Kalibracja kamery. Kalibracja kamery

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kalibracja kamery. Kalibracja kamery"

Transkrypt

1 Cel kalibracji Celem kalibracji jest wyznaczenie parametrów określających zaleŝności między układem podstawowym a układem związanym z kamerą, które występują łącznie z transformacją perspektywy oraz parametrów związanych z kamerą i układem optycznym. Parametry kamery Ogólnie parametry wyznaczane w procedurze kalibracji kamery dzieli się na dwie grupy: parametry zewnętrzne (ang. Extrinsic) związane z przesunięciem i rotacją układu kamery względem układu związanego z obserwowaną sceną parametry wewnętrzne (ang. Intrinsic) określające właściwości optyczne i elektryczne kamery, których liczba zaleŝy od przyjętego modelu układu optycznego i kamery W przypadku parametrów wewnętrznych oprócz ogniskowej obiektywu modeluje się zazwyczaj zniekształcenia radialne i styczne związane z układem optycznym. Wyznacza się równieŝ rzeczywiste współrzędne środka obrazu kamery, które nie muszą leŝeć w geometrycznym środku matrycy przetwornika ze względu na skrzywienie osi optycznej obiektywu oraz zniekształcenia liniowe. 1 Podstawowy model kamery perspektywicznej Dla podstawowego modelu kamery, punkty z przestrzeni trójwymiarowej rzutowane są na płaszczyznę przetwornika kamery zgodnie z transformacją perspektywiczną, która wynika z fizykalnego sposobu tworzenia obrazu w kamerze 2

2 Transformacja perspektywiczna w ujęciu współrzędnych jednorodnych Niech współrzędne punktu w przestrzeni kartezjańskiej reprezentuje wektor, co w postaci jednorodnej moŝna zapisać jako, gdzie jest dowolną niezerową stałą. Macierz transformacji perspektywicznej moŝna zapisać jako Wektor współrzędnych jednorodnych odpowiadający punktowi we współrzędnych obrazowych moŝna zapisać w następujący sposób Dla danych jednorodnych współrzędnych obrazowych współrzędne kartezjańskie punktu wyznacza się przez podzielenie pierwszych trzech elementów przez czwarty 3 Odwrotna transformacja perspektywiczna odwzorowuje punkt obrazu z powrotem do przestrzeni trójwymiarowej zgodnie z zaleŝnością Prowadzi to do następujących zaleŝności na współrzędne punktu w przestrzeni trójwymiarowej na podstawie jego rzutu na obrazie Na podstawie pojedynczego obrazu, bez pewnej wiedzy na temat obserwowanej sceny, np. składowej Z punktów, nie moŝna w pełni wyznaczyć punktu w przestrzeni trójwymiarowej na podstawie jego współrzędnych w układzie obrazowym. Dlatego teŝ w celu wyznaczenia pełnej informacji o połoŝeniu punktów w przestrzeni trójwymiarowej często stosuje się np. stereowizyjny układ kamer 4

3 Transformacje między układem podstawowym a układem kamery Macierz transformacji jednorodnej określa przesunięcie między układem podstawowym a układem kamery i jest wyraŝona jako 5 Macierz transformacji jednorodnej, związana z rotacją układu podstawowego względem układu kamery, złoŝona jest z trzech rotacji elementarnych dla jednej z moŝliwych kombinacji kątów Eulera. Przykładowo dla reprezentacji kątów Eulera obrotu wokół osi układu podstawowego w notacji RPY (ang. roll, pitch, yaw) Przyjmując równanie transformacji jednorodnej moŝna zapisać jako 6

4 Na podstawie współrzędnych kartezjańskich punktów w układzie kamery pierwszy, drugi oraz czwarty element wektora moŝna zapisać jako Uwzględniając powyŝsze zaleŝności otrzymuje się w rezultacie układ dwóch równań liniowych z 12 niewiadomymi postaci PowyŜsza procedura kalibracji kamery wymaga zatem określenia minimum 6 punktów o znanych współrzędnych w układzie podstawowym oraz odpowiadających im punktów na płaszczyźnie obrazu w układzie kamery. Uzyskany układ równań rozwiązuje się z uŝyciem metod numerycznych. Nie uwzględnia on zniekształceń optycznych jak równieŝ nie umoŝliwia bezpośrednio wyznaczenia fizycznych parametrów kamery. 7 Model kamery typu pin-hole Często stosowanym modelem kamery w kalibracji jest model typu otworkowego (ang. pinhole), w którym następuje rzutowanie z przestrzeni trójwymiarowej na płaszczyznę obrazu zgodnie z transformacją perspektywiczną z dodatkową rotacją o w płaszczyźnie obrazu. W modelu tym układ związany z kamerą ma początek w ognisku, którego oś pokrywa się z osią optyczną. Układ współrzędnych obrazowych, umieszczony jest przed ogniskiem w odległości ogniskowej zamiast, co daje ten sam efekt co rotacja o w płaszczyźnie obrazu. Uzyskuje się w ten sposób teoretyczny model kamery, który w praktyce nie istnieje, ale jest prostszy w analizie. 8

5 Dla modelu kamery pin-hole moŝna zapisać następujące zaleŝności między połoŝeniem punktu w układzie kamery a jego rzutem na płaszczyznę obrazu we współrzędnych obrazowych Współrzędne obrazowe punktu są współrzędnymi znormalizowanymi tylko względem współrzędnej punktu w układzie kamery, co stanowi dogodniejszą postać w porównaniu do samej transformacji perspektywicznej W sytuacji, gdy układ podstawowy nie jest identyczny z układem kamery, przed rzutowaniem punktu na płaszczyznę obrazu, naleŝy dokonać transformacji związanej z rotacją i przesunięciem z układu podstawowego do układu kamery gdzie macierz określa rotację a wektor przesunięcie, które oznaczają parametry zewnętrzne kamery 9 Zniekształcenia optyczne w modelu kamery J. Heikkila, O. Silven, A Four-step Camera Calibration Procedure with Implicit Image Correction, Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, str J.Y. Bouguet, Camera Calibration Toolbox for Matlab, Zniekształcenia toru optycznego zazwyczaj modeluje się zwykle jako radialne, styczne (tangensowe) oraz liniowe. Zniekształcenia radialne powodują przesunięcie współrzędnych na obrazie w sposób promienisty i mają decydujący wpływ na dokładność pomiarów. MoŜna je aproksymować za pomocą równania gdzie są współczynnikami zniekształcenia radialnego,. Zwykle stosuje się od jednego do trzech współczynników, co wystarcza do kompensacji zniekształceń tego rodzaju. 10

6 Zniekształcenia styczne, które są prostopadłe do radialnych, wynikają z faktu, iŝ środki krzywizny soczewek obiektywu nie zawsze są dokładnie współliniowe. Modeluje się je za pomocą następującego wyraŝenia gdzie i są współczynnikami zniekształceń stycznych Zniekształcenia liniowe mogą być opisane za pomocą pojedynczego współczynnika krzywizny. Powstają gdy osie układu obrazowego nie są idealnie prostopadłe do siebie. Na wartość błędu wprowadzanego przez zniekształcenia liniowe ma wpływ precyzja wykonania przetwornika zastosowanego w kamerze 11 Parametry wewnętrzne modelu kamery z uwzględnieniem zniekształceń Uwzględniając w modelu kamery zniekształcenia, moŝna podać następujące parametry wewnętrzne do procedury kalibracji: dwuelementowy wektor długości ogniskowej, którego elementy są liniową zaleŝnością ogniskowej kamery i współczynników wynikających z przeliczenia rozmiaru pikseli w obu osiach z jednostek metrycznych do obrazowych, wyraŝony w pikselach dwuelementowy wektor, zawierający rzeczywiste współrzędne połoŝenia środka rzutowania punktów na obrazie, tzw. punktu głównego współczynnik krzywizny zniekształceń liniowych, który określa kąt skręcenia pomiędzy osiami pikseli w kierunku poziomym i pionowym na matrycy pięcioelementowy wektor zniekształceń, zawierający współczynniki zniekształceń radialnych i stycznych, gdzie 12

7 Rzeczywiste współrzędne punktu w układzie obrazowym z uwzględnieniem parametrów wewnętrznych Znormalizowane współrzędne punktu w układzie obrazowym Dla wprowadzonych parametrów wewnętrznych oraz znormalizowanych współrzędnych obrazowych punktu rzeczywiste współrzędne punktu z uwzględnieniem równań określających zniekształcenia radialne i styczne moŝna zapisać jako Wektor jest wektorem zniekształceń stycznych postaci 13 Uwzględniając wektor ogniskowej kamery, faktyczne połoŝenie środka obrazu i współczynnik krzywizny, współrzędne punktu w układzie obrazowym moŝna przedstawić jako PowyŜsze zaleŝności przedstawia się często w postaci równania macierzowego gdzie macierz jest tzw. macierzą kamery postaci Elementy macierzy oraz wektora zniekształceń naleŝy wyznaczyć w procedurze kalibracji kamery razem z parametrami zewnętrznymi 14

8 Procedury kalibracji kamery Większość metod kalibracji rozwiązuje problem kalibracji w dwóch etapach, odnosząc się do metody Tsai, w której pierwszy raz zaproponowano dwuetapową procedurę kalibracji. W pierwszym etapie metodami liniowymi znajduje się przybliŝone rozwiązanie, które wykorzystuje się w drugim etapie jako warunek początkowy do optymalizacji nieliniowej. Dzięki dekompozycji zagadnienia na dwa etapy uzyskuje się przyspieszenie obliczeń w procedurze kalibracji przy jednoczesnym zwiększeniu dokładności w porównaniu do metod klasycznych uwzględniających zniekształcenia. KaŜda metoda kalibracji wymaga znajomości serii punktów w przestrzeni oraz współrzędnych ich rzutów na płaszczyznę obrazu. Ze względu na sposób określania punktów w przestrzeni techniki kalibracji moŝna typowo podzielić na trzy kategorie: Pierwsza opiera się na trójwymiarowym obiekcie referencyjnym, którego kształt i wymiary są znane z duŝą precyzją. Odmianą takiego podejścia jest uŝycie wzorca płaskiego ze znaną zmianą połoŝenia podczas wyznaczania punktów do kalibracji Drugi sposób wywodzi się z obserwacji wzorca płaskiego umieszczanego w róŝnych połoŝeniach względem kamery. Nie jest tu jednak potrzebna znajomość pozycji wzorca a jedynie rozmieszczenie punktów na wzorcu Trzecia kategoria określana jest samokalibracją, w której nie uŝywa się Ŝadnego obiektu, którą przeprowadza się na podstawie odpowiadających sobie punktów z obrazów rejestrowanych podczas ruchu kamery obserwującej statyczną scenę 15 Wzorzec do kalibracji z dowiązanym układem współrzędnych oraz punktami kalibracyjnymi 16

9 Rozkład zniekształceń radialnych oraz stycznych Kamera VISTEK SVS 084MSCL + obiektyw PENTAX H612A Zniekształcenia radialne Zniekształcenia styczne 17 Zadanie odwrotne Rozwiązanie zadania odwrotnego umoŝliwia realizację korekcji zniekształceń na obrazie, reprojekcji punktów z układu obrazowego i dalej wykonywanie pomiarów metrycznych w układzie podstawowym przy znanych przekształceniach związanych z rotacją i przesunięciem. Zadanie odwrotne polega na wyznaczeniu wektora współrzędnych punktu znormalizowanych na podstawie współrzędnych obrazowych piksela, przy znajomości parametrów modelu kamery. Ze względu na nieliniowy charakter transformacji związanej ze zniekształceniami modelu kamery, nie moŝna podać ogólnego algorytmu rozwiązującego zagadnienie odwrotne! MoŜna znaleźć szereg propozycji, które opierają się na metodach gradientowych lub jakobianowych. Dla wprowadzonego modelu zniekształceń radialnych i stycznych znormalizowane współrzędne punktu moŝna wyznaczyć w następującej procedurze 1. Dla współrzędnych obrazowych piksela wyznaczyć początkowe współrzędne znormalizowane wektora jako 18

10 2. obliczyć wektor zniekształceń stycznych oraz współczynnik zniekształceń radialnych jako 3. obliczyć nowe współrzędne znormalizowane 4. powtarzać kroki przyjętą ilość razy lub badać czy błąd dopasowania jest mniejszy od załoŝonego, błąd dopasowania moŝna wyznaczyć jako 19 Model stereowizyjnego układu dwóch kamer - dysparycja 20

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Akademia Górniczo-Hutnicza

Akademia Górniczo-Hutnicza Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wyznaczanie dysparycji z użyciem pakietu Matlab Kraków, 2012 1. Mapa dysparycji W wizyjnych metodach odwzorowania, cyfrowa reprezentacja sceny

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli Aerotriangulacja 1. Aerotriangulacja z niezależnych wiązek 2. Aerotriangulacja z niezależnych modeli Definicja: Cel: Kameralne zagęszczenie osnowy fotogrametrycznej + wyznaczenie elementów orientacji zewnętrznej

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

c) d) Strona: 1 1. Cel ćwiczenia

c) d) Strona: 1 1. Cel ćwiczenia Strona: 1 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów wielkości geometrycznych z wykorzystaniem prostych przyrządów pomiarowych - suwmiarek i mikrometrów. 2. Podstawowe

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Temat Zasady projektowania naziemnego pomiaru fotogrametrycznego. 2. Terenowy rozmiar piksela. 3. Plan pomiaru fotogrametrycznego

Temat Zasady projektowania naziemnego pomiaru fotogrametrycznego. 2. Terenowy rozmiar piksela. 3. Plan pomiaru fotogrametrycznego Temat 2 1. Zasady projektowania naziemnego pomiaru fotogrametrycznego 2. Terenowy rozmiar piksela 3. Plan pomiaru fotogrametrycznego Projektowanie Dokładność - specyfikacja techniczna projektu Aparat cyfrowy

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria zdjęć sceny wykonanych z różnymi ustawieniami ekspozycji 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37 Spis treści Przedmowa... 11 1. Przedmiot fotogrametrii i rys historyczny jej rozwoju... 15 1.1. Definicja i przedmiot fotogrametrii... 15 1.2. Rozwój fotogrametrii na świecie... 23 1.3. Rozwój fotogrametrii

Bardziej szczegółowo

Często zadawane pytania PhoToPlan

Często zadawane pytania PhoToPlan Często zadawane pytania PhoToPlan PoniŜszy dokument dostarczy państwu szczegółowych informacji o moŝliwościach PhoToPlan. W razie pytań zapraszamy na naszą stronę internetową lub prosimy o kontakt z naszym

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia Prof. Eugeniusz RATAJCZYK Makrogemetria Pomiary odchyłek kształtu i połoŝenia Rodzaje odchyłek - symbole Odchyłki kształtu okrągłości prostoliniowości walcowości płaskości przekroju wzdłuŝnego Odchyłki

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii Uniwersytet Uniwersytet Rolniczy Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Temat ćwiczenia: Zasady stereoskopowego widzenia.

Temat ćwiczenia: Zasady stereoskopowego widzenia. Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Zasady stereoskopowego widzenia. Zagadnienia 1. Widzenie monokularne, binokularne

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka

WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka dr inż. Witold MICKIEWICZ dr inż. Jerzy SAWICKI Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka Aksjografia obrazowanie ruchu osi zawiasowej żuchwy - Nowa metoda pomiarów

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

Laboratorium Cyfrowego Przetwarzania Obrazów

Laboratorium Cyfrowego Przetwarzania Obrazów Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 3 Interpolacja i przekształcenia geometryczne obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii.

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii. Uniwersytet Uniwersytet Rolniczy Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Anemometria obrazowa PIV

Anemometria obrazowa PIV Wstęp teoretyczny Celem ćwiczenia jest zapoznanie się z techniką pomiarową w tzw. anemometrii obrazowej (Particle Image Velocimetry PIV). Jest to bezinwazyjna metoda pomiaru prędkości pola prędkości. Polega

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Techniki animacji komputerowej

Techniki animacji komputerowej Techniki animacji komputerowej 1 Animacja filmowa Pojęcie animacji pochodzi od ożywiania i ruchu. Animować oznacza dawać czemuś życie. Słowem animacja określa się czasami film animowany jako taki. Animacja

Bardziej szczegółowo

Kalibracja Obrazów w Rastrowych

Kalibracja Obrazów w Rastrowych Kalibracja Obrazów w Rastrowych W Programie SuperEdit PRO Maciej Zabielski Tessel Poland Wprowadzenie Skanowane rysunki są często rozciągnięte, pomarszczone lub zdeformowane w inny sposób co uniemoŝliwia

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION

SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION MOŻLIWOŚCI WYDOBYCIA INFORMACJI 3D Z POJEDYNCZYCH WYSOKOROZDZIELCZYCH OBRAZÓW SATELITARNYCH J. Willneff, J. Poon, C. Fraser Przygotował:

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

płaskie rzuty geometryczne

płaskie rzuty geometryczne płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: Tryb studiów: GRAFIKA KOMPUTEROWA INFORMATYKA Kod/nr GK PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu

Andrzej Marciniak GRAFIKA KOMPUTEROWA. Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Andrzej Marciniak GRAFIKA KOMPUTEROWA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku przez studentów

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT 1 Zbigniew Figiel, Piotr Dzikowicz Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie 2 Plan prezentacji 1. Skanowanie laserowe 3D informacje ogólne; 2. Proces skanowania; 3. Proces

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

Samokalibracja w programie Bundle Adjustment Toolobx

Samokalibracja w programie Bundle Adjustment Toolobx Samokalibracja w programie Bundle Adjustment Toolobx Do wyrównania sieci zdjęć naziemnych pola testowego będziemy potrzebować następujące pliki: 1. plik kamery 2. plik z przybliżonymi elementami orientacji

Bardziej szczegółowo

System do estymacji mapy głębokości na podstawie stereoskopowych sekwencji wideo dla platformy Android

System do estymacji mapy głębokości na podstawie stereoskopowych sekwencji wideo dla platformy Android WYDZIAŁ INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI Praca dyplomowa magisterska System do estymacji mapy głębokości na podstawie stereoskopowych sekwencji wideo dla platformy Android Imię i nazwisko Kierunek

Bardziej szczegółowo

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 2 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Uszkodzi się tylko pierwsza maszyna.... 3 1.2

Bardziej szczegółowo

AUTOCAD MIERZENIE I PODZIAŁ

AUTOCAD MIERZENIE I PODZIAŁ AUTOCAD MIERZENIE I PODZIAŁ Czasami konieczne jest rozmieszczenie na obiekcie punktów lub bloków, w równych odstępach. Na przykład, moŝe zachodzić konieczność zlokalizowania na obiekcie punktów oddalonych

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo