy n liczb caªkowitych, b d cych pierwotnie w losowej kolejno±ci, które nale»y uporz dkowa nierosn co. Oczywi±cie sortowa mo»emy
Skojarzenia w teorii grafów
Uniwersytet Jagiello«ski w Krakowie Wydziaª Fizyki, Astronomii i Informatyki Stosowanej Krzysztof Niedzielski Nr albumu: 1089346 Skojarzenia w teorii grafów Praca magisterska na kierunku Informatyka Praca
Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.
SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką
c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie
7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,
5c. Sieci i przepływy
5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje
dr inż. Paweł Myszkowski Wykład nr 11 ( )
dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze
Elementy teorii grafów, sposoby reprezentacji grafów w komputerze Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Programowanie i struktury danych
Programowanie i struktury danych Wykªad 3 1 / 37 tekstowe binarne Wyró»niamy dwa rodzaje plików: pliki binarne pliki tekstowe 2 / 37 binarne tekstowe binarne Plik binarny to ci g bajtów zapami tanych w
Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki
Imi i nazwisko:... Nr indeksu:... Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Egzamin wst pny na studia II stopnia na kierunku INFORMATYKA Test próbny 19 lutego 2010 roku W ka»dym
Problemy optymalizacyjne - zastosowania
Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne
Metoda tablic semantycznych. 1 Metoda tablic semantycznych
1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera
Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013
Wykªad nr 6 11 kwietnia 2013 System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. Dowód Redukcja PP O3 C max : bierzemy
Podstawowepojęciateorii grafów
7 Podstawowepojęciateorii grafów Wiele sytuacji z»ycia codziennego mo»e by w wygodny sposób opisanych gracznie za pomoc rysunków skªadaj cych si ze zbioru punktów i linii ª cz cych pewne pary tych punktów.
10a: Wprowadzenie do grafów
10a: Wprowadzenie do grafów Spis zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu drogi i cykle, spójno± w tym sªaba i silna drzewo i las: denicja, charakteryzacje, wªasno±ci
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.