0-0000, , , itd

Wielkość: px
Rozpocząć pokaz od strony:

Download "0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001."

Transkrypt

1 KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych algorytmu, ale także o dobrą złożoność pamięciową algorytmu. Ale co zrobić, jeśli to dane są bardzo duże? Jak je przechowywać w pamięci komputera? I tu przychodzą nam z pomocą techniki kompresji danych, tzn. metody kodowania danych w takiej postaci, która pozwala zapisać ten sam zbiór informacji wykorzystując dużo mniej miejsca. Oczywiście, zależy nam tylko na takich metodach, które pozwalają szybko zakodować dane, oraz szybko i jednoznacznie odkodować zakodowaną informację. Przykład 1 Przypuśćmy, że pewien zbiór danych zawiera 10 6 znaków. Jeśli każdy z tych znaków jest reprezentowany przez liczbę z przedziału 0-255, to na zapisanie jednego znaku musimy zużyć 8 bitów (256 = 2 8 ). Wynika stąd, że na zapisanie całego pliku zużyjemy bitów. Gdybyśmy jednak mieli dodatkową informację, np. że w danych występują jedynie cyfry od 0 do 9, to moglibyśmy na znak przeznaczyć tylko 4 bity co pozwoliłoby zakodować cały zbiór na bitach. Przyporządkowanie znakom kodu mogłoby wyglądać np. tak: , , , itd Dekodowanie zakodowanego pliku jest, przy takim kodzie, banalnie proste: odczytujemy kolejne cztery bity (słowo kodowe) i w słowniczku sprawdzamy jaki to znak. Na przykład, ciąg bitów jest kodem liczby Ponieważ słownik składa się tylko z dziesięciu elementów, więc w najgorszym razie odszukanie jednego znaku wymagać będzie porównania z dziesięcioma słowami kodowymi. Nie musimy jednak przeszukiwać słownika sekwencyjnie. Przedstawmy zbiór słów kodowych w postaci drzewa binarnego (drzewa kodowego), w którego liściach przechowywane są kodowane znaki, a każde przejście w lewo odpowiada bitowi 0, a przejście w prawo- bitowi 1. W ten sposób każda ścieżka od korzenia do liścia odpowiada słowu kodującemu znak zapamiętany w liściu, por. rysunek

2 Definicja 1 Sposób kodowania, w którym na każdy znak przeznaczamy taką samą liczbę bitów nazywamy kodem stałej długości. Pytanie: Ile bitów trzeba przeznaczyć na zakodowanie tekstu złożonego z 10 7 znaków, jeśli użyto kodu o stałej długości, a tekst składa się tylko z liczb naturalnych oddzielonych przecinkami lub spacjami, oraz z liter x, y, z? (odp: 4 bity razem 4*10^7) Zauważmy, że w przykładzie 2.1 niektóre liście drzewa kodowego nigdy nie będą potrzebne, bo ciąg bitów prowadzący do nich, nigdy nie wystąpi w zakodowanym tekście. Na przykład ciąg 1111 nie jest kodem żadnego ze znaków tego tekstu, więc nie wystąpi w zakodowanym tekście. Co więcej, gdyby cyfry 9 i 8 występowały w tekście tylko niewielką liczbę razy, to i tak do ich zakodowania użyjemy aż 4 bitów. Czy to nie jest marnotrawstwo? A może zrezygnować ze stałej długości kodu i długość kodu uzależnić od częstości występowania tego znaku w kodowanym tekście. Zasada jest prosta: znakom, które występują często przypisujemy krótkie kody. Wynika stąd, że kody będą miał różne długości. Definicja 2.2 Sposób kodowania, w którym znakom przypisujemy różne długości nazywamy kodem zmiennej długości. Przykład 2 Niech w danym pliku, cyfry 0 i 1 występują razy, a pozostałe cyfry jedynie po razy. Wtedy plik zawierający 10 7 znaków można zakodować używając tylko bitów, stosując kod 00 dla cyfry 0, 01 dla cyfry 1 oraz czterobitowe kody dla cyfr 2, 3,..., 8, 9. Liczba bitów potrzebna do zakodowania tekstu, dla którego znamy częstości występowania znaków, wynosi Σ a Α f(a) dt(a), gdzie f(a) jest częstością występowania znaku a, a dt(a) jest długością kodu dla znaku a. Problem, który się teraz pojawia, to jak zbudować kod uzależniający długość kodu od częstości występowania znaków, w taki sposób, by można go było jednoznacznie odczytać (dekodować). Warunek ten spełniają kody prefiksowe. Definicja 2.3 Kod posiadający własność, że żadne słowo kodowe nie jest prefiksem żadnego innego słowa kodowego, nazywa się kodem prefiksowym, dokładniej nie istnieją dwa słowa kodowe, że a=(a 1,...,a n ) i b= (b 1,..., b m ) takie że n<m oraz a 1 =b 1, a 2 =b 2,..., a n =b n. Kody prefiksowe są bardzo wygodne, gdyż dekodowanie jest niezwykle proste: odczytujemy pierwsze słowo kodowe znajdujące się na początku zakodowanego tekstu i usuwamy go. Ponieważ żadne słowo kodowe nie jest prefiksem innego słowa, więc to pierwsze słowo jest jednoznacznie wyznaczone. Po jego usunięciu postępowanie możemy powtórzyć. Identyfikację słowa znakomicie upraszcza reprezentacja kodu w postaci drzewa binarnego (drzewa kodowego), por. przykład

3 Twierdzenie 1.1 Jeśli istnieje optymalne kodowanie, to zawsze można znaleźć kod prefiksowy, który go realizuje. Uwaga Optymalny kod jest zawsze reprezentowany przez lokalnie pełne drzewo binarne, por. wykład V, definicja 1.1. Zatem, jeśli dany jest alfabet A, to drzewo optymalnego kodu ma A liści oraz dokładnie A -1 wierzchołków wewnętrznych. Pytanie: Ile bitów wymaga kod stałej długości, a ile kod zmiennej długości, dla zakodowania tekstu złożonego z 1000 znaków, w którym występuje 8 różnych znaków, a każdy z taką samą częstością? (odp: 3000 bitów w obu przypadkach) Konstrukcja drzewa kodowego Huffmana Konstrukcję optymalnego kodu prefiksowego zaproponował David Huffman. W tym punkcie wykładu przedstawimy metodę budowy drzewa kodowego dla optymalnego kodu prefiksowego Huffmana. Drzewo kodowe Huffmana jest drzewem binarnym, lokalnie pełnym. W każdym wierzchołku wewnętrznym tego drzewa pamiętamy sumę częstości znaków występujących w poddrzewach tego wierzchołka. Każdy wierzchołek drzewa będzie więc miał, oprócz referencji do lewego i prawego poddrzewa, atrybut f, oznaczający częstość występowania znaku lub grupy znaków odpowiadających drzewu o korzeniu w tym węźle. W liściach będą pamiętane dodatkowo znaki kodowanego alfabetu. Do zapamiętania alfabetu oraz wierzchołków tworzonego drzewa, algorytm Huffmana używa kolejki priorytetowej. Budowanie algorytmu 1. Utwórz kolejkę priorytetową pq zawierającą węzły tworzonego drzewa. Początkowo elementami kolejki są liście drzewa. Porządek elementów w kolejce priorytetowej zależy od częstości przypisanej znakom. 2. Drzewo kodowe buduje się od dołu, od liści, które są traktowane jako drzewa z jednym tylko węzłem. W każdym kroku algorytmu, zamiast kolejnych dwóch wierzchołków, których częstości są najmniejsze, wstawiamy do kolejki priorytetowej pq nowy węzeł, którego etykietą jest suma częstości przypisanych usuniętym węzłom. Punkt 2 powtarzamy, tak długo, aż w kolejce priorytetowej pozostanie tylko jeden element. Będzie to korzeń drzewa kodowego. Algorytm Huffmana można zaimplementować na wiele sposobów, które zależą od konkretnej implementacji kolejki priorytetowej. Jedną z możliwości, jest użycie kopca zaimplementowanego w tablicy. Opracowanie szczegółów tego algorytmu pozostawiamy Czytelnikowi jako ćwiczenie. Zwróćmy uwagę, że algorytm Huffmana w pewnych przypadkach może działać niejednoznacznie, w tym sensie, że jeśli częstości występowania dwóch grup znaków są takie same, to wybór kolejności odpowiadających im węzłów można ustalić dowolnie, gdyż nie ma on wpływu na długość otrzymanego kodu, ale drzewa kodowe mogą się różnić. 3

4 Koszt algorytmu Algorytm rozpoczynamy od utworzenia kolejki priorytetowej, której elementami są liście tworzonego drzewa kodowego. Koszt utworzenia tej kolejki, o ile zastosujemy algorytm konstrukcji kopca w tablicy, wynosi O(n), gdzie n jest liczbą znaków kodowanego alfabetu. W drugiej części algorytmu konstruujemy drzewo. Zauważmy, że po n-1 krokach, gdzie n jest liczbą znaków kodowanego alfabetu, kolejka zawiera tylko jeden węzeł. Rzeczywiście, w każdej iteracji, z kolejki są wyjmowane dwa elementy i wstawiany jeden nowy węzeł. Oznacza to, że po każdej iteracji liczba elementów zmniejsza się o jeden. Jeśli kolejka priorytetowa została zaimplementowana jako kopiec, to każda z wykonywanych w pętli operacji kosztuje O(lg n) porównań. Wynika stąd, że koszt wykonania pętli "for" możemy oszacować z góry przez O(n lg n). Ostatecznie, koszt całego algorytmu możemy oszacować przez O(n lg n). Uwaga Algorytm Huffmana jest algorytmem zachłannym w tym sensie, że w każdym kroku wybiera węzły o najmniejszej częstości. Twierdzenie 4.1 Algorytm HuffmanKod buduje drzewo optymalnego kodu prefiksowego. Przykład Przyjmijmy, że w pewnym tekście występują tylko litery A, F, H, M, N, U, a ich częstości występowania w tysiącach wynoszą odpowiednio:40,8,9,11,7,25. Kolejne fazy działania algorytmu Huffmana przedstawiono na rysunku

5 Z otrzymanego drzewa kodowego łatwo odczytujemy kody liter A - 0, F , H , M , N , U Ciąg jest kodem słowa HUFFMAN. Pytani: Czy koszt algorytmu Huffmana zmieni się, jeśli zamiast struktury kopca, użyjemy tablicy uporządkowanej za pomocą optymalnego algorytmu sortowania, a wstawianie nowego węzła do tablicy zrealizujemy tak jak w algorytmie InsertionSort? (odp. Tak) Zadania: Napisz algorytm, który mając dane drzewo kodowe, odczytuje zakodowany tekst. Dla danego tekstu, wypisz ciąg znaków alfabetu, z którego jest on zbudowany, wraz z częstością występowania wszystkich znaków. (a) Na podstawie danego drzewa kodowego zbuduj "słowniczek" kodów w postaci tablicy. (b) Na podstawie danej tablicy kodów (słowniczka), zbuduj drzewo kodowe. Zaproponuj rekurencyjną procedurę budowy drzewa kodowego Huffmana. Napisz implementację algorytmu konstrukcji drzewa Huffmana używając kopca, jako implementacji kolejki priorytetowej. Znajdź optymalny kod Huffmana dla znaków a 1,... a n, jeśli ich częstości są określone rekurencyjnie a 1 = a 2 =1, a i+1 = a i + a i-1. 5

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Cel ćwiczenia lgorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Kompresja Ćwiczenie ma na celu

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY CZĘŚĆ II PRZYKŁADOWY ZESTAW ZADAŃ. Czas pracy 150 minut

INFORMATYKA POZIOM ROZSZERZONY CZĘŚĆ II PRZYKŁADOWY ZESTAW ZADAŃ. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoły OKE JAWORZNO CKE INFORMATYKA POZIOM ROZSZERZONY CZĘŚĆ II PRZYKŁADOWY ZESTAW ZADAŃ Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Struktury danych 1.1 Listy, stosy i kolejki Lista to uporz adkowany ci ag elementów. Przykładami list s a wektory lub tablice

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów

Bardziej szczegółowo

Scenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby

Scenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby Scenariusz zajęć Moduł VI Projekt Gra logiczna zgadywanie liczby Moduł VI Projekt Gra logiczna zgadywanie liczby Cele ogólne: przypomnienie i utrwalenie poznanych wcześniej poleceń i konstrukcji języka

Bardziej szczegółowo

Windows Commander (WinCmd)

Windows Commander (WinCmd) Windows Commander (WinCmd) Windows Commander jest wygodnym i funkcjonalne narzędziem do zarządzania plikami. Stanowi on pewną konkurencję do Eksploratora Windows. Okno główne programu WinCmd składa się

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych: Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym

Bardziej szczegółowo

AKD Metody słownikowe

AKD Metody słownikowe AKD Metody słownikowe Algorytmy kompresji danych Sebastian Deorowicz 2009 03 19 Sebastian Deorowicz () AKD Metody słownikowe 2009 03 19 1 / 38 Plan wykładu 1 Istota metod słownikowych 2 Algorytm Ziva Lempela

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z INFORMATYKI MIN-R2A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Zadania przykładowe do kolokwium z AA2

Zadania przykładowe do kolokwium z AA2 1 Zadania przykładowe do kolokwium z AA2 Zadanie 1 Dla tekstu ALA MA KOTA ALE ON MA ALERGIĘ zilustruj działanie algorytmów: a) LZ77, b) LZ78, c) LZSS. Załóż, że maksymalna długość dopasowania to 4, rozmiar

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Temat 5. 20 pytań Teoria informacji

Temat 5. 20 pytań Teoria informacji Temat 5 20 pytań Teoria informacji Streszczenie Ile informacji znajduje się w tysiącstronicowej książce? Czy więcej informacji znajduje się w książce telefonicznej, na 1000 stron tradycyjnych wydruków

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Streszczenie Komputery do przechowywania rysunków, zdjęć i innych obrazów używają tylko liczb. Te zajęcia mają ukazać w jaki sposób to robią.

Streszczenie Komputery do przechowywania rysunków, zdjęć i innych obrazów używają tylko liczb. Te zajęcia mają ukazać w jaki sposób to robią. Temat 2 Kolory jako liczby Kodowanie obrazów Streszczenie Komputery do przechowywania rysunków, zdjęć i innych obrazów używają tylko liczb. Te zajęcia mają ukazać w jaki sposób to robią. Wiek 7 i więcej

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

2 Zarówno zanonimizowany zbiór danych ilościowych, jak i opis jego struktury powinny mieć format csv:

2 Zarówno zanonimizowany zbiór danych ilościowych, jak i opis jego struktury powinny mieć format csv: Zbiór danych ilościowych: 1 Na każdą "bazę danych" składa się zanonimizowany zbiór danych ilościowych zebranych w badaniu oraz opis jego struktury (codebook). 2 Zarówno zanonimizowany zbiór danych ilościowych,

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Stosy, kolejki i drzewa 1.1 Listy Lista to uporządkowany ciąg elementów. Przykładami list są tablice jednowymiarowe. W tablicach

Bardziej szczegółowo

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład II Reprezentacja danych w technice cyfrowej 1 III. Reprezentacja danych w komputerze Rodzaje danych w technice cyfrowej 010010101010 001010111010

Bardziej szczegółowo

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat

Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Opracował Jan T. Biernat Programowanie Strukturalne i Obiektowe Słownik podstawowych pojęć 1 z 5 Program, to lista poleceń zapisana w jednym języku programowania zgodnie z obowiązującymi w nim zasadami. Celem programu jest przetwarzanie

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Wprowadzenie do programowania

Wprowadzenie do programowania do programowania ITA-104 Wersja 1 Warszawa, Wrzesień 2009 ITA-104 do programowania Informacje o kursie Zakres tematyczny kursu Opis kursu Kurs przeznaczony jest do prowadzenia przedmiotu do programowania

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza

Bardziej szczegółowo

11. PROFESJONALNE ZABEZPIECZENIE HASŁEM

11. PROFESJONALNE ZABEZPIECZENIE HASŁEM 11. PROFESJONALNE ZABEZPIECZENIE HASŁEM Tworząc róŝne panele administratora jesteśmy naraŝeni na róŝne ataki osób ciekawskich. W tej lekcji dowiesz się, jak zakodować hasło i, jak obronić się przed potencjalnym

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Formalne podstawy informatyki Rok akademicki: 2013/2014 Kod: EIB-1-220-s Punkty ECTS: 2 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Ćwiczenie: JavaScript Cookies (3x45 minut)

Ćwiczenie: JavaScript Cookies (3x45 minut) Ćwiczenie: JavaScript Cookies (3x45 minut) Cookies niewielkie porcje danych tekstowych, które mogą być przesyłane między serwerem a przeglądarką. Przeglądarka przechowuje te dane przez określony czas.

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2 Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

Cechy formatu PNG Budowa bloku danych Bloki standardowe PNG Filtrowanie danych przed kompresją Wyświetlanie progresywne (Adam 7)

Cechy formatu PNG Budowa bloku danych Bloki standardowe PNG Filtrowanie danych przed kompresją Wyświetlanie progresywne (Adam 7) mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 5, strona 1. PNG (PORTABLE NETWORK GRAPHICS) Cechy formatu PNG Budowa bloku danych Bloki standardowe PNG Filtrowanie danych przed kompresją Wyświetlanie

Bardziej szczegółowo

Opis usługi płatności masowych aktualnie zaimplementowanej u Zamawiającego

Opis usługi płatności masowych aktualnie zaimplementowanej u Zamawiającego Załącznik nr 5 do SIWZ Opis usługi płatności masowych aktualnie zaimplementowanej u Zamawiającego Zasada działania Funkcjonalność obsługi płatności masowych przychodzących oparta jest na najnowszych standardach

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe

Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe Podstawy programowania Wykład II PASCAL - podstawy składni i zmienne, - instrukcje wyboru, - iteracja, - liczby losowe 1 I. Składnia Składnia programu Program nazwa; Uses biblioteki; Var deklaracje zmiennych;

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

Kilka bardziej złożonych zadań z informatyki. I. Podczas wyszukiwania plików i folderów często stosujemy symbole wieloznaczne.

Kilka bardziej złożonych zadań z informatyki. I. Podczas wyszukiwania plików i folderów często stosujemy symbole wieloznaczne. Kilka bardziej złożonych zadań z informatyki. I. Podczas wyszukiwania plików i folderów często stosujemy symbole wieloznaczne. 1 Zapis *.* oznacza: a) pliki mające określoną długość nazwy i dowolne rozszerzenie

Bardziej szczegółowo

Algorytmy odkrywania binarnych reguł asocjacyjnych

Algorytmy odkrywania binarnych reguł asocjacyjnych Algorytmy odkrywania binarnych reguł asocjacyjnych A-priori FP-Growth Odkrywanie asocjacji wykład 2 Celem naszego wykładu jest zapoznanie się z dwoma podstawowymi algorytmami odkrywania binarnych reguł

Bardziej szczegółowo

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder Algorytmy Kompresji Danych Laboratorium Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder 1. Zapoznać się z opisem implementacji kodera entropijnego range coder i modelem danych opracowanym dla tego

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

Podstawy pracy z edytorem tekstu. na przykładzie Open Office

Podstawy pracy z edytorem tekstu. na przykładzie Open Office Podstawy pracy z edytorem tekstu na przykładzie Open Office inż. Krzysztof Głaz krzysztof.glaz@gmail.com http://krzysztofglaz.eu.org Wprowadzenie Dokument ten został napisany jako pomoc dla osób, które

Bardziej szczegółowo

Lista zadań. Babilońska wiedza matematyczna

Lista zadań. Babilońska wiedza matematyczna Lista zadań Babilońska wiedza matematyczna Zad. 1 Babilończycy korzystali z tablicy dodawania - utwórz w arkuszu kalkulacyjnym EXCEL tablicę dodawania liczb w układzie sześćdziesiątkowym, dla liczb ze

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Algorytmy i język C++

Algorytmy i język C++ Wykład 6 Wskaźniki Wskaźnik nie przechowuje wartości zmiennej ale, podobnie jak tablica, wskazuje miejsce w pamięci, w którym znajduje się zmienna danego typu. W poniższym przykładzie symbol * pomiędzy

Bardziej szczegółowo

Zadanie: FIL Ścieżki. Wejście. polish. BOI 2015, dzień 2. Dostępna pamięć: 256 MB. 1.05.2015

Zadanie: FIL Ścieżki. Wejście. polish. BOI 2015, dzień 2. Dostępna pamięć: 256 MB. 1.05.2015 Zadanie: FIL Ścieżki polish BOI 2015, dzień 2. Dostępna pamięć: 256 MB. 1.05.2015 Bajtazar uwielbia życie na krawędzi: zamiast łatać dziury bezpieczeństwa swoich systemów, blokuje IP hakerów; wysyła rozwiązania

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu. Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Instrukcja pomocnicza do laboratorium z przedmiotu Programowalne Struktury

Bardziej szczegółowo

Wojna morska algorytmy przeszukiwania

Wojna morska algorytmy przeszukiwania Temat 6 Wojna morska algorytmy przeszukiwania Streszczenie Wyszukiwanie informacji w wielkich zbiorach danych wymagają często użycia komputerów. Wymaga to ciągłego doskonalenia szybkich i efektywnych metod

Bardziej szczegółowo

Program testujący powinien testować możliwości wszystkich klas posiadających minimum jedną metodę, zastosowania STL-a i obsługę sytuacji wyjątkowych.

Program testujący powinien testować możliwości wszystkich klas posiadających minimum jedną metodę, zastosowania STL-a i obsługę sytuacji wyjątkowych. Zadanie 1: Statki : Stworzyć prostą grę w statki dla dwóch graczy w trybie graficznym, wykorzystując bibliotekę ncurses. 1. możliwość grania jednocześnie dwóch graczy 2. możliwość konfiguracji rozmiaru

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Test z wiedzy informatycznej

Test z wiedzy informatycznej 1. Jaka komenda w systemie Windows XP wywoła wiersz poleceń? 2. Jakim poleceniem wpisanym w wierszu poleceń można sprawdzić bieżący stan dysku? 3. Napisz polecenie sprawdzające, czy na dysku D, w folderze

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors.

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Wykład 3 ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Waldi Ravens J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 75 / 146 deklaracje zmiennych instrukcja podstawienia

Bardziej szczegółowo

SIGMA KWADRAT. Wykorzystanie programu MS Excel do opracowań statystycznych CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Wykorzystanie programu MS Excel do opracowań statystycznych CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Wykorzystanie programu MS Excel do opracowań statystycznych PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Przegląd podstawowych funkcji Excel.

Przegląd podstawowych funkcji Excel. Przegląd podstawowych funkcji Excel. Spis treści I. Funkcje tekstu oraz pomocnicze... 1 1. FRAGMENT.TEKSTU(tekst;liczba_początkowa;liczba_znaków... 1 2. LEWY(tekst;liczba_znaków)... 2 3. Prawy (tekst;liczba_znaków)...

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ II MAJ 2014 WYBRANE: Czas pracy: 150 minut. Liczba punktów do uzyskania: 30 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ II MAJ 2014 WYBRANE: Czas pracy: 150 minut. Liczba punktów do uzyskania: 30 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

1. 2. Dobór formy do treści dokumentu w edytorze tekstu MS Word

1. 2. Dobór formy do treści dokumentu w edytorze tekstu MS Word 1. 2. Dobór formy do treści dokumentu w edytorze tekstu MS Word a. 1. Cele lekcji i. a) Wiadomości 1. Uczeń potrafi wyjaśnić pojęcia: nagłówek, stopka, przypis. 2. Uczeń potrafi wymienić dwie zasadnicze

Bardziej szczegółowo

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

KLASA 1 i 2. Rozdział I

KLASA 1 i 2. Rozdział I KLASA 1 i 2 Rozdział I - zna przepisy i regulaminy obowiązujące w pracowni komputerowej, - zna cele nauczania informatyki, w tym procedury egzaminu maturalnego, - zna systemy zapisu liczb oraz działania

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Uwagi dotyczące techniki pisania pracy

Uwagi dotyczące techniki pisania pracy Uwagi dotyczące techniki pisania pracy Każdy rozdział/podrozdział musi posiadać przynajmniej jeden akapit treści. Niedopuszczalne jest tworzenie tytułu rozdziału którego treść zaczyna się kolejnym podrozdziałem.

Bardziej szczegółowo