Lista liniowa dwukierunkowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lista liniowa dwukierunkowa"

Transkrypt

1 53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej struct ELEMD { int klucz; ELEMD * left, * right; }; name p Rys. 53 Lista liniowa dwukierunkowa Lista liniowa dwukierunkowa nie ma wyróżnionego początku ani końca jest symetryczna. Rolę wskaźnika do całej listy pełni tutaj wskaźnik name, którego położenie jest w zasadzie dowolne, może więc być używany, na przykład, do wyszukiwania elementów. Z powyższego wynika również, że algorytmy usuwające elementy powinny sprawdzać, czy usuwany element nie jest aktualnie wskazywany przez wskaźnik do całej listy. Jeśli tak, wskaźnik do całej listy należy wcześniej przesunąć na inny element.

2 54 ELEMD *q = new ELEMD; p left right = q; q left = p left; p left = q; q right = p; Rys. 54 Przykładowy algorytm wstawiania nowego elementu, wskazywanego przez q, przed element wskazywany przez p (założono, że element stojący na lewo od p istnieje) p left right = p right; p right left = p left; delete p; Rys. 55 Przykładowy algorytm usuwania elementu wskazywanego przez p (przy założeniu, że element usuwany nie jest elementem skrajnie prawym, ani skrajnie lewym) Drzewa i lasy Rekurencyjna definicja drzewa Drzewo, podobnie jak omawiana w rozdziale poprzednim lista, jest strukturą, którą możemy zdefiniować w sposób rekurencyjny.

3 55 Oto ta definicja: Niech wierzchołek w (element drzewa) będzie pewnego typu T, wtedy: 1. Jeżeli dowolna, skończona, rozłączna i nie należąca do drzewa liczba wierzchołków typu T, do niego dowiązanych jest drzewami, to w jest drzewem. 2. Zbiór pusty wierzchołków jest drzewem. Jest to typowa definicja rekurencyjna, w której punkt 2 stanowi warunek stopu definicji. Pojęcie wierzchołek (węzeł) i dowiązanie (łuk) zostały zapożyczone z teorii grafów. Poniższy rysunek objaśnia podaną definicję. w w a) n w 1 w 2 b) w 11 w 12 w 13 Rys. 56 Rekurencyjna definicja drzewa: a) drzewo puste, b) drzewo niepuste....

4 56 Definicje podstawowych pojęć 1. Wierzchołki, które są bezpośrednio dowiązane do danego wierzchołka, nazywamy jego bezpośrednimi potomkami, albo bezpośrednimi następnikami (synami węzła). 2. Z kolei wierzchołek taki nazywać będziemy bezpośrednim poprzednikiem (ojcem) tych węzłów. 3. Synów tego samego ojca nazywamy braćmi. 4. Wierzchołek, który nie ma bezpośredniego poprzednika nazywamy korzeniem drzewa. Korzeniem drzewa nazywa się też wskazanie do tego elementu. Jest to jednocześnie wskazanie do całego drzewa. 5. Wierzchołki, które nie mają bezpośrednich następników, nazywamy liśćmi drzewa. 6. Elementy nie będące liśćmi nazywamy węzłami wewnętrznymi drzewa. 7. Drzewem uporządkowanym nazywamy drzewo, w którym dla każdego węzła wewnętrznego na jego synach określona jest ta sama relacja liniowego porządku. 8. Jeżeli dany węzeł ma poziom i, to wszystkie jego bezpośrednie następniki mają poziom i+1. Założymy, że korzeń drzewa ma poziom 1.

5 57 9. Maksymalny poziom wierzchołków drzewa nazywamy wysokością, albo głębokością drzewa. 10. Stopniem drzewa nazywamy maksymalną liczbę wierzchołków, jakie można dowiązać do każdego z węzłów. 11. Ścieżką w drzewie jest ciąg jego wierzchołków a 1, a 2,...,a n taki, że dla każdego i = 2, 3,..., n para (a i-1, a i ) jest krawędzią, łączącą dany wierzchołek wewnętrzny z jego bezpośrednim potomkiem. Wierzchołki wewnętrzne to zbiór wszystkich wierzchołków drzewa za wyjątkiem liści. 12. Liczba krawędzi, jaką trzeba przejść od korzenia do poziomu danego wierzchołka w nazywamy długością drogi wierzchołka w. Długość drogi korzenia wynosi 1. Ogólnie - długość drogi wierzchołka na poziomie i wynosi i. 13. Lasem nazywać będziemy uporządkowany zbiór drzew. Uporządkowanie drzew w lesie polega na uporządkowaniu korzeni kolejnych drzew. Spina się je w las poprzez umieszczenie wskaźników do ich korzeni w tablicy, lub w liście wskaźników. Lista liniowa jednokierunkowa jest szczególnym przypadkiem drzewa. Jest to drzewo stopnia pierwszego. Drzewo binarne W praktyce używa się zwykle drzew niewysokiego stopnia, na przykład drugiego (mówimy wtedy o drzewie binarnym).

6 58 ptr Rys. 57 Przykład drzewa binarnego ( ptr - wskazanie dowolnego węzła drzewa) Algorytm tak zwanego naturalnego przekształcenia dowolnego lasu w drzewo binarne Jest to algorytm, który umożliwia przekształcenie dowolnego lasu, złożonego z dowolnej ilości drzew o różnych stopniach, w pojedyncze drzewo binarne. Jest zupełnie naturalnym, że algorytmy obsługi drzew o ustalonym, niewysokim stopniu, będą prostsze i bardziej efektywne niż algorytmy dotyczące drzew charakteryzujących się dość dużą dowolnością. Algorytm tak zwanego naturalnego przekształcenia dowolnego lasu w drzewo binarne skonstruować można wg. poniższych kroków: 1. Przyjmij za korzeń drzewa binarnego korzeń pierwszego drzewa w lesie. 2. Przenoś kolejne węzły drzew lasu do drzewa binarnego w ten sposób, aby: 2.1. ich pola left wskazywały listę wiązaną synów tego węzła w drzewie oryginalnym, 2.2. lista ta była wiązana poprzez pola right każdego z przenoszonych węzłów, 2.3. zasada ta dotyczy również wiązania korzeni poszczególnych drzew lasu.

7 59 las N Rys. 58 Las złożony z dwóch drzew. N-elementowa tablica wskaźników las przechowuje wskazania do kolejnych drzew w lesie Rys. 58 przedstawia przykładowy las złożony z dwóch drzew o różnym stopniu, rys. 59 drzewo binarne otrzymane z przekształcenia tego lasu za pomocą wyżej omawianego algorytmu. Po przekształceniu lasu w drzewo binarne i wykonaniu na nim wszystkich niezbędnych operacji, takich jak: wyszukanie węzła, modyfikacja jego zawartości, bądź nawet usunięcie lub wstawienie nowego węzła, drzewo binarne można z powrotem przekształcić do pierwotnej, naturalnej postaci.

8 Rys. 59 Drzewo binarne powstałe z przekształcenia lasu przedstawionego na rys.58 Przeglądanie drzewa binarnego Niech Q(ptr) będzie operacją, którą trzeba wykonać na węźle wskazywanym przez ptr, oraz wszystkich węzłach leżących poniżej węzła wskazywanego przez ptr (patrz rys. 36). Jeśli ptr =, czyli wywołamy procedurę Q dla wskazania korzenia drzewa, wtedy procedura ta wykonana zostanie dla całego drzewa. ptr A B C Rys. 60 Węzły drzewa binarnego

9 61 Rekurencyjną metodę zapewniającą przejrzenie całego drzewa o dowolnym kształcie i rozmiarach począwszy od węzła wskazywanego przez ptr (węzeł A na rys. 60) sformułować można następująco: Wykonaj żądaną operację na węźle, w którym się znajdujesz a następnie zgodnie z przyjętą zasadą odwiedź lewy wierzchołek dowiązany, następnie zgodnie z przyjętą zasadą odwiedź prawy wierzchołek dowiązany. W tym opisie metody najważniejszym jest sformułowanie zgodnie z przyjętą zasadą. Tutaj bowiem ukryte jest rekurencyjne wywołanie metody. Uzyskany efekt najlepiej obrazuje poniższy rysunek. ptr Rys. 61 Kolejność wykonywania operacji Q(ptr) na węzłach drzewa binarnego przy użyciu metody preorder. Mamy tu do czynienia ze schematem odwiedzania węzłów drzewa binarnego, który nazwany został metodą zstępującą, albo metoda porządku poprzedzającego (z ang. preorder ).

10 62 Jest to schemat A B C. A oznacza wykonanie operacji na węźle, B lub C - jedynie jego odwiedzenie. Dwa dalsze możliwe schematy to: B A C inorder - metoda wstępująca lub porządek następujący, B C A postorder - metoda symetryczna lub porządek wewnętrzny. Rekurencyjna funkcja zapewniająca, przy zastosowaniu metody preorder, wykonanie procedury Q(ptr) dla całego poddrzewa wskazywanego przez ptr będzie miała w notacji języka C/C++ postać: void preorder ( BIN *ptr) { if (ptr) { Q(ptr); preorder(ptr left); preorder(ptr right); } } Drzewa binarnych poszukiwań Niech poniższy ciąg nie powtarzających się liczb całkowitych będzie ciągiem kluczy, które chcemy wstawić do drzewa binarnego w sposób uporządkowany

11 63 Poszukując liścia, którego następnikiem ma być kolejny wstawiany wierzchołek, zastosujmy następującą rekurencyjną metodę: 1. jeżeli wartość wstawiana jest mniejsza od wartości klucza badanego węzła, należy poprzez pole left przejść do lewego węzła, 2. jeżeli wartość wstawiana jest większa od wartości klucza badanego węzła, należy poprzez pole right przejść do prawego węzła, 3. powyższe można zakończyć po napotkaniu węzła, którego lewe, lub prawe wskazanie jest wskazaniem pustym, wskazania tego należy użyć w celu wstawienia węzła. Zauważmy, że poszukując miejsca wstawienia nowego węzła poruszamy się wzdłuż jednej tylko ścieżki w drzewie i że miejsce wstawienia jest tylko jedno. Wyżej opisana metoda wstawiania węzłów do drzewa binarnego, chociaż ma w istocie charakter rekurencyjny (pk. 3 metody stanowi warunek stopu), to ze względu na to, że poruszamy się wzdłuż jednej tylko ścieżki, może być łatwo zrealizowana za pomocą algorytmu iteracyjnego. Otrzymane w ten sposób drzewa binarne, ze względu na swe szczególne, opisane niżej, własności nazywamy drzewami binarnych poszukiwań (DBP).

12 64 ptr Rys. 62 Drzewo binarnych poszukiwań wygenerowane po otrzymaniu ciągu kluczy Generowanie drzew binarnych poszukiwań stanowi jedną z najdoskonalszych metod sortowania informacji. Aby bowiem znaleźć w drzewie wierzchołek o określonej wartości klucza, lub stwierdzić, że klucz o takiej wartości nie występuje w drzewie, wystarczy poruszać się wzdłuż jednej tylko ścieżki. Oto pełna definicja drzewa binarnych poszukiwań: Drzewem binarnych poszukiwań nazywać będziemy drzewo binarne, w którym dla każdego węzła wewnętrznego, klucz jego lewego następnika jest mniejszy, a klucz prawego następnika większy, od klucza tego węzła. Maksymalna liczba porównań, jakie trzeba wykonać, aby znaleźć jakikolwiek wierzchołek, jest równa wysokości DBP. Oczywiście im drzewo jest mniej zrównoważone (ma większą wysokość), tym maksymalna liczba porównań jest większa.

13 65 W idealnym przypadku - drzewa dokładnie wyważonego, drzewo binarne o wysokości n zawiera aż 2 n 1 węzłów. Korzyści, jakie osiągamy z użycia DBP do sortowania danych, wzrastają więc nieprawdopodobnie szybko ze wzrostem ilości tych danych, co jest kolejną pozytywną cechą DBP. Obrazuje to poniższa tabela Ilość węzłów w DBP Maksymalna liczba porównań Rys. 63 Zależność między ilością węzłów w DBP a maksymalną ilością porównań, jakich trzeba dokonać, aby znaleźć wierzchołek o żądanym kluczu w dokładnie wyważonym DBP. Algorytm usuwania węzłów różnych od korzenia w DBP rozbić można na trzy przypadki: jeśli węzeł usuwany jest liściem, wystarczy zwolnić pamięć dla tego węzła a jego wskazaniu przypisać wskazanie puste, jeśli węzeł usuwany ma jednego potomka, należy wskazaniu usuwanego węzła przypisać wskazanie tego potomka, natomiast jeśli węzeł usuwany ma dwóch potomków, należy wskazaniu tego węzła przypisać wskazanie lewego potomka, a następnie wypięte w ten sposób poddrzewo, rozpoczynające się od prawego następnika

14 66 usuwanego węzła, wpiąć do DBP tak jakby się wpinało nowy pojedynczy węzeł. Drzewa zrównoważone i idealnie zrównoważone Jak już zauważyliśmy, korzyści jakie wynosimy, używając drzew binarnych poszukiwań, są tym mniejsze, im bardziej uporządkowany jest ciąg kluczy kolejno wstawianych węzłów. W skrajnym przypadku, to jest uporządkowanego ciągu kluczy, drzewo binarnych poszukiwań degeneruje się do uporządkowanej listy liniowej, gdzie średni czas wyszukiwania jest tylko rzędu n/2 (n jest ilością węzłów). W takich sytuacjach warto konstruować tak zwane drzewa zrównoważone i drzewa idealnie zrównoważone. Drzewem zrównoważonym nazywamy drzewo binarne, w którym dla każdego węzła wysokość jego lewego i prawego poddrzewa różni się nie więcej niż o jeden. Od nazwisk odkrywców zostały one również nazwane drzewami AVL a) 6 b) Rys. 64 Przykłady drzew: a) drzewo zrównoważone, b) drzewo idealnie zrównoważone

15 67 Z kolei drzewem idealnie zrównoważonym nazywać będziemy drzewo binarne, w którym wszystkie liście znajdują się na jednym, lub dwóch poziomach. Oczywiście nie każde drzewo zrównoważone musi być drzewem idealnie zrównoważonym. Drzewa z priorytetem (HPO-drzewa albo Kopce). Sterty W rozdziale poświęconym listom omówiliśmy listy z priorytetem (HPO-kolejki). Zupełnie podobne zastosowania mają drzewa z priorytetem, zwane również HPO-drzewami, lub kopcami. HPO-drzewa są to drzewa binarne uporządkowane według priorytetów i zbudowane według zasady: Dla każdego węzła wewnętrznego priorytety jego następników są nie większe od priorytetu tego węzła. ptr Rys. 65 Przykładowy kopiec. Dymki z wartością 11 w środku wskazują dopuszczalne miejsca wstawienia węzła o wartości priorytetu równej 11.

16 68 W HPO-drzewie węzeł o najwyższym priorytecie znajduje się zawsze w korzeniu. Podobnie jak w HPO-kolejce do węzła tego istnieje bezpośredni (a więc bardzo szybki) dostęp poprzez wskazanie do całego drzewa. Jak już o tym wcześniej mówiono, im z wyższym drzewem mamy do czynienia, tym dłuższy jest czas wyszukiwania węzłów. Czas ten jest najkrótszy z możliwych dla drzewa idealnie zrównoważonego, gdzie złożoność obliczeniowa algorytmu wyszukiwania wynosi O(log N). Otrzymanie drzewa idealnie zrównoważonego dla kopca nie jest oczywiście zawsze możliwe. (Ćwiczenie: dlaczego?). Można jedynie zadbać o to, aby algorytmy wstawiające, lub usuwające węzły dbały o możliwie największe zrównoważenie HPO-drzewa. Natomiast, jeśli zrezygnować z uporządkowania węzłów w wyżej omawianym drzewie i zażądać, aby drzewo było idealnie zrównoważone, otrzymamy drzewo binarne o nazwie sterta. Drzewa decyzyjne Drzewa decyzyjne najczęściej służą do wyodrębniania wiedzy z zestawu przykładów (eksploracja danych). Załóżmy, że posiadamy zestaw przykładów, opisanych przy pomocy kilku atrybutów. Z każdym obiektem zwiążmy jakąś decyzję (to co otrzymaliśmy nazywamy tabelą decyzyjną). Wiek Płeć Wykształcenie Języki obce Doświadczenie Ogólna prezentacja Przyjęty 25 m nie 22 k nie 21 m tak 29 m nie Rys. 66. Przykładowa tabela decyzyjna

17 69 Załóżmy, że tabelę decyzyjną stworzono w celu zautomatyzowania procesu przyjmowania kandydatów do pracy w dużej firmie. Rzeczywiste tabele tego typu liczą nawet setki wierszy. W naszym przykładzie wprowadzono atrybuty decyzyjne: Płeć, Wykształcenie, Języki obce, Doświadczenie i Ogólna prezentacja, oraz - atrybut decyzyjny: Przyjęty. Wartości atrybutów decyzyjnych (za wyjątkiem płci) są kodowane w skali od 1 do 5. Atrybut decyzyjny przyjmuje dwie wartości: tak, nie. Na podstawie tabeli decyzyjnej tworzymy drzewo, którego węzłami są poszczególne atrybuty, gałęziami wartości odpowiadające tym atrybutom, a liście tworzą poszczególne decyzje. Na podstawie przykładowych danych wygenerowano następujące drzewo: Rys. 67. Przykładowe drzewo decyzyjne stopnia trzeciego

18 70 Drzewo w takiej postaci odzwierciedla, w jaki sposób na podstawie atrybutów były podejmowane decyzje klasyfikujące. Zaletą tej reprezentacji jest jej czytelność dla człowieka. Łatwo tez zapisać algorytm klasyfikujący. Wyrażenia kropkowe Bardzo szczególną postacią drzew są drzewa przechowujące tzw. wyrażenia kropkowe. Reprezentantem wyrażenia kropkowego jest drzewo binarne uzupełnione (w którym wszystkie węzły wewnętrzne mają dwóch następników), posiadające etykiety (wartości) tylko na liściach. a b c d ( ( a. ( b. c ) ). d ) a) b) Rys. 68 Przykład wyrażenia kropkowego: a) reprezentacja w postaci drzewa, b) zapis kropkowy

19 71 Wyrażenia kropkowe mają dwa rodzaje węzłów: węzły wewnętrzne bez etykiet (ich celem jest przechowanie informacji o strukturze całego wyrażenia kropkowego), oraz normalne węzły na liściach drzewa. Możemy więc przy ich pomocy, na przykład: przedstawić strukturę rozgrywek piłkarskich: ( ( Wisła. ( Legia. Widzew ) ). Amica ) albo też przypisując węzłom kropkowym operatory arytmetyczne, przedstawić strukturę wyrażenia arytmetycznego: (( a * ( b + c )) d ). W pierwszym przykładzie, kropka pełnić może role operatora wyłaniającego zwycięzcę lewego i prawego argumentu, w drugim operatora pozwalającego znaleźć wartość wyrażenia arytmetycznego lewego i prawego argumentu. Jest to więc bardzo wygodna, w pełni dynamiczna, forma przechowywania informacji o strukturze. K o n i e c c z ę ś c i 4

Wysokość drzewa Głębokość węzła

Wysokość drzewa Głębokość węzła Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:

Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola: Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste

WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element

Bardziej szczegółowo

Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.

Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego. Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Drzewa czerwono-czarne.

Drzewa czerwono-czarne. Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,

Bardziej szczegółowo

Wykład 8. Drzewa AVL i 2-3-4

Wykład 8. Drzewa AVL i 2-3-4 Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru. Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 5

Algorytmy i struktury danych. wykład 5 Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych

Bardziej szczegółowo

Podstawy Informatyki. Wykład 6. Struktury danych

Podstawy Informatyki. Wykład 6. Struktury danych Podstawy Informatyki Wykład 6 Struktury danych Stałe i zmienne Podstawowymi obiektami występującymi w programie są stałe i zmienne. Ich znaczenie jest takie samo jak w matematyce. Stałe i zmienne muszą

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Sortowanie bąbelkowe

Sortowanie bąbelkowe 1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak: Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za

Bardziej szczegółowo

Drzewo binarne BST. LABORKA Piotr Ciskowski

Drzewo binarne BST. LABORKA Piotr Ciskowski Drzewo binarne BST LABORKA Piotr Ciskowski zadanie 1. drzewo binarne - 1 Zaimplementuj drzewo binarne w postaci: klasy Osoba przechowującej prywatne zmienne: liczbę całkowitą to będzie klucz, wg którego

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Definicja pliku kratowego

Definicja pliku kratowego Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %).

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %). Powrót Twój wynik: 4 punktów na 6 możliwych do uzyskania (6667 %). Nr Opcja Punkty Poprawna Odpowiedź Rozważmy algorytm AVLSequence postaci: 1 Niech drzewo będzie rezultatem działania algorytmu AVLSequence

Bardziej szczegółowo

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 > Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie

Bardziej szczegółowo

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)

Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1) Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Algorytmy i Struktury Danych, 9. ćwiczenia

Algorytmy i Struktury Danych, 9. ćwiczenia Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące

Bardziej szczegółowo

Wykład 2. Drzewa poszukiwań binarnych (BST)

Wykład 2. Drzewa poszukiwań binarnych (BST) Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019

. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019 .. Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2019 1 / 39 Plan.1 Wstęp.2 Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz.3.4 Zmiany w

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo

. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016

. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016 .. Podstawy Programowania 2 Drzewa bst - część pierwsza Arkadiusz Chrobot Zakład Informatyki 22 maja 2016 1 / 55 Plan.1 Wstęp.2 Definicje.3 Implementacja Typ bazowy i wskaźnik na korzeń Dodawanie elementu

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Sortowanie - wybrane algorytmy

Sortowanie - wybrane algorytmy Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

Drzewa wyszukiwań binarnych (BST)

Drzewa wyszukiwań binarnych (BST) Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.

Bardziej szczegółowo

UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA. pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński

UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA. pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński UNIWERSYTET GDAŃSKI MATERIAŁY DYDAKTYCZNE DO PRZEDMIOTU MATEMATYKA DYSKRETNA pod redakcją: Hanna Furmańczyk Karol Horodecki Paweł Żyliński kierunek: Informatyka GDAŃSK 2019 Niniejsze materiały powstały

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Stos LIFO Last In First Out

Stos LIFO Last In First Out Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek)

Bardziej szczegółowo

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Drzewa Witold Marańda maranda@dmcs.p.lodz.pl Drzewa - podstawy Drzewo jest dynamiczną strukturą danych składającą się z elementu węzłowego, zawierającego wskazania na skończoną

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Drzewa podstawowe poj

Drzewa podstawowe poj Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho

Bardziej szczegółowo

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów. Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie

Bardziej szczegółowo

Programowanie obiektowe i C++ dla matematyków

Programowanie obiektowe i C++ dla matematyków Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... 22 XI 2011 Uwaga! Ponieważ już sobie powiedzieliśmy np. o wskaźnikach i referencjach, przez które nie chcemy przegrzebywać

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, /15

Bazy danych. Andrzej Łachwa, UJ, /15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Metody Kompilacji Wykład 3

Metody Kompilacji Wykład 3 Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 7 część I 2 Modele danych: zbiory Podstawowe definicje Operacje na zbiorach Prawa algebraiczne Struktury

Bardziej szczegółowo

7a. Teoria drzew - kodowanie i dekodowanie

7a. Teoria drzew - kodowanie i dekodowanie 7a. Teoria drzew - kodowanie i dekodowanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7a. wteoria Krakowie) drzew - kodowanie i

Bardziej szczegółowo

AiSD zadanie drugie. Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5. 10 kwietnia 2008

AiSD zadanie drugie. Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5. 10 kwietnia 2008 AiSD zadanie drugie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 10 kwietnia 2008 1 Wstęp W nowym zadaniu porównywano efektywność kilku operacji na dwóch różnie zorganizowanych

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Koszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych

Koszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych Koszt zamortyzowany Jeśli mamy ciąg operacji, to koszt zamortyzowany jednej z nich jest sumarycznym kosztem wykonania wszystkich operacji podzielonym przez liczbę operacji. Inaczej mówiąc jest to, dla

Bardziej szczegółowo

Instrukcje dla zawodników

Instrukcje dla zawodników Instrukcje dla zawodników Nie otwieraj arkusza z zadaniami dopóki nie zostaniesz o to poproszony. Instrukcje poniżej zostaną ci odczytane i wyjaśnione. 1. Arkusz składa się z 3 zadań. 2. Każde zadanie

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co

Bardziej szczegółowo

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza

BAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Kompresja danych Streszczenie Studia Dzienne Wykład 10,

Kompresja danych Streszczenie Studia Dzienne Wykład 10, 1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 3

Indukowane Reguły Decyzyjne I. Wykład 3 Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 6 część I 2 Modele danych: zbiory Podstawowe definicje Operacje na zbiorach Prawa algebraiczne Struktury

Bardziej szczegółowo

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy

Bardziej szczegółowo

Programowanie obiektowe i C++ dla matematyków

Programowanie obiektowe i C++ dla matematyków Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... X 0 Typy złożone Oczywiście w C++ możemy definiować własne typy złożone (struktury i klasy), tak jak w Pascalu poprzez

Bardziej szczegółowo