ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW"

Transkrypt

1 ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI

2 Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4

3 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy z zadanym prawdopodobieństwem, że zawiera nieznany parametr populacji.

4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy z zadanym prawdopodobieństwem, że zawiera nieznany parametr populacji. Parametrami populacji, których estymacja będziemy się zajmować sa: średnia, wariancja i frakcja.

5 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy z zadanym prawdopodobieństwem, że zawiera nieznany parametr populacji. Parametrami populacji, których estymacja będziemy się zajmować sa: średnia, wariancja i frakcja. Z przedziałem ufności zwiazany jest poziom ufności 1 α, określajacy prawdopodobieństwo tego, że przedział ufności rzeczywiście zawiera interesujacy nas parametr.

6 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy z zadanym prawdopodobieństwem, że zawiera nieznany parametr populacji. Parametrami populacji, których estymacja będziemy się zajmować sa: średnia, wariancja i frakcja. Z przedziałem ufności zwiazany jest poziom ufności 1 α, określajacy prawdopodobieństwo tego, że przedział ufności rzeczywiście zawiera interesujacy nas parametr. Krańce przedziału ufności wyznaczone na podstawie konkretnej realizacji próby losowej dostarczaja oceny przedziałowej nieznanego parametru.

7 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy z zadanym prawdopodobieństwem, że zawiera nieznany parametr populacji. Parametrami populacji, których estymacja będziemy się zajmować sa: średnia, wariancja i frakcja. Z przedziałem ufności zwiazany jest poziom ufności 1 α, określajacy prawdopodobieństwo tego, że przedział ufności rzeczywiście zawiera interesujacy nas parametr. Krańce przedziału ufności wyznaczone na podstawie konkretnej realizacji próby losowej dostarczaja oceny przedziałowej nieznanego parametru. W przeciwieństwie do oceny przedziałowej, możliwa jest też ocena punktowa szukanego parametru.

8 Przypomnienie dotychczasowych rozważań Przykładowo, mówiac, że średnia w populacji oszacowana na podstawie próby wynosi 10, podajemy ocenę punktowa tego parametru.

9 Przypomnienie dotychczasowych rozważań Przykładowo, mówiac, że średnia w populacji oszacowana na podstawie próby wynosi 10, podajemy ocenę punktowa tego parametru. Ocena punktowa nie mówi jednak, jak dalece podana wartość odbiega od rzeczywistej średniej populacji. Z tego powodu, bardziej wskazana jest ocena przedziałowa.

10 Przypomnienie dotychczasowych rozważań Przykładowo, mówiac, że średnia w populacji oszacowana na podstawie próby wynosi 10, podajemy ocenę punktowa tego parametru. Ocena punktowa nie mówi jednak, jak dalece podana wartość odbiega od rzeczywistej średniej populacji. Z tego powodu, bardziej wskazana jest ocena przedziałowa. Przypuśćmy, że do estymacji wykorzystaliśmy przedział ufności skonstruowany dla zadanego 1 α. Np. 95-procentowy przedział [9, 11] informuje, że możemy mieć 95% ufności, iż w tym przedziale znajduje się średnia populacji.

11 Przypomnienie dotychczasowych rozważań Przykładowo, mówiac, że średnia w populacji oszacowana na podstawie próby wynosi 10, podajemy ocenę punktowa tego parametru. Ocena punktowa nie mówi jednak, jak dalece podana wartość odbiega od rzeczywistej średniej populacji. Z tego powodu, bardziej wskazana jest ocena przedziałowa. Przypuśćmy, że do estymacji wykorzystaliśmy przedział ufności skonstruowany dla zadanego 1 α. Np. 95-procentowy przedział [9, 11] informuje, że możemy mieć 95% ufności, iż w tym przedziale znajduje się średnia populacji. Estymacja przedziałowa dostarcza zatem więcej informacji o możliwej wartości parametru populacji, niż estymacja punktowa. Uwzględnia bowiem wielkość błędu estymacji dla zadanego poziomu ufności.

12 Przedział ufności dla średniej, gdy dysponujemy duża próba W wykładzie Podstawy wnioskowania część I wyznaczony był przedział ufności dla średniej µ cechy X w populacji w przypadku, gdy dysponujemy duża próba.

13 Przedział ufności dla średniej, gdy dysponujemy duża próba W wykładzie Podstawy wnioskowania część I wyznaczony był przedział ufności dla średniej µ cechy X w populacji w przypadku, gdy dysponujemy duża próba. Teoretycznie zakłada się tu, że liczebność próby daży do nieskończoności. W praktyce przyjmuje się, że próba powinna liczyć co najmniej 30 obserwacji, tj. n 30.

14 Przedział ufności dla średniej, gdy dysponujemy duża próba W wykładzie Podstawy wnioskowania część I wyznaczony był przedział ufności dla średniej µ cechy X w populacji w przypadku, gdy dysponujemy duża próba. Teoretycznie zakłada się tu, że liczebność próby daży do nieskończoności. W praktyce przyjmuje się, że próba powinna liczyć co najmniej 30 obserwacji, tj. n 30. Przy tym założeniu przedział ufności dla parametru µ, dla zadanego poziomu ufności 1 α, ma postać: [ ] σ σ X u α n ; X + uα n, gdzie u α jest kwantylem rzędu 1 α 2 rozkładu N(0, 1), σ jest odchyleniem standardowym cechy X w populacji.

15 Przedział ufności dla średniej, gdy dysponujemy duża próba W wykładzie Podstawy wnioskowania część I wyznaczony był przedział ufności dla średniej µ cechy X w populacji w przypadku, gdy dysponujemy duża próba. Teoretycznie zakłada się tu, że liczebność próby daży do nieskończoności. W praktyce przyjmuje się, że próba powinna liczyć co najmniej 30 obserwacji, tj. n 30. Przy tym założeniu przedział ufności dla parametru µ, dla zadanego poziomu ufności 1 α, ma postać: [ ] σ σ X u α n ; X + uα n, gdzie u α jest kwantylem rzędu 1 α 2 rozkładu N(0, 1), σ jest odchyleniem standardowym cechy X w populacji. Jeśli nie znamy parametru σ, zastępujemy go odchyleniem standardowym S z próby.

16 Fragment tablicy rozkładu normalnego standaryzowanego

17 Przykład 1 Wprowadzenie W pewnym hipermarkecie przeprowadzono badanie maja- ce na celu oszacowanie średniego, dziennego zapotrzebowania na mleko (w dniach roboczych). Zbadano wielkość sprzedaży w ciagu 50 losowo wybranych dni roboczych, otrzymujac średnia dzienna sprzedaż równa 100 litrów, przy odchyleniu standardowym 15 litrów.

18 Przykład 1 Wprowadzenie W pewnym hipermarkecie przeprowadzono badanie maja- ce na celu oszacowanie średniego, dziennego zapotrzebowania na mleko (w dniach roboczych). Zbadano wielkość sprzedaży w ciagu 50 losowo wybranych dni roboczych, otrzymujac średnia dzienna sprzedaż równa 100 litrów, przy odchyleniu standardowym 15 litrów. Oszacować przedziałowo średnia, dzienna sprzedaż mleka w tym hipermarkecie, przyjmujac poziom ufności 0, 95.

19 Przykład 1 Wprowadzenie W pewnym hipermarkecie przeprowadzono badanie maja- ce na celu oszacowanie średniego, dziennego zapotrzebowania na mleko (w dniach roboczych). Zbadano wielkość sprzedaży w ciagu 50 losowo wybranych dni roboczych, otrzymujac średnia dzienna sprzedaż równa 100 litrów, przy odchyleniu standardowym 15 litrów. Oszacować przedziałowo średnia, dzienna sprzedaż mleka w tym hipermarkecie, przyjmujac poziom ufności 0, 95. Rozwiazanie. Kwantyl u α rzędu 1 α 2 = 0, 975 rozkładu N(0, 1) wynosi 1, 96 - zob. poprzedni slajd. Podstawiajac dane z próby do wzoru na przedział ufności: [ 100 1, ; , ], otrzymujemy ocenę przedziałowa: [96 (l); 104 (l)].

20 Przedział ufności dla średniej, gdy cecha ma rozkład normalny Istnieje jeszcze inna formuła określajaca przedział ufności dla średniej µ badanej cechy w populacji, wyprowadzona przy pewnych założeniach dotyczacych tej cechy.

