Kompresja danych Streszczenie Studia Dzienne Wykład 10,
|
|
- Maciej Marcin Żukowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny schemat kwantyzacji wektorowej dla L-wymiarowych wektorów: ustalamy M wektorów L-wymiarowych jako wartości rekonstrukcji, nazywanych też wektorami kodowymi; każdemu z wektorów kodowych przyporządkowujemy indeks w tablicy tych wektorów, zwanej słownikiem; dane dzielimy na bloki o długości L; dla każdego bloku danych znajdujemy najbliższy mu wektor kodowy i on staje się skwantyzowaną wartością tego bloku. Miary jakości kwantyzatora wektorowego: (średniokwadratowy) błąd kwantyzacji σ 2 q, w którym odległość między wektorami X = (x 1... x L ) i Y = (y 1... y L ) to X Y ; gdzie X 2 = L i=1 x 2 i. (średnia) liczba bitów na próbkę: równa L rozmiar kwantyzowanych wektorów. log K, gdzie K to rozmiar słownika, a L Poglądowe przykłady przewagi kwantyzacji wektorowej nad skalarną: dane skorelowane (np. pary (wzrost,waga), bloki sąsiednich pikseli); dane nieskorelowane: wartości odwzorowane na konkretny wektor kodowy nie musza być zdefiniowane w postaci przedziałów, prostopadłościanów. (p. wektorowa interpretacja kwantyzacji skalarnej). Algorytm Lindego-Buzo-Graya (LBG), inaczej Generalized Lloyd Algorithm (GLA) Dane: zbiór wektorów uczących {X n } N n=1, próg błędu ε, M liczba wektorów kodowych takie, że N M. Cel: minimalizacja średniej odległości między wektorem uczącym a reprezentującym go wektorem kodowym. 1. Wybierz dowolnie zbiór wektorów kodowych {Y (0) i } M i=1. Niech k = 0, D (0) = 0. 1
2 2. Określ obszary kwantyzacji V 1,..., V M w następujący sposób: V (k) i Załóżmy, że V (k) i = {X n d(x n, Y (k) i ) < d(x n, Y (k) j ) dla każd. j i} dla każdego i [1, M]. 3. Oblicz średnią odległość między wektorami uczącymi a odpowiadającymi im wektorami kodowymi D (k) = 1 N M i=1 X j V (k) i d(x j, Y (k) i ). 4. Jeśli D(k) D (k 1) D (k) < ε, zakończ obliczenia. 5. niech nowe wektory kodowe to średnie wartości obszarów kwantyzacji: Y (k+1) j = 1 V (k) j 6. Niech k := k + 1, przejdź do kroku 2 Wynik algorytmu LBG: X i V (k) j X i dla j [1, M]. zmierza do minimum lokalnego (funkcji błędu, gdzie zmiennymi są wartości X 1,..., X M ; rozwiązanie optymalne - problem NP-trudny. Problemy techniczne w algorytmie LBG: Wybór poczatkowych wektorów kodowych. Technika podziałów: zaczynamy z jednym początkowym wektorem kodowym, po zastosowaniu algorytmu LBG dołączamy drugi wektor, uzyskany z pierwszego przez dodanie ustalonego wektora zaburzeń γ. Mając 2 i wektorów kodowych, stosujemy LBG i uzyskujemy 2 i+1 wektorów przez dodanie zaburzenia do każdego z wynikowych wektorów kodowych. Algorytm par najbliższych sasiadów (PNN): zaczynamy ze zbiorem wektorów kodowych równym zbiorowi uczącemu. W każdym kroku (aż do uzyskania M wektorów) wybieramy 2 najbliższe wektory kodowe i zastępujemy je ich średnią i stosujemy algorytm LBG. Dokładniej, w metodzie zaproponowanej przez Equitza (1989): 2
3 łączymy takie dwa wektory kodowe, które zminimalizują wzrost zniekształcenia (D). korzystamy tu z własności (Equitz), że połączenie obszarów reprezentowanych przez Y i i Y j daje następujący wzrost zniekształcenia: n i n j n i + n j Y i Y j 2, gdzie n i i n j to liczba elementów w obszarze V i i V j. Problem pustych obszarów kwantyzacji. Metoda: usuwamy wektor kodowy odpowiadający pustemu obszarowi kwantyzacji, zastępujemy go losowo wybranym wektorem uczącym z obszaru kwantyzacji, który zawiera najwięcej wektorów. Typowe zastosowanie: kompresja obrazów (wektory to bloki rozmiaru n m, co umożliwia wykorzystanie