Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
|
|
- Irena Socha
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik
2 Drzewa binarne
3 Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym wierzchołkiem), w którym każdy wierzchołek rodzic ma co najwyżej dwóch potomków, tzn. korzeń jest stopnia co najwyżej 2, a wszystkie inne wierzchołki są stopnia co najwyżej 3. Pojęcia: - poziomy drzewa, - liście (wierzchołki końcowe), - wysokość drzewa (tj. długość najdłuższej ścieżki od korzenia do liścia), - poddrzewo.
4 Wyszukiwanie Drzewa binarne są sposobem zorganizowania zbioru danych tak, aby ułatwić wyszukiwanie elementów tego zbioru (ang. BST - binary search tree). W zbiorze danych musi być zadany porządek. Np.: w zbiorze liczb relacja, w zbiorze słów porządek leksykograficzny. Niech BST ma wysokość h. Algorytm wyszukiwania musi wykonać pesymistycznie h porównań, aby znaleźć element, albo wykluczyć przynależność elementu do zbioru.
5 Drzewo zrównoważone Drzewo jest zrównoważone gdy różnica wysokości lewego i prawego poddrzewa każdego z wierzchołków wynosi co najwyżej jeden. Drzewo jest doskonale zrównoważone, gdy dodatkowo wszystkie liście znajdują się na co najwyżej dwóch poziomach. Algorytm DSW - równoważy BST poprzez szereg rotacji.
6 Reprezentacja drzewa binarnego Drzewa binarne są równoważne łańcuchom binarnym, które: - mają o jeden więcej bitów 0 niż bitów 1, - dla dowolnej pozycji k liczba bitów 0 występujących na lewo od tej pozycji jest nie większa niż liczba bitów 1 występujących na lewo od tej pozycji.
7 Własności omawianej reprezentacji Drzewo binarne jest zerem lub konkatenacją dwóch łańcuchów reprezentujących poddrzewa poprzedzonych jedynką. Ilość jedynek to ilość wierzchołków drzewa. Długość łańcucha reprezentującego drzewo to: 2*ilość wierzchołków + 1
8 Implementacja słownika z częstością słów oparta na drzewie binarnym
9 #include <stdio.h> #include <stdlib.h> #include <string.h> struct wierzcholek char *slowo; int ilosc; struct wierzcholek *lewy; struct wierzcholek *prawy; }; typedef struct wierzcholek* Wierzcholek;
10 Główną częścią naszej implementacji będzie funkcja o prototypie: Wierzcholek dodajslowo( Wierzcholek k, char *w ); której zadaniem będzie dodanie słowa w do poddrzewa o korzeniu k. Funkcja ta zwróci adres korzenia tego poddrzewa, tzn. jeśli k istniał to funkcja zwróci k, natomiast jeśli k ma wartość NULL, to funkcja zwróci adres nowo powstałego wierzchołka.
11 Wierzcholek dodajslowo( Wierzcholek k, char *w ) int wynik; if( k == NULL ) /* w to nowe slowo */ k = malloc( sizeof( struct wierzcholek ) ); if( k == NULL ) return NULL; k->slowo = malloc( strlen( w ) + 1 ); if( k->slowo!= NULL ) strcpy( k->slowo, w ); k->ilosc = 1; k->lewy = NULL; k->prawy = NULL; return k; } wynik = strcmp( k->slowo, w ); if( wynik == 0 ) k->ilosc++; else if( wynik < 0 ) k->lewy = dodajslowo( k->lewy, w ); else k->prawy = dodajslowo( k->prawy, w ); return k; }
12 void wypisz( Wierzcholek k ) if( k!= NULL ) wypisz( k->lewy ); printf("%s %d\n", k->slowo, k->ilosc ); wypisz( k->prawy ); } } void zwolnij( Wierzcholek k ) if( k!= NULL ) zwolnij( k->lewy ); zwolnij( k->prawy ); free( k->slowo ); free( k ); } }
13 main() Wierzcholek korzen = NULL; char slowo[20]; while(1) fgets( slowo, 20, stdin ); slowo[ strlen(slowo)-1 ] = \0 ; if( strcmp( slowo, "STOP" ) == 0 ) break; korzen = dodajslowo( korzen, slowo ); } wypisz( korzen ); zwolnij( korzen ); } system("pause"); return 0;
14 Zadanie Uzupełnij powyższą implementację BST o definicję funkcji o prototypie: int szukaj( Wierzcholek k, char *w ); która w poddrzewie o korzeniu k będzie wyszukiwała słowa w. Funkcja ta zwróci częstość zapisaną w wierzchołku odpowiadającym słowu w, lub 0 gdy takiego słowa nie ma w drzewie.
15 Wyszukiwanie z wykorzystaniem funkcji mieszającej Funkcja mieszająca (hash function) - jest to funkcja przyporządkowująca danym (ustalonego rodzaju) liczbę. Liczba ta jest interpretowana jako adres lub indeks. f : egzemplarz danych liczba Oczekiwane własności: - musi być łatwa do obliczenia, - ma w miarę równomiernie pokrywać przestrzeń adresów, - brak kolizji wartości (lub minimalna liczba kolizji), f (dane 1 ) = f (dane 2 ).
16 Koniec
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoWYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5
WYKŁAD 10 Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 Tomasz Zieliński ZMIENNE O ZŁOŻONEJ BUDOWIE (1) Zmienne
Bardziej szczegółowoPrzypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Bardziej szczegółowoWykład VI. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład VI Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Operacje na plikach Operacje na plikach Aby móc korzystać z pliku należy go otworzyć w odpowiednim
Bardziej szczegółowoAlgorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Bardziej szczegółowoDrzewa wyszukiwań binarnych (BST)
Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoDrzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Bardziej szczegółowoPoprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Bardziej szczegółowoUniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Bardziej szczegółowoWSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowoWykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik
Wykład VII Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompilacja Kompilator C program do tłumaczenia kodu źródłowego na język maszynowy. Preprocesor
Bardziej szczegółowoWstęp. #define include include include include include include
1 FW WSTĘP 1 1. Wstęp. Przedstawiany tu program po wczytaniu tekstu ze standardowego wejścia wypisuje uporządkowaną alfabetycznie listę słów wraz z liczbą ich wystąpień w podanym tekście. Przez słowo rozumiemy
Bardziej szczegółowoDrzewo binarne BST. LABORKA Piotr Ciskowski
Drzewo binarne BST LABORKA Piotr Ciskowski zadanie 1. drzewo binarne - 1 Zaimplementuj drzewo binarne w postaci: klasy Osoba przechowującej prywatne zmienne: liczbę całkowitą to będzie klucz, wg którego
Bardziej szczegółowoWykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowowykład III uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - zarządzanie pamięcią, struktury,
, Programowanie, uzupełnienie notatek: dr Jerzy Białkowski , 1 2 3 4 , Wczytywanie liczb , Wczytywanie liczb 1 #include 2 #include < s t d l i b. h> 3 4 int main ( ) { 5 int rozmiar, numer
Bardziej szczegółowoWykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoWyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna
Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()
Bardziej szczegółowoWykład 7 Abstrakcyjne typy danych słownik (lista symboli)
Wykład 7 Abstrakcyjne typy danych słownik (lista symboli) Definicja słownika: Słownik (tablica lub lista symboli) to struktura danych zawierająca elementy z kluczami, która pozwala na przeprowadzanie dwóch
Bardziej szczegółowoGrafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
Bardziej szczegółowoPodstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoAlgorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Bardziej szczegółowo. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019
.. Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2019 1 / 39 Plan.1 Wstęp.2 Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz.3.4 Zmiany w
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych
Bardziej szczegółowoSortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Bardziej szczegółowoDrzewa czerwono-czarne.
Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoTadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Bardziej szczegółowoKażdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.
Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowoStos LIFO Last In First Out
Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek)
Bardziej szczegółowo. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016
.. Podstawy Programowania 2 Drzewa bst - część pierwsza Arkadiusz Chrobot Zakład Informatyki 22 maja 2016 1 / 55 Plan.1 Wstęp.2 Definicje.3 Implementacja Typ bazowy i wskaźnik na korzeń Dodawanie elementu
Bardziej szczegółowoWstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoWYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński
WYKŁAD 8 Funkcje i algorytmy rekurencyjne Proste przykłady Programy: c3_1.c..., c3_6.c Tomasz Zieliński METODY REKURENCYJNE (1) - program c3_1 ======================================================================================================
Bardziej szczegółowoWykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoWykład 3. Drzewa czerwono-czarne
