Kalibracja kamery. Kalibracja kamery

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kalibracja kamery. Kalibracja kamery"

Transkrypt

1 Cel kalibracji Celem kalibracji jest wyznaczenie parametrów określających zaleŝności między układem podstawowym a układem związanym z kamerą, które występują łącznie z transformacją perspektywy oraz parametrów związanych z kamerą i układem optycznym. Parametry kamery Ogólnie parametry wyznaczane w procedurze kalibracji kamery dzieli się na dwie grupy: parametry zewnętrzne (ang. Extrinsic) związane z przesunięciem i rotacją układu kamery względem układu związanego z obserwowaną sceną parametry wewnętrzne (ang. Intrinsic) określające właściwości optyczne i elektryczne kamery, których liczba zaleŝy od przyjętego modelu układu optycznego i kamery W przypadku parametrów wewnętrznych oprócz ogniskowej obiektywu modeluje się zazwyczaj zniekształcenia radialne i styczne związane z układem optycznym. Wyznacza się równieŝ rzeczywiste współrzędne środka obrazu kamery, które nie muszą leŝeć w geometrycznym środku matrycy przetwornika ze względu na skrzywienie osi optycznej obiektywu oraz zniekształcenia liniowe. 1 Podstawowy model kamery perspektywicznej Dla podstawowego modelu kamery, punkty z przestrzeni trójwymiarowej rzutowane są na płaszczyznę przetwornika kamery zgodnie z transformacją perspektywiczną, która wynika z fizykalnego sposobu tworzenia obrazu w kamerze 2

2 Transformacja perspektywiczna w ujęciu współrzędnych jednorodnych Niech współrzędne punktu w przestrzeni kartezjańskiej reprezentuje wektor, co w postaci jednorodnej moŝna zapisać jako, gdzie jest dowolną niezerową stałą. Macierz transformacji perspektywicznej moŝna zapisać jako Wektor współrzędnych jednorodnych odpowiadający punktowi we współrzędnych obrazowych moŝna zapisać w następujący sposób Dla danych jednorodnych współrzędnych obrazowych współrzędne kartezjańskie punktu wyznacza się przez podzielenie pierwszych trzech elementów przez czwarty 3 Odwrotna transformacja perspektywiczna odwzorowuje punkt obrazu z powrotem do przestrzeni trójwymiarowej zgodnie z zaleŝnością Prowadzi to do następujących zaleŝności na współrzędne punktu w przestrzeni trójwymiarowej na podstawie jego rzutu na obrazie Na podstawie pojedynczego obrazu, bez pewnej wiedzy na temat obserwowanej sceny, np. składowej Z punktów, nie moŝna w pełni wyznaczyć punktu w przestrzeni trójwymiarowej na podstawie jego współrzędnych w układzie obrazowym. Dlatego teŝ w celu wyznaczenia pełnej informacji o połoŝeniu punktów w przestrzeni trójwymiarowej często stosuje się np. stereowizyjny układ kamer 4

3 Transformacje między układem podstawowym a układem kamery Macierz transformacji jednorodnej określa przesunięcie między układem podstawowym a układem kamery i jest wyraŝona jako 5 Macierz transformacji jednorodnej, związana z rotacją układu podstawowego względem układu kamery, złoŝona jest z trzech rotacji elementarnych dla jednej z moŝliwych kombinacji kątów Eulera. Przykładowo dla reprezentacji kątów Eulera obrotu wokół osi układu podstawowego w notacji RPY (ang. roll, pitch, yaw) Przyjmując równanie transformacji jednorodnej moŝna zapisać jako 6

4 Na podstawie współrzędnych kartezjańskich punktów w układzie kamery pierwszy, drugi oraz czwarty element wektora moŝna zapisać jako Uwzględniając powyŝsze zaleŝności otrzymuje się w rezultacie układ dwóch równań liniowych z 12 niewiadomymi postaci PowyŜsza procedura kalibracji kamery wymaga zatem określenia minimum 6 punktów o znanych współrzędnych w układzie podstawowym oraz odpowiadających im punktów na płaszczyźnie obrazu w układzie kamery. Uzyskany układ równań rozwiązuje się z uŝyciem metod numerycznych. Nie uwzględnia on zniekształceń optycznych jak równieŝ nie umoŝliwia bezpośrednio wyznaczenia fizycznych parametrów kamery. 7 Model kamery typu pin-hole Często stosowanym modelem kamery w kalibracji jest model typu otworkowego (ang. pinhole), w którym następuje rzutowanie z przestrzeni trójwymiarowej na płaszczyznę obrazu zgodnie z transformacją perspektywiczną z dodatkową rotacją o w płaszczyźnie obrazu. W modelu tym układ związany z kamerą ma początek w ognisku, którego oś pokrywa się z osią optyczną. Układ współrzędnych obrazowych, umieszczony jest przed ogniskiem w odległości ogniskowej zamiast, co daje ten sam efekt co rotacja o w płaszczyźnie obrazu. Uzyskuje się w ten sposób teoretyczny model kamery, który w praktyce nie istnieje, ale jest prostszy w analizie. 8

5 Dla modelu kamery pin-hole moŝna zapisać następujące zaleŝności między połoŝeniem punktu w układzie kamery a jego rzutem na płaszczyznę obrazu we współrzędnych obrazowych Współrzędne obrazowe punktu są współrzędnymi znormalizowanymi tylko względem współrzędnej punktu w układzie kamery, co stanowi dogodniejszą postać w porównaniu do samej transformacji perspektywicznej W sytuacji, gdy układ podstawowy nie jest identyczny z układem kamery, przed rzutowaniem punktu na płaszczyznę obrazu, naleŝy dokonać transformacji związanej z rotacją i przesunięciem z układu podstawowego do układu kamery gdzie macierz określa rotację a wektor przesunięcie, które oznaczają parametry zewnętrzne kamery 9 Zniekształcenia optyczne w modelu kamery J. Heikkila, O. Silven, A Four-step Camera Calibration Procedure with Implicit Image Correction, Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, str J.Y. Bouguet, Camera Calibration Toolbox for Matlab, Zniekształcenia toru optycznego zazwyczaj modeluje się zwykle jako radialne, styczne (tangensowe) oraz liniowe. Zniekształcenia radialne powodują przesunięcie współrzędnych na obrazie w sposób promienisty i mają decydujący wpływ na dokładność pomiarów. MoŜna je aproksymować za pomocą równania gdzie są współczynnikami zniekształcenia radialnego,. Zwykle stosuje się od jednego do trzech współczynników, co wystarcza do kompensacji zniekształceń tego rodzaju. 10

6 Zniekształcenia styczne, które są prostopadłe do radialnych, wynikają z faktu, iŝ środki krzywizny soczewek obiektywu nie zawsze są dokładnie współliniowe. Modeluje się je za pomocą następującego wyraŝenia gdzie i są współczynnikami zniekształceń stycznych Zniekształcenia liniowe mogą być opisane za pomocą pojedynczego współczynnika krzywizny. Powstają gdy osie układu obrazowego nie są idealnie prostopadłe do siebie. Na wartość błędu wprowadzanego przez zniekształcenia liniowe ma wpływ precyzja wykonania przetwornika zastosowanego w kamerze 11 Parametry wewnętrzne modelu kamery z uwzględnieniem zniekształceń Uwzględniając w modelu kamery zniekształcenia, moŝna podać następujące parametry wewnętrzne do procedury kalibracji: dwuelementowy wektor długości ogniskowej, którego elementy są liniową zaleŝnością ogniskowej kamery i współczynników wynikających z przeliczenia rozmiaru pikseli w obu osiach z jednostek metrycznych do obrazowych, wyraŝony w pikselach dwuelementowy wektor, zawierający rzeczywiste współrzędne połoŝenia środka rzutowania punktów na obrazie, tzw. punktu głównego współczynnik krzywizny zniekształceń liniowych, który określa kąt skręcenia pomiędzy osiami pikseli w kierunku poziomym i pionowym na matrycy pięcioelementowy wektor zniekształceń, zawierający współczynniki zniekształceń radialnych i stycznych, gdzie 12

7 Rzeczywiste współrzędne punktu w układzie obrazowym z uwzględnieniem parametrów wewnętrznych Znormalizowane współrzędne punktu w układzie obrazowym Dla wprowadzonych parametrów wewnętrznych oraz znormalizowanych współrzędnych obrazowych punktu rzeczywiste współrzędne punktu z uwzględnieniem równań określających zniekształcenia radialne i styczne moŝna zapisać jako Wektor jest wektorem zniekształceń stycznych postaci 13 Uwzględniając wektor ogniskowej kamery, faktyczne połoŝenie środka obrazu i współczynnik krzywizny, współrzędne punktu w układzie obrazowym moŝna przedstawić jako PowyŜsze zaleŝności przedstawia się często w postaci równania macierzowego gdzie macierz jest tzw. macierzą kamery postaci Elementy macierzy oraz wektora zniekształceń naleŝy wyznaczyć w procedurze kalibracji kamery razem z parametrami zewnętrznymi 14

8 Procedury kalibracji kamery Większość metod kalibracji rozwiązuje problem kalibracji w dwóch etapach, odnosząc się do metody Tsai, w której pierwszy raz zaproponowano dwuetapową procedurę kalibracji. W pierwszym etapie metodami liniowymi znajduje się przybliŝone rozwiązanie, które wykorzystuje się w drugim etapie jako warunek początkowy do optymalizacji nieliniowej. Dzięki dekompozycji zagadnienia na dwa etapy uzyskuje się przyspieszenie obliczeń w procedurze kalibracji przy jednoczesnym zwiększeniu dokładności w porównaniu do metod klasycznych uwzględniających zniekształcenia. KaŜda metoda kalibracji wymaga znajomości serii punktów w przestrzeni oraz współrzędnych ich rzutów na płaszczyznę obrazu. Ze względu na sposób określania punktów w przestrzeni techniki kalibracji moŝna typowo podzielić na trzy kategorie: Pierwsza opiera się na trójwymiarowym obiekcie referencyjnym, którego kształt i wymiary są znane z duŝą precyzją. Odmianą takiego podejścia jest uŝycie wzorca płaskiego ze znaną zmianą połoŝenia podczas wyznaczania punktów do kalibracji Drugi sposób wywodzi się z obserwacji wzorca płaskiego umieszczanego w róŝnych połoŝeniach względem kamery. Nie jest tu jednak potrzebna znajomość pozycji wzorca a jedynie rozmieszczenie punktów na wzorcu Trzecia kategoria określana jest samokalibracją, w której nie uŝywa się Ŝadnego obiektu, którą przeprowadza się na podstawie odpowiadających sobie punktów z obrazów rejestrowanych podczas ruchu kamery obserwującej statyczną scenę 15 Wzorzec do kalibracji z dowiązanym układem współrzędnych oraz punktami kalibracyjnymi 16

9 Rozkład zniekształceń radialnych oraz stycznych Kamera VISTEK SVS 084MSCL + obiektyw PENTAX H612A Zniekształcenia radialne Zniekształcenia styczne 17 Zadanie odwrotne Rozwiązanie zadania odwrotnego umoŝliwia realizację korekcji zniekształceń na obrazie, reprojekcji punktów z układu obrazowego i dalej wykonywanie pomiarów metrycznych w układzie podstawowym przy znanych przekształceniach związanych z rotacją i przesunięciem. Zadanie odwrotne polega na wyznaczeniu wektora współrzędnych punktu znormalizowanych na podstawie współrzędnych obrazowych piksela, przy znajomości parametrów modelu kamery. Ze względu na nieliniowy charakter transformacji związanej ze zniekształceniami modelu kamery, nie moŝna podać ogólnego algorytmu rozwiązującego zagadnienie odwrotne! MoŜna znaleźć szereg propozycji, które opierają się na metodach gradientowych lub jakobianowych. Dla wprowadzonego modelu zniekształceń radialnych i stycznych znormalizowane współrzędne punktu moŝna wyznaczyć w następującej procedurze 1. Dla współrzędnych obrazowych piksela wyznaczyć początkowe współrzędne znormalizowane wektora jako 18

10 2. obliczyć wektor zniekształceń stycznych oraz współczynnik zniekształceń radialnych jako 3. obliczyć nowe współrzędne znormalizowane 4. powtarzać kroki przyjętą ilość razy lub badać czy błąd dopasowania jest mniejszy od załoŝonego, błąd dopasowania moŝna wyznaczyć jako 19 Model stereowizyjnego układu dwóch kamer - dysparycja 20

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria zdjęć sceny wykonanych z różnymi ustawieniami ekspozycji 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

c) d) Strona: 1 1. Cel ćwiczenia

c) d) Strona: 1 1. Cel ćwiczenia Strona: 1 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów wielkości geometrycznych z wykorzystaniem prostych przyrządów pomiarowych - suwmiarek i mikrometrów. 2. Podstawowe

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37 Spis treści Przedmowa... 11 1. Przedmiot fotogrametrii i rys historyczny jej rozwoju... 15 1.1. Definicja i przedmiot fotogrametrii... 15 1.2. Rozwój fotogrametrii na świecie... 23 1.3. Rozwój fotogrametrii

Bardziej szczegółowo

Często zadawane pytania PhoToPlan

Często zadawane pytania PhoToPlan Często zadawane pytania PhoToPlan PoniŜszy dokument dostarczy państwu szczegółowych informacji o moŝliwościach PhoToPlan. W razie pytań zapraszamy na naszą stronę internetową lub prosimy o kontakt z naszym

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia Prof. Eugeniusz RATAJCZYK Makrogemetria Pomiary odchyłek kształtu i połoŝenia Rodzaje odchyłek - symbole Odchyłki kształtu okrągłości prostoliniowości walcowości płaskości przekroju wzdłuŝnego Odchyłki

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Temat ćwiczenia: Zasady stereoskopowego widzenia.

Temat ćwiczenia: Zasady stereoskopowego widzenia. Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Zasady stereoskopowego widzenia. Zagadnienia 1. Widzenie monokularne, binokularne

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii.

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii. Uniwersytet Uniwersytet Rolniczy Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Techniki animacji komputerowej

Techniki animacji komputerowej Techniki animacji komputerowej 1 Animacja filmowa Pojęcie animacji pochodzi od ożywiania i ruchu. Animować oznacza dawać czemuś życie. Słowem animacja określa się czasami film animowany jako taki. Animacja

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: Tryb studiów: GRAFIKA KOMPUTEROWA INFORMATYKA Kod/nr GK PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH

Bardziej szczegółowo

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Andrzej Marciniak GRAFIKA KOMPUTEROWA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku przez studentów

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Samokalibracja w programie Bundle Adjustment Toolobx

Samokalibracja w programie Bundle Adjustment Toolobx Samokalibracja w programie Bundle Adjustment Toolobx Do wyrównania sieci zdjęć naziemnych pola testowego będziemy potrzebować następujące pliki: 1. plik kamery 2. plik z przybliżonymi elementami orientacji

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT 1 Zbigniew Figiel, Piotr Dzikowicz Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie 2 Plan prezentacji 1. Skanowanie laserowe 3D informacje ogólne; 2. Proces skanowania; 3. Proces

Bardziej szczegółowo

AUTOCAD MIERZENIE I PODZIAŁ

AUTOCAD MIERZENIE I PODZIAŁ AUTOCAD MIERZENIE I PODZIAŁ Czasami konieczne jest rozmieszczenie na obiekcie punktów lub bloków, w równych odstępach. Na przykład, moŝe zachodzić konieczność zlokalizowania na obiekcie punktów oddalonych

Bardziej szczegółowo

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 2 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Uszkodzi się tylko pierwsza maszyna.... 3 1.2

Bardziej szczegółowo

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

Zastosowanie techniki Motion Capture

Zastosowanie techniki Motion Capture Zastosowanie techniki Motion Capture Michał Grędziak mgredzia@mion.elka.pw.edu.pl Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska ul. Nowowiejska 15/19 00-665 Warszawa, Polska 13 czerwca

Bardziej szczegółowo

Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska

Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska Zastosowanie deflektometrii do pomiarów kształtu 3D Plan prezentacji Metody pomiaru kształtu Deflektometria Zasada działania Stereo-deflektometria Kalibracja Zalety Zastosowania Przykład Podsumowanie Metody

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi 1 Geometryczne podstawy obróbki CNC 1.1. Układy współrzędnych. Układy współrzędnych umożliwiają

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Modelowanie reakcji chemicznych

Modelowanie reakcji chemicznych Modelowanie reakcji chemicznych Przykładowe ćwiczenia w Excelu i Modellusie 2007 IT for US Projekt jest finansowany przy wsparciu Komisji Europejskiej, nr grantu 119001-CP-1-2004-1-PL-COMENIUS-C21. Materiały

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Soczewki. Ćwiczenie 53. Cel ćwiczenia

Soczewki. Ćwiczenie 53. Cel ćwiczenia Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inŝ. Wojciech Ptaszyński

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Kąty Ustawienia Kół. WERTHER International POLSKA Sp. z o.o. dr inż. Marek Jankowski 2007-01-19

Kąty Ustawienia Kół. WERTHER International POLSKA Sp. z o.o. dr inż. Marek Jankowski 2007-01-19 WERTHER International POLSKA Sp. z o.o. dr inż. Marek Jankowski 2007-01-19 Kąty Ustawienia Kół Technologie stosowane w pomiarach zmieniają się, powstają coraz to nowe urządzenia ułatwiające zarówno regulowanie

Bardziej szczegółowo

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Dział programowy: Liczby i działania ( 1 )

Dział programowy: Liczby i działania ( 1 ) 1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

RAPORT Z PRZEBIEGU BADAŃ PIĄTEJ GRUPY PROBLEMOWEJ

RAPORT Z PRZEBIEGU BADAŃ PIĄTEJ GRUPY PROBLEMOWEJ RAPORT Z PRZEBIEGU BADAŃ PIĄTEJ GRUPY PROBLEMOWEJ Temat zadania problemowego Modernizacja oprogramowania maszyny pomiarowej wraz z elementami automatyki przy wykorzystaniu programowalnych sterowników przemysłowych

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Metody matematyczne fizyki

Metody matematyczne fizyki Metody matematyczne fizyki Tadeusz Lesiak Wykład I Wektory Wektory w geometrii i algebrze Historycznie pierwszy był opis geometryczny: B Wektor = uporządkowana para punktów = ukierunkowany odcinek linii

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki KATEDRA AUTOMATYKI

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki KATEDRA AUTOMATYKI Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki KATEDRA AUTOMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA PRACA MAGISTERSKA MATEUSZ

Bardziej szczegółowo

Projektowanie naziemnego pomiaru fotogrametrycznego. Dokładność - specyfikacja techniczna projektu

Projektowanie naziemnego pomiaru fotogrametrycznego. Dokładność - specyfikacja techniczna projektu Projektowanie naziemnego pomiaru fotogrametrycznego Dokładność - specyfikacja techniczna projektu Aparat cyfrowy w fotogrametrii aparat musi być wyposażony w obiektyw stałoogniskowy z jednym aparatem można

Bardziej szczegółowo

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW 1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych

Bardziej szczegółowo

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ Ireneusz WYCZAŁEK Zakład Geodezji Politechnika Poznańska CEL Aktualizacja baz danych przestrzennych,

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Laboratorium Podstaw Robotyki ĆWICZENIE 5

Laboratorium Podstaw Robotyki ĆWICZENIE 5 Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 5 Rotacje 3D, transformacje jednorodne i kinematyka manipulatorów. Celem ćwiczenia jest analiza wybranych

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

PIONY, PIONOWNIKI, CENTROWNIKI PRZYRZĄDY SŁUŻĄCE DO CENTROWANIA INSTRUMENTÓW I SYGNAŁÓW

PIONY, PIONOWNIKI, CENTROWNIKI PRZYRZĄDY SŁUŻĄCE DO CENTROWANIA INSTRUMENTÓW I SYGNAŁÓW PIONY, PIONOWNIKI, CENTROWNIKI PRZYRZĄDY SŁUŻĄCE DO CENTROWANIA INSTRUMENTÓW I SYGNAŁÓW ZADANIE PIONÓW: ustawienie instrumentu i sygnału centrycznie nad punktem. ZADANIE PIONOWNIKOW: badanie pionowości,

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Zastosowanie Geobazy w analizie przestrzennej. Jarosław Jasiewicz IPIG Wojciech Jaszczyk MPU

Zastosowanie Geobazy w analizie przestrzennej. Jarosław Jasiewicz IPIG Wojciech Jaszczyk MPU Zastosowanie Geobazy w analizie przestrzennej Jarosław Jasiewicz IPIG Wojciech Jaszczyk MPU Co to jest geobaza? Geobaza (ang. Geodatabase) to geograficzna baza danych, umoŝliwia przechowywanie danych geograficznych

Bardziej szczegółowo

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model

Bardziej szczegółowo

Jak korzystać z Excela?

Jak korzystać z Excela? 1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli

Bardziej szczegółowo

Symulacja komputerowa i obróbka części 5 na frezarce sterowanej numerycznie

Symulacja komputerowa i obróbka części 5 na frezarce sterowanej numerycznie LABORATORIUM TECHNOLOGII Symulacja komputerowa i obróbka części 5 na frezarce sterowanej numerycznie Przemysław Siemiński, Cel ćwiczenia: o o o o o zapoznanie z budową i działaniem frezarek CNC, przegląd

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Podstawy przetwarzania obrazów teledetekcyjnych. Format rastrowy

Podstawy przetwarzania obrazów teledetekcyjnych. Format rastrowy Podstawy przetwarzania obrazów teledetekcyjnych Format rastrowy Definicja rastrowego modelu danych - podstawowy element obrazu cyfrowego to piksel, uważany w danym momencie za wewnętrznie jednorodny -

Bardziej szczegółowo

Laboratorium z Grafiki InŜynierskiej CAD. Rozpoczęcie pracy z AutoCAD-em. Uruchomienie programu

Laboratorium z Grafiki InŜynierskiej CAD. Rozpoczęcie pracy z AutoCAD-em. Uruchomienie programu Laboratorium z Grafiki InŜynierskiej CAD W przygotowaniu ćwiczeń wykorzystano m.in. następujące materiały: 1. Program AutoCAD 2010. 2. Graf J.: AutoCAD 14PL Ćwiczenia. Mikom 1998. 3. Kłosowski P., Grabowska

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE

WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE OBRÓBKA SKRAWANIEM Ćwiczenie nr 2 WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE opracował: dr inż. Tadeusz Rudaś dr inż. Jarosław Chrzanowski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

nastawa temperatury Sprawd zany miernik Miernik wzorcowy

nastawa temperatury Sprawd zany miernik Miernik wzorcowy ELEKTRONICZNY SYMLATOR REZYSTANCJI II Konferencja Naukowa KNWS'5 "Informatyka-sztukaczyrzemios o" 15-18czerwca25, Z otnikiluba skie Jan Szmytkiewicz Instytut Informatyki i Elektroniki, niwersytet Zielonogórski

Bardziej szczegółowo