21 Przedział ufności dla średniej, gdy cecha ma rozkład normalny Istnieje jeszcze inna formuła określajaca przedział ufności dla średniej µ badanej cechy w populacji, wyprowadzona przy pewnych założeniach dotyczacych tej cechy. Załóżmy, że badana cecha ma rozkład normalny (czego nie wymagaliśmy w przypadku poprzedniego modelu) oraz nie znamy odchylenia standardowego σ tej cechy.

22 Przedział ufności dla średniej, gdy cecha ma rozkład normalny Istnieje jeszcze inna formuła określajaca przedział ufności dla średniej µ badanej cechy w populacji, wyprowadzona przy pewnych założeniach dotyczacych tej cechy. Załóżmy, że badana cecha ma rozkład normalny (czego nie wymagaliśmy w przypadku poprzedniego modelu) oraz nie znamy odchylenia standardowego σ tej cechy. Przy tych założeniach niezależnie od liczebności n próby losowej przedział ufności dla średniej µ określony dla zadanego poziomu ufności 1 α ma postać: [ ] S S X t α ; X + tα, n 1 n 1 gdzie t α oznacza kwantyl rzędu 1 α 2 rozkładu Studenta o k = n 1 stopniach swobody (wielkości t α sa stablicowane zob. następny slajd).

23 Fragment tablicy kwantyli rozkładu Studenta

24 Przykład 2 Wprowadzenie Kierownictwo banku chce oszacować średni czas obsługi klienta przy pewnym okienku kasowym. Na podstawie czasu obsługi dla 20 losowo wybranych klientów, stwierdzono, że średni czas obsługi przy tym okienku wynosi 15 min, przy odchyleniu standardowym 5 min. Wiadomo dodatkowo, że czas obsługi jest zmienna losowa o rozkładzie normalnym.

25 Przykład 2 Wprowadzenie Kierownictwo banku chce oszacować średni czas obsługi klienta przy pewnym okienku kasowym. Na podstawie czasu obsługi dla 20 losowo wybranych klientów, stwierdzono, że średni czas obsługi przy tym okienku wynosi 15 min, przy odchyleniu standardowym 5 min. Wiadomo dodatkowo, że czas obsługi jest zmienna losowa o rozkładzie normalnym. Oszacować przedziałowo średni czas obsługi klientów, przyjmujac poziom ufności 0, 98.

26 Przykład 2 Wprowadzenie Kierownictwo banku chce oszacować średni czas obsługi klienta przy pewnym okienku kasowym. Na podstawie czasu obsługi dla 20 losowo wybranych klientów, stwierdzono, że średni czas obsługi przy tym okienku wynosi 15 min, przy odchyleniu standardowym 5 min. Wiadomo dodatkowo, że czas obsługi jest zmienna losowa o rozkładzie normalnym. Oszacować przedziałowo średni czas obsługi klientów, przyjmujac poziom ufności 0, 98. Rozwiazanie. Kwantyl t α z rozkładu Studenta o 19 stopniach swobody wynosi 2, zob.poprzedni slajd. Stad: [ 15 2, ; , ] Otrzymaliśmy ocenę przedziałowa: [12, 1(min); 17, 9(min)].

27 Załóżmy, że badana cecha X przyjmuje tylko dwie wartości (warianty). Taka cechę określa się często mianem cechy dychotomicznej. Typowym przykładem jest płeć.

28 Załóżmy, że badana cecha X przyjmuje tylko dwie wartości (warianty). Taka cechę określa się często mianem cechy dychotomicznej. Typowym przykładem jest płeć. Przypuśćmy, że interesuje nas jeden z dwóch wariantów cechy X. Niech p oznacza udział elementów populacji posiadajacych wybrany wariant cechy, np. udział kobiet w pewnej zbiorowości osób.

29 Załóżmy, że badana cecha X przyjmuje tylko dwie wartości (warianty). Taka cechę określa się często mianem cechy dychotomicznej. Typowym przykładem jest płeć. Przypuśćmy, że interesuje nas jeden z dwóch wariantów cechy X. Niech p oznacza udział elementów populacji posiadajacych wybrany wariant cechy, np. udział kobiet w pewnej zbiorowości osób. Parametr p określa się mianem frakcji elementów wyróżnionych (w skrócie frakcji lub wskaźnika struktury).

30 Załóżmy, że badana cecha X przyjmuje tylko dwie wartości (warianty). Taka cechę określa się często mianem cechy dychotomicznej. Typowym przykładem jest płeć. Przypuśćmy, że interesuje nas jeden z dwóch wariantów cechy X. Niech p oznacza udział elementów populacji posiadajacych wybrany wariant cechy, np. udział kobiet w pewnej zbiorowości osób. Parametr p określa się mianem frakcji elementów wyróżnionych (w skrócie frakcji lub wskaźnika struktury). Przyporzadkujmy elementom populacji posiadajacym wybrany wariant cechy X wartość 1, natomiast pozostałym elementom wartość 0.

31 Załóżmy, że badana cecha X przyjmuje tylko dwie wartości (warianty). Taka cechę określa się często mianem cechy dychotomicznej. Typowym przykładem jest płeć. Przypuśćmy, że interesuje nas jeden z dwóch wariantów cechy X. Niech p oznacza udział elementów populacji posiadajacych wybrany wariant cechy, np. udział kobiet w pewnej zbiorowości osób. Parametr p określa się mianem frakcji elementów wyróżnionych (w skrócie frakcji lub wskaźnika struktury). Przyporzadkujmy elementom populacji posiadajacym wybrany wariant cechy X wartość 1, natomiast pozostałym elementom wartość 0. W ten sposób zdefiniowaliśmy zmienna losowa o rozkładzie zero-jedynkowym z parametrem p.

32 Zauważymy, że parametr p równy jest też średniej arytmetycznej z zer i jedynek, składajacych się na tak określona zbiorowość.

33 Zauważymy, że parametr p równy jest też średniej arytmetycznej z zer i jedynek, składajacych się na tak określona zbiorowość. Np. w zbiorowości liczacej 10 elementów możemy otrzymać następujacy ciag zer i jedynek: 1, 0, 1, 0, 1, 1, 1, 0, 1, 0 Liczba m jedynek w tym ciagu wynosi: m = 6, co daje udział jedynek równy: m n = 6 10 = 0, 6.

34 Zauważymy, że parametr p równy jest też średniej arytmetycznej z zer i jedynek, składajacych się na tak określona zbiorowość. Np. w zbiorowości liczacej 10 elementów możemy otrzymać następujacy ciag zer i jedynek: 1, 0, 1, 0, 1, 1, 1, 0, 1, 0 Liczba m jedynek w tym ciagu wynosi: m = 6, co daje udział jedynek równy: m n = 6 10 = 0, 6. Łatwo sprawdzić, że m n jest średni a arytmetyczna z podanego zbioru liczb, natomiast iloczyn m ( ) n 1 m n równy jest wariancji w tym zbiorze.

35 Zagadnienie estymacji przedziałowej parametru p można więc sprowadzić do zagadnienia estymacji średniej w populacji. Korzysta się tu z tw. granicznych. Warunkiem jest więc dysponowanie dostatecznie duża próba (n 100).

36 Zagadnienie estymacji przedziałowej parametru p można więc sprowadzić do zagadnienia estymacji średniej w populacji. Korzysta się tu z tw. granicznych. Warunkiem jest więc dysponowanie dostatecznie duża próba (n 100). Przyjmujac p jako odpowiednik średniej w populacji, m n ( jako odpowiednik ) średniej arytmetycznej z próby oraz m n 1 m n jako odpowiednik wariancji S 2 z próby, otrzymujemy następujacy przedział ufności dla frakcji p: m ( ) ( ) m n u n 1 m m n m α ; n n + u n 1 m n α, n gdzie u α jest kwantylem rzędu 1 α 2 rozkładu normalnego standaryzowanego N(0, 1) zob. następny slajd.

37 Fragment tablicy rozkładu normalnego standaryzowanego

38 Przykład 3 Wprowadzenie Producent nowego leku interesuje się, dla jakiej części chorych pacjentów jest on skuteczny. W tym celu zbadano losowa próbę 150 pacjentów, którym podano nowy lek, stwierdzajac, że w 110 przypadkach wyleczył z choroby.

39 Przykład 3 Wprowadzenie Producent nowego leku interesuje się, dla jakiej części chorych pacjentów jest on skuteczny. W tym celu zbadano losowa próbę 150 pacjentów, którym podano nowy lek, stwierdzajac, że w 110 przypadkach wyleczył z choroby. Oszacować przedziałowo odsetek chorych, którzy zostaliby skutecznie wyleczeni tym lekiem, przyjmujac 1 α = 0, 9.

40 Przykład 3 Wprowadzenie Producent nowego leku interesuje się, dla jakiej części chorych pacjentów jest on skuteczny. W tym celu zbadano losowa próbę 150 pacjentów, którym podano nowy lek, stwierdzajac, że w 110 przypadkach wyleczył z choroby. Oszacować przedziałowo odsetek chorych, którzy zostaliby skutecznie wyleczeni tym lekiem, przyjmujac 1 α = 0, 9. Rozwiazanie. Kwantyl u α rzędu 1 α 2 = 0, 95 rozkładu N(0, 1) wynosi 1, 64 (poprzedni slajd). Mamy więc: 110 ( ) ( ) , 64 ; + 1, 64, co daje ocenę przedziałowa: [0, 67; 0, 79] lub [67%; 79%].

41 W wielu sytuacjach interesuje nas szczególnie wariancja zjawiska σ 2 (względnie odchylenie standardowe σ), np. w procesach produkcyjnych, gdy kontroli podlega stabilność procesu.

42 W wielu sytuacjach interesuje nas szczególnie wariancja zjawiska σ 2 (względnie odchylenie standardowe σ), np. w procesach produkcyjnych, gdy kontroli podlega stabilność procesu. W celu wyznaczenia przedziału ufności dla wariancji korzysta się z następujacego twierdzenia.

43 W wielu sytuacjach interesuje nas szczególnie wariancja zjawiska σ 2 (względnie odchylenie standardowe σ), np. w procesach produkcyjnych, gdy kontroli podlega stabilność procesu. W celu wyznaczenia przedziału ufności dla wariancji korzysta się z następujacego twierdzenia. Jeśli próba prosta X 1,...,X n pochodzi z populacji o rozkładzie normalnym N(µ, σ), to zmienna losowa Z= ns2 σ 2 ma rozkład chi-kwadrat o k = n 1 stopniach swobody.

44 W wielu sytuacjach interesuje nas szczególnie wariancja zjawiska σ 2 (względnie odchylenie standardowe σ), np. w procesach produkcyjnych, gdy kontroli podlega stabilność procesu. W celu wyznaczenia przedziału ufności dla wariancji korzysta się z następujacego twierdzenia. Jeśli próba prosta X 1,...,X n pochodzi z populacji o rozkładzie normalnym N(µ, σ), to zmienna losowa Z= ns2 σ 2 ma rozkład chi-kwadrat o k = n 1 stopniach swobody. W zapisie ns2 symbol S 2 oznacza wariancję z próby, czyli σ 2 zmienna losowa postaci: S 2 = 1 n ( Xi n X ) 2. i=1

45 Niech c 1 oraz c 2 oznaczaja kwantyle rzędu odpowiednio α 2 i 1 α 2 rozkładu chi-kwadrat o k = n 1 stopniach swobody (por. następne slajdy).

46 Niech c 1 oraz c 2 oznaczaja kwantyle rzędu odpowiednio α 2 i 1 α 2 rozkładu chi-kwadrat o k = n 1 stopniach swobody (por. następne slajdy). Dla zadanego poziomu ufności 1 α zachodzi równość: P (c 1 Z c 2 ) = 1 α, gdzie Z oznacza zmienna losowa o rozkładzie chi-kwadrat o k = n 1 stopniach swobody.

47 Niech c 1 oraz c 2 oznaczaja kwantyle rzędu odpowiednio α 2 i 1 α 2 rozkładu chi-kwadrat o k = n 1 stopniach swobody (por. następne slajdy). Dla zadanego poziomu ufności 1 α zachodzi równość: P (c 1 Z c 2 ) = 1 α, gdzie Z oznacza zmienna losowa o rozkładzie chi-kwadrat o k = n 1 stopniach swobody. Podstawiamy w miejsce Z wyrażenie ns2. Po prostych σ 2 przekształceniach otrzymujemy: P ( ns 2 c 2 σ 2 ns2 c 1 ) = 1 α.

48 Niech c 1 oraz c 2 oznaczaja kwantyle rzędu odpowiednio α 2 i 1 α 2 rozkładu chi-kwadrat o k = n 1 stopniach swobody (por. następne slajdy). Dla zadanego poziomu ufności 1 α zachodzi równość: P (c 1 Z c 2 ) = 1 α, gdzie Z oznacza zmienna losowa o rozkładzie chi-kwadrat o k = n 1 stopniach swobody. Podstawiamy w miejsce Z wyrażenie ns2. Po prostych σ 2 przekształceniach otrzymujemy: ( ns 2 ) P c 2 σ 2 ns2 c 1 = 1 α. Stad przedział ufności dla wariancji σ 2 ma postać: [ ns 2 ns 2 ] ;. c 2 c 1

49 Fragment tablicy kwantyli rozkładu chi-kwadrat

50 Fragment tablicy kwantyli rozkładu chi-kwadrat c.d. Copyright Giorgio Krenkel and Alex Sandri, GNU Free Documentation License, Agnieszka Low Resolution Rossa

51 Przykład 4 Wprowadzenie Wróćmy do przykładu 2. Czas obsługi przy okienku kasowym nie powinien mieć dużej wariancji. W przeciwnym przypadku kolejka ma tendencję do rozrastania się.

52 Przykład 4 Wprowadzenie Wróćmy do przykładu 2. Czas obsługi przy okienku kasowym nie powinien mieć dużej wariancji. W przeciwnym przypadku kolejka ma tendencję do rozrastania się. Korzystajac z informacji zawartych w przykładzie 2, oszacować przedziałowo wariancję czasu obsługi klientów przy okienku kasowym, przyjmujac 1 α = 0, 9.

53 Przykład 4 Wprowadzenie Wróćmy do przykładu 2. Czas obsługi przy okienku kasowym nie powinien mieć dużej wariancji. W przeciwnym przypadku kolejka ma tendencję do rozrastania się. Korzystajac z informacji zawartych w przykładzie 2, oszacować przedziałowo wariancję czasu obsługi klientów przy okienku kasowym, przyjmujac 1 α = 0, 9. Rozwiazanie. Kwantyle c 1 i c 2 rozkładu chi-kwadrat o 19 stopniach swobody sa równe c 1 = 10, 117, c 2 = 30, 144 (por. poprzednie slajdy). Mamy: [ , 144 ; ]. 10, 117 co daje ocenę przedziałowa wariancji: [ 16, 6(min) 2 ; 49, 4(min) 2].

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść I

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść I PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść I Szkic wykładu 1 Przykład wprowadzajacy 2 Prawo wielkich liczb Bernoulliego i centralne tw. graniczne 3 4 Przykład wprowadzajacy W Polsce różne głosowania odbywaja

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

LABORATORIUM 6 ESTYMACJA cz. 2

LABORATORIUM 6 ESTYMACJA cz. 2 LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

PRZEDZIAŁ UFNOŚCI DLA FRAKCJI. Ryszard Zieliński. XXXVIII Konferencja Zastosowań Matematyki Zakopane Kościelisko 8-15 września 2009

PRZEDZIAŁ UFNOŚCI DLA FRAKCJI. Ryszard Zieliński. XXXVIII Konferencja Zastosowań Matematyki Zakopane Kościelisko 8-15 września 2009 Ryszard Zieliński XXXVIII Ogólnopolska Konferencja Zastosowań Matematyki Zakopane Kościelisko 8-15 września 2009 ESTYMACJA FRAKCJI W populacji składającej się z N elementów jest nieznana liczba M elementów

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Wykład z analizy danych: estymacja punktowa

Wykład z analizy danych: estymacja punktowa Wykład z analizy danych: estymacja punktowa Marek Kubiak Instytut Informatyki Politechnika Poznańska Cel wykładu Model statystyczny W pewnej zbiorowości (populacji generalnej) obserwowana jest pewna cecha

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA Symbole w statystyce Symbole Populacja Średnia m Próba x Odchylenie standardowe σ s Odsetek p p Estymacja co to jest? Estymacja punktowa Estymacja przedziałowa

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej 1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

ESTYMACJA. Przedział ufności dla średniej

ESTYMACJA. Przedział ufności dla średniej ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące 2 Na dziś Wykład 5: Statystyka matematyczna Estymatory punktowe i przedziałowe 4

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo