Stos LIFO Last In First Out
|
|
- Julia Góra
- 6 lat temu
- Przeglądów:
Transkrypt
1 Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek) - zwrócenie ostatniego elementu na stosie
2 Implementacja tablicowa: int dane[6]; int rozmiar; void push() if (rozmiar>=5) cout << "Stos pelny!"; else cout<<endl<< "PUSH (jaka liczbe polozyc na stosie): "; rozmiar=rozmiar+1; cin>>dane[rozmiar]; void pop() if (rozmiar>=1) cout<<endl<<"pop - nastapi usuniecie ze stosu liczby: "<<dane[rozmiar]; rozmiar=rozmiar-1; else cout << "Stos pusty!"; void size() cout<<endl<<"liczba elementow na stosie: "<<rozmiar; void empty() if (rozmiar==0) cout<<endl<<"stos jest pusty"; else cout<<endl<<"stos nie jest pusty";
3 Implementacja na zmiennych dynamicznych: typedef struct stack int info; stack *previous; ; //zwraza aktualny początek (element najwyższy stosu) stack * push(stack * wskaznik_do_stosu,int element) stack * nowy=(stack *)malloc(sizeof(stack)); nowy->info=element; nowy->previous=wskaznik_do_stosu; return nowy; int pop(stack * &wskaznik_do_stosu) if(wskaznik_do_stosu==null) return -1; int returned_value=wskaznik_do_stosu->info; stack * t=wskaznik_do_stosu; wskaznik_do_stosu=wskaznik_do_stosu->previous; free(t); return returned_value; void wypisz_stos(stack * wskaznik_do_stosu) cout<<endl<<endl; stack *t=wskaznik_do_stosu; while(t!=null) cout<<" "<<endl; cout<<" "<<(t->info)<<" "<<endl; t=t->previous; cout<<" "<<endl;
4 Kolejka FIFO First In First Out Operacje: push_back (add, add_to_queue, enqueue ) - dodanie elementu na koniec kolejki pop_back (remove_from_queue, dequeue) usunięcie "obsłużenie" elementu z początku kolejki size - liczba elementów w kolejce first - wartość pierwszego elementu w kolejce last - wartość ostatniego elementu w kolejce
5 Implementacja tablicowa: int dane[5]; int ile; int glowa; int ogon; void push() if (ile>=5) cout << "Kolejka pelna!"; else if (ile==0) cout<<endl<< "PUSH (jaka liczbe wstawic do kolejki): "; cin>>dane[ogon]; ogon=ogon+1; ile=ile+1; else cout<<endl<< "PUSH (jaka liczbe wstawic do kolejki): "; cin>>dane[ogon]; ogon=(ogon+1)%5; ile=ile+1; void pop() if (ile==0) cout<<"kolejka jest pusta!"; else cout<<endl<<"pop - usuniecie z kolejki liczby: "<<dane[glowa]; glowa=(glowa+1)%5; ile=ile-1; void size() cout<<endl<<"liczba elementow w kolejce: "<<ile; void empty() if (ile==0) cout<<endl<<" kolejka jest pusta "; else cout<<endl<<" kolejka nie jest pusta "; Implementacja na zmiennych dynamicznych: ZADANIE DOMOWE DLA CHĘTNYCH!
6 Lista Operacje: push_front dodanie na początek push_back dodanie na koniec pop_front pobranie z początku pop_back pobranie z końca size rozmiar empty sprawdzenie, czy nie jest pusta remove usunięcie elementu (z początku, końca lub o podanym numerze) dodatkowo: sort - sortowanie reverse odwrócenie set ustawienie wartości elementu o podanym numerze add dodanie elementu po pozycji o danym numerze Implementacja praktycznie we wszystkich językach (STL::list w C++, ArrayList w Java.utils)
7 Drzewo binarne Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node). Dane przechowuje się w węzłach drzewa. Węzły są ze sobą powiązane w sposób hierarchiczny za pomocą krawędzi (ang. edge), które zwykle przedstawia się za pomocą strzałki określającej hierarchię. Pierwszy węzeł drzewa nazywa się korzeniem (ang. root node). Od niego "wyrastają" pozostałe węzły, które będziemy nazywać synami (ang. child node). Synowie są węzłami podrzędnymi w strukturze hierarchicznej. Synowie tego samego ojca są nazywani braćmi (ang. sibling node). Węzeł nadrzędny w stosunku do syna nazwiemy ojcem (ang. parent node). Ojcowie są węzłami nadrzędnymi w strukturze hierarchicznej. Jeśli węzeł nie posiada synów, to nazywa się liściem (ang. leaf node), w przeciwnym razie nazywa się węzłem wewnętrznym (ang. internal node, inner node, branch node). Struktura drzewa A...H węzły drzewa strzałki krawędzie. Zwrot określa kierunek hierarchii rodzić dziecko. A korzeń drzewa B,C,D bracia, synowie węzła A, który jest dla nich ojcem E,F,G bracia, synowie węzła B, który jest dla nich ojcem H syn węzła D, który jest dla niego ojcem A,B,D węzły wewnętrzne C,E,F,G,H liście
8 Za wyjątkiem korzenia wszystkie pozostałe węzły w drzewie posiadają swojego ojca. W normalnym drzewie liczba synów dla dowolnego węzła nie jest ograniczona. Istnieje jednakże bardzo ważna klasa drzew, w których dany węzeł może posiadać co najwyżej dwóch synów. Noszą one nazwę drzew binarnych (ang. binary tree). Ciąg węzłów połączonych krawędziami nazwiemy ścieżką (ang. path). Od korzenia do określonego węzła w drzewie wiedzie zawsze dokładnie jedna ścieżka prosta, tzn. taka, iż zawarte w niej węzły pojawiają się tylko jeden raz. Długością ścieżki (ang. path length) nazwiemy liczbę krawędzi łączących węzły w ścieżce. Dla naszego drzewa mamy następujące ścieżki proste od korzenia do kolejnych węzłów: Długość ścieżki prostej od korzenia do danego węzła nazywa się poziomem węzła (ang. node level). Korzeń drzewa ma zawsze poziom 0. W powyższym drzewie węzły B, C i D mają poziom 1, a E, F, G i H mają poziom 2. Wysokość drzewa (ang. tree height) jest równa największemu poziomowi węzłów (lub najdłuższej ścieżce rozpoczynającej się w korzeniu). Dla drzewa z przykładu wysokość jest równa 2. Wysokość węzła (ang. node height), to długość najdłuższej ścieżki od tego węzła do liścia. Dla korzenia wysokość węzła jest równa wysokości drzewa: Drzewo, w którym węzły mogą posiadać co najwyżej dwóch synów, nazywa się drzewem binarnym (ang. binary tree, B-tree). Węzły potomne nazywamy odpowiednio synem lewym (ang. left child node) i synem prawym (ang. right child node). Za pomocą drzew binarnych pomocą można odwzorować również drzewa, których węzły posiadają dowolną liczbę synów. IN-ORDER to zarówno postać drzewa jak i sposób chodzenia po drzewie. Drzewo IN-ORDER, to takie, dla którego dla dowolnego węzła, wszyscy lewi synowie mają wartości mniejsze niż wartość węzła a wszyscy prawi synowie mają wartości większe niż wartość węzła. Sposób przechodzenia drzewa IN-ORDER, to taki sposób, że rekurencyjnie najpierw odwiedzamy lewe poddrzewo, potem węzeł a następnie prawe poddrzewo
9 typedef struct drzewo int info; drzewo *lewo,*prawo; ; drzewo * dodaj_do_drzewa(drzewo *korzen, int liczba) if (korzen!=null) if (korzen->info >= liczba) korzen->lewo=dodaj_do_drzewa(korzen->lewo,liczba); else korzen->prawo=dodaj_do_drzewa(korzen->prawo,liczba); else korzen=(drzewo *)malloc(sizeof(drzewo)); korzen->info=liczba; korzen->lewo=null; korzen->prawo=null; return korzen; void wypisz_drzewo(drzewo *korzen) if (korzen==null) return; wypisz_drzewo(korzen->lewo); printf("%d\n",korzen->info); wypisz_drzewo(korzen->prawo); void usun_drzewo(drzewo *korzen) if (korzen==null) return; usun_drzewo(korzen->lewo); usun_drzewo(korzen->prawo); free(korzen); ;
10 Sterta(Kopiec) Kopiec inaczej zwany stogiem jest szczególnym przypadkiem drzewa binarnego, które spełnia tzw. warunek kopca tzn. każdy następnik jest niewiększy od swego poprzednika. Z warunku tego wynikają szczególne własności kopca: w korzeniu kopca znajduje się największy lub jeden z grupy największych o identycznej wartości, na ścieżkach (połączeniach między węzłami), od korzenia do liścia, elementy są posortowane nierosnąco Kopiec zupełny to kopiec będący zupełnym drzewem binarnym. Drzewo binarne jest zupełne wtedy gdy wszystkie poziomy z wyjątkiem ostatniego są całkowicie zapełnione a na ostatnim liście są spójnie ułożone od strony lewej do prawej. Sortownie przez kopiec: #define maxheapsize 50 using namespace std; int heap[maxheapsize],heapsize; void insert(int element) heap[heapsize] = element; int i = heapsize; while(heap[(i+1)/2-1] < element && i>0) heap[i] = heap[(i+1)/2-1]; i = (i+1)/2-1; heap[i] = element;
11 void heapify (int i) int largest; int l=2*(i+1)-1, r=(2*i)+2; if (l<heapsize && heap[l]>heap[i])largest=l; else largest=i; if (r<heapsize && heap[r]>heap[largest])largest=r; if (largest!=i) swap(heap[largest],heap[i]); heapify(largest); int main() ifstream dane("dane.csv"); string wiersz; while(getline(dane,wiersz)) cout<<wiersz<<endl; string s; stringstream ss(wiersz); while(getline(ss,s,';')) cout<<s<<endl; if(heapsize==0) heap[0]=atoi(s.c_str()); else insert(atoi(s.c_str())); heapsize++; int end=1; cout<<"drukuję KOPIEC"<<endl; for(int i=0;i<4;i++) for(int j=end-1;j<2*end-1;j++) cout<<heap[j]<<" ; "; cout<<endl; end*=2; cout<<"długość: "<<heapsize<<endl; int number_of_elements=heapsize; for (int i=heapsize-1;i>0;i--) swap(heap[i],heap[0]); heapsize--; heapify(0); cout<<"liczby Posortowane: "; for(int i= 0;i< number_of_elements;i++) cout<<heap[i]<<" "; return 0;
12 Tablica asocjacyjna Tablica asocjacyjna jest nazywana także tablicą skojarzeniową. Przechowuje ona dane parami, każdej wartości przyporządkowuje odpowiedni klucz. Aby uzyskać dostęp do danej wartości trzeba znać nazwę jej klucza. Najpopularniejsza implementacja : tablica mieszająca, ( haszująca ), mapa mieszająca Najpopularniejsze implementacje: STL (C++) klasa map Java klasa HashMap
Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów
Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).
Bardziej szczegółowoWysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoStruktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoListy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoDynamiczne struktury danych
Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoKurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016
Wykład 9 28 kwiecień 2016 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa
Bardziej szczegółowodr inż. Paweł Myszkowski Wykład nr 11 ( )
dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:
Bardziej szczegółowoKurs programowania. Wykład 9. Wojciech Macyna
Wykład 9 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa zbiór, lista czy
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoAlgorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowoWykład 5 Wybrane zagadnienia programowania w C++ (c.d.)
Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Bardziej szczegółowoWykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
Bardziej szczegółowoProgramowanie i struktury danych
Programowanie i struktury danych 1 / 30 STL Standard Template Library, STL (ang. = Standardowa Biblioteka Wzorców) biblioteka C++ zawierająca szablony (wzorce), które umożliwiają wielokrotne użycie. Główne
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Bardziej szczegółowoPrzypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Bardziej szczegółowoliniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:
Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za
Bardziej szczegółowoProgramowanie w C++ Wykład 6. Katarzyna Grzelak. 1 kwietnia K.Grzelak (Wykład 6) Programowanie w C++ 1 / 43
Programowanie w C++ Wykład 6 Katarzyna Grzelak 1 kwietnia 2019 K.Grzelak (Wykład 6) Programowanie w C++ 1 / 43 Pojęcia z poprzednich wykładów Tablica to ciag obiektów tego samego typu, zajmujacy ciagły
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych
Bardziej szczegółowoWSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo
Bardziej szczegółowoKiedy potrzebne. Struktura (rekord) Struktura w języku C# Tablice struktur. struktura, kolekcja
1 struktura, kolekcja Kiedy potrzebne Duża liczba danych takiego samego typu tablice a jak nieznana liczba elementów? dane zawierające wartości różnego typu (osoba: pesel, nazwisko, rok urodzenia, pracuje/niepracuje,
Bardziej szczegółowododatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoAlgorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych
Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy
Bardziej szczegółowoWykład 4. Klasa List Kolejki Stosy Słowniki
Wykład 4 Klasa List Kolejki Stosy Słowniki Klasa List Poważną niedogodnością tablic jako kolekcji danych jest fakt, że muszą one mieć stały rozmiar. Programista musi wiedzieć z góry ile miejsca powinien
Bardziej szczegółowoSTRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew
STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,
Bardziej szczegółowoProgramowanie w C++ Wykład 7. Katarzyna Grzelak. 23 kwietnia K.Grzelak (Wykład 7) Programowanie w C++ 1 / 40
Programowanie w C++ Wykład 7 Katarzyna Grzelak 23 kwietnia 2018 K.Grzelak (Wykład 7) Programowanie w C++ 1 / 40 Standard Template Library (STL) K.Grzelak (Wykład 7) Programowanie w C++ 2 / 40 C++ Templates
Bardziej szczegółowoSortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoINFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra
INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoProgramowanie obiektowe i C++ dla matematyków
Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... 22 XI 2011 Uwaga! Ponieważ już sobie powiedzieliśmy np. o wskaźnikach i referencjach, przez które nie chcemy przegrzebywać
Bardziej szczegółowoDla każdej operacji łącznie tworzenia danych i zapisu ich do pliku przeprowadzić pomiar czasu wykonania polecenia. Wyniki przedstawić w tabelce.
Przygotować program tworzący tablicę dwuwymiarową zawierającą zestawy 10 2, 10 4, 10 6 liczb losowych zmiennoprzecinkowych. Korzystając z funkcji bibliotecznych uporządkować zawartość każdego (a) wiersza
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoJava Collections Framework
Java Collections Framework Co to jest Java Collections Framework JCF Zunifikowana architektura do reprezentacji i manipulacji kolekcjami danych. Składa się z: Interfejsów Definuje abstrakcyjne typy możliwych
Bardziej szczegółowoWYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5
WYKŁAD 10 Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 Tomasz Zieliński ZMIENNE O ZŁOŻONEJ BUDOWIE (1) Zmienne
Bardziej szczegółowoStruktury danych (I): kolejka, stos itp.
Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Struktury danych (I): kolejka, stos itp. Struktury danych (I): kolejka, stos itp. Struktura danych stanowi sposób uporządkowania
Bardziej szczegółowoProgramowanie w języku Java. Kolekcje
Programowanie w języku Java Kolekcje Definicja Kolekcja to obiekt, który grupuje elementy danych (inne obiekty) i pozwala traktować je jak jeden zestaw danych, umożliwiając jednocześnie wykonywanie na
Bardziej szczegółowoAbstrakcyjne struktury danych - stos, lista, drzewo
Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Bardziej szczegółowoStruktury dynamiczne
Struktury dynamiczne lista jednokierunkowa lista dwukierunkowa lista cykliczna stos kolejka drzewo Ich wielkość i stopień złożoności zmieniają się w czasie. Struktury dynamiczne oparte są o struktury (struct).
Bardziej szczegółowoRekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Bardziej szczegółowoDrzewa wyszukiwań binarnych (BST)
Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.
Bardziej szczegółowoWykład 8 - Drzewa i algorytmy ich przetwarzania
Algorytmy i struktury danych Wykład 8 - Drzewa i algorytmy ich przetwarzania Janusz Szwabiński Plan wykładu: Przykłady drzew Pojęcia i definicje Reprezentacje drzew Drzewa wyprowadzenia (ang. parse trees)
Bardziej szczegółowoUniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Bardziej szczegółowoLaboratorium z przedmiotu Programowanie obiektowe - zestaw 04
Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych kolekcji. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowoLista liniowa dwukierunkowa
53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Abstrakcyjne struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Bardziej szczegółowoWykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowo. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019
.. Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2019 1 / 39 Plan.1 Wstęp.2 Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz.3.4 Zmiany w
Bardziej szczegółowoE S - uniwersum struktury stosu
Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów
Bardziej szczegółowoWyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna
Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowoSTL: kontenery. Typy kontenerów STL. STL: kontenery. STL: kontenery. STL: kontenery. Typy kontenerów STL. deque (double-ended queue) list
Kontenery sekwencyjne: deque (kolejka dwustronna) deque (double-ended queue) implementacja kontenera zoptymalizowana pod kątem efektywności operacji dołączania i usuwania elementów z sekwencji na obu jej
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoProgramowanie i struktury danych
Programowanie i struktury danych 1 / 19 Dynamiczne struktury danych Dynamiczną strukturą danych nazywamy taka strukturę danych, której rozmiar, a więc liczba przechowywanych w niej danych, może się dowolnie
Bardziej szczegółowoPodstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny
Wykład nr 2 2/6 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Plan wykładu nr 2 Argumenty funkcji main Dynamiczne struktury danych
Bardziej szczegółowoMetody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/
Bardziej szczegółowoPojemniki Pojemnik to obiekt, którego zadaniem jest przechowywanie innych obiektów.
1 Wstęp Biblioteka standardowa C++ Wejście/wyjście (iostream) Napisy (string) Napisy jako strumienie (sstream) STL Standard Template Library Pojemniki (kolekcje) Iteratory (wyliczanie elementów) Algorytmy
Bardziej szczegółowoPoprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Bardziej szczegółowoDrzewa czerwono-czarne.
Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric
Bardziej szczegółowoPODSTAWY INFORMATYKI wykład 6.
PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,
Bardziej szczegółowoPodstawy informatyki 2
Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main
Bardziej szczegółowoProgramowanie obiektowe i C++ dla matematyków
Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... X 0 Typy złożone Oczywiście w C++ możemy definiować własne typy złożone (struktury i klasy), tak jak w Pascalu poprzez
Bardziej szczegółowoStruktury. Przykład W8_1
Struktury Struktury pozwalają na grupowanie zmiennych różnych typów pod wspólną nazwą. To istotnie ułatwia organizacje danych, które okazują się w jednym miejscu kodu programu. To jest bardzo ważne dla
Bardziej szczegółowoWykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Bardziej szczegółowoINFORMATYKA DANE.
INFORMATYKA DANE http://www.infoceram.agh.edu.pl DANE Dane to zbiory liczb, znaków, sygnałów, wykresów, tekstów, itp., które mogą być przetwarzane. Pojęcie danych jest relatywne i istnieje tylko razem
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoStruktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:
Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo
Bardziej szczegółowoProgramowanie i struktury danych 1 / 44
Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje
Bardziej szczegółowoWykłady opracowane zostały w oparciu o materiały prof. dr hab. Jerzego Weresa. Poznań 2009/2010 Algorytmy i struktury danych Krzysztof Nowakowski 2
Wykłady opracowane zostały w oparciu o materiały prof. dr hab. Jerzego Weresa Poznań 2009/2010 Algorytmy i struktury danych Krzysztof Nowakowski 2 Struktura danych (ang. data structure) sposób uporządkowania
Bardziej szczegółowoZofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Bardziej szczegółowoAbstrakcyjne struktury danych w praktyce
Abstrakcyjne struktury danych w praktyce Wykład 13 7.4 notacja polska A.Szepietowski Matematyka dyskretna rozdział.8 stos kompilacja rozłączna szablony funkcji Przypomnienie Drzewo binarne wyrażenia arytmetycznego
Bardziej szczegółowoBiblioteka standardowa C++
Biblioteka standardowa C++ Wejście/wyjście (iostream) Napisy (string) Napisy jako strumienie (sstream) STL Standard Template Library Pojemniki (kolekcje) Iteratory (wyliczanie elementów) Algorytmy (sortowanie,
Bardziej szczegółowoAlgorytmy i Struktury Danych, 9. ćwiczenia
Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące
Bardziej szczegółowoKażdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.
Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące
Bardziej szczegółowoProgramowanie w C++ Wykład 5. Katarzyna Grzelak. 16 kwietnia K.Grzelak (Wykład 1) Programowanie w C++ 1 / 27
Programowanie w C++ Wykład 5 Katarzyna Grzelak 16 kwietnia 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 27 Pojęcia z poprzednich wykładów Tablica to ciag obiektów tego samego typu, zajmujacy ciagły
Bardziej szczegółowoWstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Zasada dziel i rządź i analiza złożoności 1 Zasada dziel i rządź i analiza złożoności Definition : Zbiór wartości: nieograniczonej
Bardziej szczegółowoLista, Stos, Kolejka, Tablica Asocjacyjna
Lista, Stos, Kolejka, Tablica Asocjacyjna Listy Lista zbiór elementów tego samego typu może dynamicznie zmieniać rozmiar, pozwala na dostęp do poszczególnych elementów Typowo dwie implementacje: tablicowa,
Bardziej szczegółowoDrzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Bardziej szczegółowoKontenery i iteratory. Wykorzystanie kontenerów w praktyce.
Instrukcja laboratoryjna nr 2 Programowanie w języku C 2 (C++ poziom zaawansowany) Kontenery i iteratory. Wykorzystanie kontenerów w praktyce. dr inż. Jacek Wilk-Jakubowski mgr inż. Maciej Lasota dr inż.
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Podstawowe struktury danych, cd. Wykład na podstawie ksiażki Roberta Sedgewicka i Kevina Wayne: Algorithms. Furth Edition. Princeton University dr hab. Bożena Woźna-Szcześniak
Bardziej szczegółowoWykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoWstęp do programowania
wykład 10 Agata Półrola Wydział Matematyki i Informatyki UŁ semestr zimowy 2018/2019 Przesyłanie argumentów - cd Przesyłanie argumentów do funkcji - tablice wielowymiarowe Przekazywanie tablic wielowymiarowych
Bardziej szczegółowoAby uzyskać zaliczenie w pierwszym terminie (do 30 stycznia 2018) rozliczyć trzeba co najmniej 8 projektów, po 4 z każdej z części: C++ oraz Python.
Aby uzyskać zaliczenie w pierwszym terminie (do 30 stycznia 2018) rozliczyć trzeba co najmniej 8 projektów, po 4 z każdej z części: C++ oraz Python. Pliki z rozwiązaniami projektu (wszystkie polecenia
Bardziej szczegółowoStruktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:
Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo
Bardziej szczegółowoProgramowanie Obiektowo Zorientowane w języku C++ Biblioteka STL
Programowanie Obiektowo Zorientowane w języku C++ Biblioteka STL Mirosław Głowacki 1 1 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Ktrakowie Wydział Inżynierii Metali i Informatyki Stosowanej
Bardziej szczegółowo