korelacji poziomych i pionowyc); ograniczeniem jest wzrost rozmiaru słownika i dobór słownika (statyczny czy projektowany dla każdego obrazka osobno, co wymaga dołączenia słownika do danych). Patrz: Kwantyzatory o strukturze drzewiastej Idea: chcemy zmniejszyć liczbę porównań potrzebną do ustalenia obszaru kwantyzacji, do którego należy dany wektor: w trakcie działania algorytmu LBG: standardowo konieczne policzenie N M odległości między punktami w każdej iteracji; w trakcie kodowania: standardowo, każdy kodowany wektor musi być porównany ze wszystkimi N wektorami kodowymi. Metoda: tworzymy zbalansowane drzewo binarne, w każdym węźle umieszczamy wektor, w liściach wektory kodowe; dla ustalenia obszaru kwantyzacji danego wektora Z, w każdym kroku przechodzimy do tego dziecka aktualnego wierzchołka w drzewie, który znajduje się bliżej Z (zaczynając od korzenia). Cechy: czas znalezienia obszaru kwantyzacji dla danego wektora redukuje się z M do 2 log M ; wzrost zniekształceń: podział na obszary kwantyzacji nie zawsze przyparządkowuje wektor do obszaru o najbliższym mu wektorze kodowym; 3
4 wzrost pamięci: oprócz wektorów kodowych, potrzeba M 1 wektorów w wierzchołkach wewnętrznych. Ogólna metoda tworzenia kwantyzatora drzewiastego o głębokości k dla zbioru wektorów X : jeśli k = 0: utwórz kwantyzator z jednym wektorem kodowym równym średniej z wektorów z X ; wybieramy dwa początkowe wektory kodowe: Y 1 : średnią S z wektorów ze zbioru X ; Y 2 : wektor otrzymany z S przez dodanie zaburzenia; tworzymy kwantyzator z dwoma wektorami kodowymi (stosując np. algorytm LBG) Y 1, Y 2 ; dzielimy X na X 1, X 2 takie, że X 1 składa się z wektorów uczących bliższych Y 1 a X 2 składa się z wektorów uczących bliższych Y 2 tworzymy (osobno!) kwantyzatory o głębokości k 1 dla zbiorów X 1 i X 2. Modyfikacje: przycinanie usuwanie obszarów kwantyzacji, do których należy najmniej wektorów uczących (zmniejszanie średniej długości słowa kodowego kosztem wzrostu zniekształceń). 1.2 k-d-drzewa Cel: implementacja oryginalnej metody LBG! przyspieszenie wyszukiwania najbliższego wektora kodowego (Y ) dla punktu treningowego X (NNS=nearest neighbor search); nie wymagamy zmniejszenia złożoności najgorszego przypadku, chcemy poprawić złożoność średniego przypadku. 4
5 Konstrukcja k-d-drzewa Dane Zbiór punktów S = {X 1,..., X n } w przestrzeni d wymiarowej. Algorytm: 1. Jeśli n = 1: utwórz liść zawierający ten wierzchołek, zakończ. 2. Podziel zbiór S na dwa równoliczne podzbiory S 1 i S 2 : wybierz jedną ze współrzędnych i oraz wartość p taką, że dla połowy punktów i-ta współrzędna jest mniejsza od p. 3. Utwórz k-d-drzewa dla S 1 i S utwórz wierzchołek symbolizująccy podział w punkcie p wg współrzędnej i; jego lewym i prawym poddrzewem są k-d-drzwa dla S 1 i S 2. Strategie wyboru współrzędnej do podziału wybierz współrzędną o największej rozpiętości (maksymalnej różnicy między największą i najmniejszą wartością w zbiorze S); round-robin: współrzędne 1, 2,..., d, 1, 2,..., d, 1, 2... Wynik: głębokość drzewa: log n; złożoność czasowa tworzenia drzewa: sortowanie po wszystkich współrzędnych (tylko raz): O(dn log n); wybór współrzędnej: O(d); podział wg wybranej współrzędnej O(dn); razem: O(dn log n). Struktura wierzchołka w k-d-drzewie (node): axis: współrzędna, wg której dzielimy punkty w tym wierzchołku; value: wartość graniczna (punkty o mniejszej wartości współrzędnej axis w lewym poddrzewie); left, right: lewe i prawe poddrzewo; point: punkt przechowywany w wierzchołku, gdy wierzchołek jest liściem. Szukanie najbliższego punktu Dane: k-d-drzewo dla zbioru punktów S = {X 1,..., X n }; punkt q. Wynik: element S położony najbliżej punktu q. Algorytm: NNS(q: point; n: node; var p: point; var w: real) Cel: 5
6 dla punktu q chcemy znaleźć najbliższy punkt w zbiorze opisanych w (pod)drzewie o korzeniu n, o ile taki punkt jest w odległości mniejszej niż w; jeśli najbliższy punkt jest w odległości większej niż w: p i w mają pozostać bez zmian; jeśli najbliższy punkt jest w odległości mniejszej niż w: p ma wskazywać na najbliższy punkt, w ma być równe odległości od q do tego punktu. wywołanie początkowe: NNS(q,root,?,infinity) 6
7 NNS(q: point; n: node; var p: point; var w: real) 1. Jeśli n jest liściem: Jeśli d(n.point, q) < w: w d(n.point, q), p n.point Zakończ. 2. Jeśli w = : Jeśli q(n.axis) n.value { przec. z lewym} NNS(q,n.left,p,w) Jeśli q(n.axis) + w > n.value: NNS(q,n.right,p,w). Jeśli q(n.axis) > n.value { przec. z prawym} 3. Jeśli w : UWAGI: NNS(q,n.right,p,w) Jeśli q(n.axis) w n.value: NNS(q,n.left,p,w). Jeśli q(n.axis) w n.value: NNS(q,n.left,p,w). Jeśli q(n.axis) + w > n.value: NNS(q,n.right,p,w). każde wywołanie rekurencyjne modyfikuje wartości p i w (jeśli znajdzie bliższy punkt niż dotychczas najbliższy); q(n.axis) oznacza tutaj współrzędna n.axis punktu q; a n.axix to współrzędna wg której dokonywany jest podział w wierzchołku n. WŁASNOŚĆ: NNS działa w czasie oczekiwanym log n. Zastosowanie w LBG: w każdej iteracji tworzymy kd-tree dla aktualnego zbioru wektorów kodowych Y 1,..., Y M : czas O(M log M). aby ustalić obszar kwantyzacji dla punktu X i, znajdujemy najbliższy mu punkt w kd-tree: czas O(log M). czas średni całej iteracji LBG: O(M log M + N log M) = O(N log M) (ponieważ N > M). 7
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12,
1 Kompresja stratna Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12, 5.05.2005 Algorytmy kompresji bezstratnej oceniane są ze względu na: stopień kompresji; czas działania procesu kodowania
Bardziej szczegółowoKwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Bardziej szczegółowoKompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
Bardziej szczegółowoDefinicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoWysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoWykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Bardziej szczegółowoKodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Bardziej szczegółowoTadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Bardziej szczegółowo2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Bardziej szczegółowoPodstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoKwantyzacja wektorowa. Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje
Kwantyzacja wektorowa Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje Zasada kwantyzacji wektorowej Kwantyzacja skalarna koduje oddzielnie kaŝdą próbkę
Bardziej szczegółowoAgnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Bardziej szczegółowoE: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowo< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowooperacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Bardziej szczegółowoAlgorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Bardziej szczegółowoPrzypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Bardziej szczegółowoAlgorytmy i Struktury Danych, 9. ćwiczenia
Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoWykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowoWykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowo0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.
KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych
Bardziej szczegółowoKompresja bezstratna. Entropia. Kod Huffmana
Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)
Bardziej szczegółowoSYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Bardziej szczegółowoSortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Bardziej szczegółowoSYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoWSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoLuty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Bardziej szczegółowoZałożenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoMetody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Bardziej szczegółowoWykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
Bardziej szczegółowoŁyżwy - omówienie zadania
Komisja Regulaminowa XVI Olimpiady Informatycznej 1 UMK Toruń 12 luty 2009 1 Niniejsza prezentacja zawiera materiały dostarczone przez Komitet Główny Olimpiady Informatycznej. Treść zadania Wejście Wyjście
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych ĆWICZENIE 2 - WYBRANE ZŁOŻONE STRUKTURY DANYCH - (12.3.212) Prowadząca: dr hab. inż. Małgorzata Sterna Informatyka i3, poniedziałek godz. 11:45 Adam Matuszewski, nr 1655 Oliver
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Bardziej szczegółowoAnaliza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Bardziej szczegółowoBazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Bardziej szczegółowoPRZYSPIESZENIE KNN. Ulepszone metody indeksowania przestrzeni danych: R-drzewo, R*-drzewo, SS-drzewo, SR-drzewo.
PRZYSPIESZENIE KNN Ulepszone metody indeksowania przestrzeni danych: R-drzewo, R*-drzewo, SS-drzewo, SR-drzewo. Plan wykładu Klasyfikacja w oparciu o przykładach Problem indeksowania przestrzeni obiektów
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoKwantyzacja skalarna i wektorowa. Metody zaawansowane
Kwantyzacja skalarna i wektorowa. Metody zaawansowane Kwantyzacja blokowa BTC (block truncation coding) Innym przykładem metod kwantyzacji adaptacyjnej wymagającej wstępnego podziału obrazu na bloki i
Bardziej szczegółowoKlasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Bardziej szczegółowoKlasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Bardziej szczegółowoAlgorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Bardziej szczegółowoWykład 8. Drzewa AVL i 2-3-4
Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność
Bardziej szczegółowoSYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Bardziej szczegółowoAlgorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Bardziej szczegółowoIndeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe
1 Plan rozdziału 2 Indeksy Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny Indeksy wielopoziomowe Indeksy typu B-drzewo B-drzewo B+ drzewo B* drzewo Wprowadzenie 3 Indeks podstawowy
Bardziej szczegółowoTemat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Bardziej szczegółowoAlgorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Bardziej szczegółowoNierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
Bardziej szczegółowoCLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Bardziej szczegółowo8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowo2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Bardziej szczegółowoKODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Bardziej szczegółowoGrupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoDef. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne
Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Bardziej szczegółowoAlgorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Bardziej szczegółowoWykład 3. Drzewa czerwono-czarne
Wykład 3 Drzewa czerwono-czarne 1 Drzewa zbalansowane Wprowadzenie Drzewa czerwono-czarne Definicja, wysokość drzewa Rotacje, operacje wstawiania i usuwania Literatura Cormen, Leiserson, Rivest, Wprowadzenie
Bardziej szczegółowoWedług raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Bardziej szczegółowoSieci neuronowe - projekt
Sieci neuronowe - projekt Maciej Barański, Kamil Dadel 15 stycznia 2015 Streszczenie W ramach projektu został zrealizowany algorytm kompresji stratnej bazujący na działaniu samoorganizującej się sieci
Bardziej szczegółowoHaszowanie (adresowanie rozpraszające, mieszające)
Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Bardziej szczegółowoS O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Bardziej szczegółowoMetody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
Bardziej szczegółowoCo to są drzewa decyzji
Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowoZłożoność algorytmów. Wstęp do Informatyki
Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność
Bardziej szczegółowoDrzewa podstawowe poj
Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho
Bardziej szczegółowoListy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Bardziej szczegółowoMetody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Bardziej szczegółowoAlgorytmy i struktury danych Sortowanie IS/IO, WIMiIP
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoKażdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.
Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące
Bardziej szczegółowoGrupowanie VQ. Kwantyzacja wektorowa (VQ Vector Quantization) SOM Self-Organizing Maps. Wstępny podział na grupy. Walidacja grupowania
Grupowanie VQ Kwantyzacja wektorowa (VQ Vector Quantization) k-średnich GLA Generalized Lloyd Algorithm ISODATA SOM Self-Organizing Maps Wstępny podział na grupy Walidacja grupowania Przykłady zastosowania
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Bardziej szczegółowoTechnologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:
Bardziej szczegółowoAnaliza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Bardziej szczegółowoData Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Bardziej szczegółowo