Wykład 3 Drzewa czerwono-czarne 1 Drzewa zbalansowane Wprowadzenie Drzewa czerwono-czarne Definicja, wysokość drzewa Rotacje, operacje wstawiania i usuwania Literatura Cormen, Leiserson, Rivest, Wprowadzenie
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoAbstrakcyjne struktury danych w praktyce
Abstrakcyjne struktury danych w praktyce Wykład 13 7.4 notacja polska A.Szepietowski Matematyka dyskretna rozdział.8 stos kompilacja rozłączna szablony funkcji Przypomnienie Drzewo binarne wyrażenia arytmetycznego
Bardziej szczegółowoINFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra
INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,
Bardziej szczegółowoPodstawy Programowania. Przetwarzanie napisów, drzewa binarne
Podstawy Programowania Wykład XI Przetwarzanie napisów, drzewa binarne Robert Muszyński ZPCiR ICT PWr Zagadnienia: reprezentacja napisów znakowych, operowanie na napisach: porównywanie, kopiowanie, łączenie,
Bardziej szczegółowoczęść 16 struktury rekurencyjne i ich zastosowania drzewa binarne, algorytmy rekurencyjne dla drzew binarnych
Język ANSI C część 16 struktury rekurencyjne i ich zastosowania drzewa binarne, algorytmy rekurencyjne dla drzew binarnych Jarosław Gramacki Instytut Informatyki i Elektroniki rekurencja wiele czynności
Bardziej szczegółowoProgramowanie obiektowe i C++ dla matematyków
Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... X 0 Typy złożone Oczywiście w C++ możemy definiować własne typy złożone (struktury i klasy), tak jak w Pascalu poprzez
Bardziej szczegółowoWykład 8. Drzewa AVL i 2-3-4
Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność
Bardziej szczegółowoĆwiczenie nr 6. Poprawne deklaracje takich zmiennych tekstowych mogą wyglądać tak:
Ćwiczenie nr 6 Temat: Operacje na łańcuchach znaków. Zagadnienia: Zasady pracy z łańcuchami tekstowymi (tablice wartości typu char). funkcje standardowe operacji na łańcuchach, funkcje I/O dla operacji
Bardziej szczegółowoLaboratorium 1. Programowanie II - Kierunek Informatyka. dr inż. Janusz Słupik. Gliwice, 2015. Wydział Matematyki Stosowanej Politechniki Śląskiej
Laboratorium 1 - Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Punkty Na laboratorium można zdobyć 60 punktów. Ocena ogólna z zajęć:
Bardziej szczegółowoProgramowanie komputerów. Jacek Lach Zakład Oprogramowania Instytut Informatyki Politechnika Śląska
Programowanie komputerów Jacek Lach Zakład Oprogramowania Instytut Informatyki Politechnika Śląska Plan Dynamiczne struktury danych Lista jednokierunkowa Lista dwukierunkowa Lista podwieszana Graf Drzewa
Bardziej szczegółowoListy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Bardziej szczegółowoPodstawy Informatyki. Wykład 6. Struktury danych
Podstawy Informatyki Wykład 6 Struktury danych Stałe i zmienne Podstawowymi obiektami występującymi w programie są stałe i zmienne. Ich znaczenie jest takie samo jak w matematyce. Stałe i zmienne muszą
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoOgólne wiadomości o drzewach
Ogólne wiadomości o drzewach Algorytmy i struktury danych Wykład 4. Rok akademicki: 2010/2011 Drzewo jako struktura danych Drzewo kolekcja elementów pozostających w zależności hierarchicznej, posiadająca
Bardziej szczegółowonp. dla p=1 mamy T1(N) N/2 średni czas chybionego wyszukiwania z prawdopodobieństwem q:
Wykład 4 Wyszukiwania w tablicach posortowanych 1. Wyszukiwanie sekwencyjne w tablicy posortowanej 2. Wyszukiwanie binarne bez powtórzeń 3. Wyszukiwanie binarne z powtórzeniami 1 2 3 4 5 6 7 8 9 10 11
Bardziej szczegółowoLista liniowa dwukierunkowa
53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej
Bardziej szczegółowoWykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych
Wykład 6_ Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Abstrakcyjny typ danych Klient korzystający z abstrakcyjnego typu danych: o ma do dyspozycji jedynie
Bardziej szczegółowoZasady programowania Dokumentacja
Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika
Bardziej szczegółowoProgramowanie Proceduralne
Programowanie Proceduralne Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Co dziś będzie: Definiowanie struktury Deklarowanie zmiennych bȩda cych strukturami
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /
Bardziej szczegółowoPodstawy programowania 1
Podstawy programowania 1 Krzysztof Grudzień kgrudzi@kis.p.lodz.pl Wykład nr 2 1 Plan spotkań Wskaźniki Tablice jednowymiarowe & wska źniki. Programowanie w C. Wikibooks 2 Co to jest wskaźnik?? Wskaźnik
Bardziej szczegółowoPodstawy Programowania
Podstawy Programowania Wykład XI Przetwarzanie napisów, drzewa binarne Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: reprezentacja napisów znakowych, operowanie na napisach: porównywanie,
Bardziej szczegółowoPodstawy Programowania. Przetwarzanie napisów, drzewa binarne
Podstawy Programowania Wykład XI Przetwarzanie napisów, drzewa binarne Robert Muszyński ZPCiR ICT PWr Zagadnienia: reprezentacja napisów znakowych, operowanie na napisach: porównywanie, kopiowanie, łączenie,
Bardziej szczegółowoMatematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Bardziej szczegółowoWykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe
I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 7 część I 2 Modele danych: zbiory Podstawowe definicje Operacje na zbiorach Prawa algebraiczne Struktury
Bardziej szczegółowoWstęp do programowania 1
Wstęp do programowania 1 Struktury Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Struktura dla dat - przykład #include struct Date { int y; short m; short
Bardziej szczegółowoProgramowanie obiektowe i C++ dla matematyków
Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... 22 XI 2011 Uwaga! Ponieważ już sobie powiedzieliśmy np. o wskaźnikach i referencjach, przez które nie chcemy przegrzebywać
Bardziej szczegółowoAlgorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Bardziej szczegółowoKoszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych
Koszt zamortyzowany Jeśli mamy ciąg operacji, to koszt zamortyzowany jednej z nich jest sumarycznym kosztem wykonania wszystkich operacji podzielonym przez liczbę operacji. Inaczej mówiąc jest to, dla
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 6 część I 2 Modele danych: zbiory Podstawowe definicje Operacje na zbiorach Prawa algebraiczne Struktury
Bardziej szczegółowoWstęp do programowania 1
Wstęp do programowania 1 Argumenty funkcji main Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Argumenty funkcji main dwa równoważne sposoby int main(int argc, char*
Bardziej szczegółowo4. Tablica dwuwymiarowa to jednowymiarowa tablica wskaźników do jednowymiarowych tablic danego typu.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 6. Tablice znakowe o dwóch indeksach, przekazywanie tablic do funkcji cd., dynamiczna alokacja pamięci, funkcje przetwarzające ciągi
Bardziej szczegółowoAlgorytmy i Struktury Danych. (c) Marcin Sydow. Słownik. Tablica mieszająca. Słowniki. Słownik uporządkowany. Drzewo BST.
i Zawartość wykładu definicja słownika analiza naiwnych implementacji słownika tablice mieszające własności funkcji mieszającej analiza operacji słownika zaimplementowanych na tablicy mieszającej sposoby
Bardziej szczegółowodr inż. Paweł Myszkowski Wykład nr 11 ( )
dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:
Bardziej szczegółowoStruktury czyli rekordy w C/C++
Struktury czyli rekordy w C/C++ Wprowadzenie do programowania w języku C struktury. pola bitowe, unie Struktury (rekordy) są złożonymi zmiennymi, składającymi się z elementów różnych typów zwanych polami,
Bardziej szczegółowoPliki w C/C++ Przykłady na podstawie materiałów dr T. Jeleniewskiego
Pliki w C/C++ Przykłady na podstawie materiałów dr T. Jeleniewskiego 1 /24 Pisanie pojedynczych znaków z klawiatury do pliku #include void main(void) { FILE *fptr; // wkaznik do pliku, tzw. uchwyt
Bardziej szczegółowoSTRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew
STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,
Bardziej szczegółowoDrzewa AVL definicje
Drzewa AVL definicje Uporzadkowane drzewo binarne jest drzewem AVL 1, jeśli dla każdego wez la różnica wysokości dwóch jego poddrzew wynosi co najwyżej 1. M D S C H F K Z typowe drzewo AVL minimalne drzewa
Bardziej szczegółowoŁAŃCUCHY W JĘZYKU C/C++
ŁAŃCUCHY W JĘZYKU C/C++ Stała tekstowa / łańcuchowa jest tablicą znaków zakończoną znakiem o kodzie: 0 np. stała łańcuchowa: Jestem tekstem... 74 101 115 116 101 109 32 116 101 107 115 116 101 109 0......
Bardziej szczegółowoPodstawy programowania w języku C++
Podstawy programowania w języku C++ Część jedenasta Przetwarzanie plików amorficznych Konwencja języka C Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie
Bardziej szczegółowostruct Student { char nazwisko[30]; int wiek; float ocena; }; #define MAX_ROZMIAR 3 Student lista_studentow[max_rozmiar];
PRZYKLAD p_30.cpp Przykladowa implementacja "listy studentów" z porzadkowaniem wedlug róznych kryteriów zaimplementowanym poprzez "fizyczne" sortowanie danych oraz poprzez sortowanie "logiczne" za pomoca
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Bardziej szczegółowo0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.
KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych
Bardziej szczegółowoWykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład II - semestr II Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Operacje dyskowe - zapis do pliku #include #include
Bardziej szczegółowoDrzewa podstawowe poj
Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho
Bardziej szczegółowoUNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA. pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński
UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński kierunek: Informatyka GDAŃSK 2019 Niniejsze materiały powstały
Bardziej szczegółowoKompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Bardziej szczegółowo