ĆWICZENIE 3 WYTRZYMAŁOŚĆ UDAROWA POWIETRZA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ĆWICZENIE 3 WYTRZYMAŁOŚĆ UDAROWA POWIETRZA"

Transkrypt

1 3 ĆWICZENIE 3 WYTRZYMAŁOŚĆ DAROWA POWIETRZA 3.1. WPROWADZENIE Najbardziej groźne dla izolacji sacji elekroenergeycznych, ze względu na swą dużą warość (seki - ysiące kv), są przepięcia wywołane wyładowaniami amosferycznymi. Przepięcia e rwają bardzo króko, od kilku do kilkudziesięciu mikrosekund i przeważnie są jednego znaku. Takie przebiegi napięcia nazywamy udarowymi. Napięcie udarowe charakeryzuje się rzema wielkościami: warością szczyową m, czasem rwania czoła udaru T 1 i czasem do półszczyu T 2 (rys. 3.1). kv m,9 m,5 m,3 m T 1 T 2 us Rys Przebieg napięcia udarowego: T 1 - umowny czas czoła, T 2 - umowny czas do półszczyu, m - warość szczyowa napięcia udarowego Wyrzymałość udarowa izolacji zależy od kszału udaru i jej określenie ma ogromne znaczenie w projekowaniu urządzeń oraz ich ochronie przed udarami pochodzącymi od uderzeń piorunów. Do badań udarowych izolacji wykorzysuje się przebiegi napięciowe wywarzane szucznie w układach zwanych generaorami udarów napięciowych. W celu ujednolicenia laboraoryjnych badań udarowych izolacji oraz umożliwienia porównania wyników wprowadzono normalizację udarów. W wielu krajach, między innymi i w Polsce, jako udar znormalizowany [3] przyjęo udar o czasie rwania czoła T 1 = 1,2 µs ± 3% i czasie do półszczyu T 2 = 5 µs ± 2% (oznaczenie 1,2/5). Wyboru czasów dokonano na podsawie analizy kszału przebiegów napięciowych najczęściej wysępujących w wyładowaniach piorunowych. Wyrzymałość udarowa powierza jes zwykle wyższa od wyrzymałości saycznej na skuek opóźnienia wyładowania, na kóre wpływają dwa składniki: opóźnienie przypadkowe i czas rozwoju wyładowania. Opóźnienie przypadkowe jes związane z wyzwalaniem pierwszego elekronu z kaody, jak również zależy od przypadkowego czasu dosarczenia pierwszego wolnego elekronu do przesrzeni miedzy elekrodami. Drugi składnik, niezależny od przypadkowości, jes związany z mechanizmem rozwoju wyładowania i maleje szybko ze wzrosem warości szczyowej udaru [1]. Napięciem przeskoku udarowego nazywamy największą warość napięcia. jakie wysępuje na obiekcie badanym do chwili przeskoku. Przy napięciach udarowych przeskok i. związany z nim nagły spadek napięcia nasępuje na ogół dopiero wedy, gdy warość chwilowa napięcia udarowego jes już mniejsza od warości szczyowej udaru. Na przykład przebieg napięcia panującego na izolaorze przedsawia się wówczas jak na rys Taki przebieg napięcia nazywamy udarem ucięym. Jako napięcie przeskoku udarowego przyjmujemy warość szczyową, pomimo że w chwili przeskoku panowało na izolaorze mniejsze napięcie. Czas, kóry upływa od znamionowego począku do ucięcia udaru przy przeskoku, nazywamy czasem do ucięcia. Czas do ucięcia jes dla układów o polu jednosajnym króki, naomias

2 dość długi dla układów o polu bardzo niejednosajnym i przy dużych odsępach elekrod. Przy czym należy pamięać, że czas do przeskoku zależy od kszału udaru. 31 kv m s u us Rys Przebieg napięcia na izolaorze podczas prób wyrzymałości udarowej: s - napięcie sayczne zapłonu, - opóźnienie przeskoku, u - czas do ucięcia Przy niezmienionym kszałcie udaru zjawisko przypadkowości pojawienia się elekronu w miejscu, w kórym jonizacja jes uławiona, powoduje, że liczba przeskoków na obiekcie zależy od warości napięcia. W miarę powiększania warości szczyowej napięcia udarowego procen przeskoków wzrasa aż do pewnej warości napięcia, przy kórej każdy przyłożony udar wywołuje przeskok. Określenie wyrzymałości udarowej obieku wymaga więc podania odseka przeskoków [3]. Napięcie udarowe, przy kórym połowa przyłożonych udarów powoduje przeskok, nazywamy 5- procenowym napięciem przeskoku - 5. Częso wyrzymałość udarowa układu izolacyjnego określa się również przez 1-procenowe napięcia przeskoku (minimalne napięcie przeskoku), a akże 1-procenowe 1. Wyznaczanie ych napięć przeprowadza się (parz wiadomości ogólne p. 1) najdogodniej rysując krzywe odseka przeskoków w funkcji warości szczyowej przyłożonych udarów. Krzywe e częso są nazywane krzywymi prawdopodobieńswa przeskoku [1, 3]. Na ogół im bardziej pole między elekrodami jes niejednosajne, ym bardziej krzywa prawdopodobieńswa przeskoku jes rozciągnięa (rys. 3.3). % p 1 (b) (a) Rys Krzywe prawdopodobieńswa przeskoku: a) dla układu o polu zbliżonym do jednosajnego, b) dla układu o polu niejednosajnym Podanie jednego określonego napięcia przeskoku z krzywej prawdopodobieńswa przeskoku nie jes jeszcze wysarczające do scharakeryzowania udarowych właściwości izolacyjnych układu. Określenie o wymaga sporządzenia charakerysyki napięciowo-czasowej, zwanej charakerysyką udarową. Charakerysyka udarowa jes o zależność k-procenowego udarowego napięcia przeskoku od czasu do przeskoku [2]. kłady o polu zbliżonym do jednosajnego mają charakerysyki udarowe o przebiegu bardziej płaskim, układy o polu niejednosajnym - o przebiegu bardziej sromym (rys. 3.4). Gdy charakerysyki udarowe nie przecinają się, układ posiadający charakerysykę przebiegającą wyżej jes zawsze, zn. dla udarów o każdej warości, bardziej wyrzymały od układu o cha-

3 rakerysyce leżącej niżej. Zależności e są wykorzysywane w zagadnieniach koordynacji izolacji [1]. 32 (a) (b) Rys Charakerysyki udarowe napięciowo-czasowe dla układów o polu zbliżonym do jednosajnego (a) i niejednosajnym (b) Wyrzymałość udarową izolacji charakeryzuje się również przez podanie współczynnika udaru. Jes on sosunkiem udarowego napięcia przeskoku do saycznego napięcia przeskoku odpowiedniego znaku lub częściej do warości. szczyowej napięcia przeskoku przy częsoliwości 5 Hz: k u = pud / 2 p5hz (3.1) Współczynnik udaru izolacji podaje się zwykle dla 5 przy udarze 1,2/5. Współczynnik en mówi nam, ile razy wyrzymałość udarowa jes większa od wyrzymałości przy częsoliwości 5 Hz. Warość współczynnika udaru dla układów z izolacją powierzną zależy głównie od rozkładu pola elekrycznego miedzy elekrodami i odsępu elekrod. W polu zbliżonym do jednosajnego, np. w iskierniku kulowym o przerwie iskrowej niezby dużej w porównaniu z wymiarami elekrod, współczynnik udaru jes bliski jedności. Współczynnik udarowy wyraźnie większy od jedności wysępuje dopiero w obszarze bardzo małych opóźnień (przy ucięciu udaru na sromym czole). Przy dużej niejednosajności pola (w iskiernikach sworzniowych, na powierzchniach izolaorów wsporczych) współczynnik udaru jes większy od jedności już przy warunku 5-procenowym i przy kszałcie udaru 1,2/5. Przy krószych czasach wyrzymałość udarowa jes znacznie wyższa i współczynnik udaru może osiągnąć warość do ok. 1,5 lub większą w zależności od biegunowości udaru. Wpływ rozkładu pola elekrycznego i odległości między elekrodami na wyrzymałość udarową powierza ilusrują charakerysyki na rys. 3.5, gdzie przedsawiono warości średniego naprężenia przeskoku (sosunku 5 do drogi przeskoku a) w funkcji a, dla układów kula-kula oraz sworzeń-sworzeń i sworzeń-płya. Z wykresów wyraźnie widać, że wyrzymałość elekryczna udarowa powierza jes mniejsza dla układów o polu niejednosajnym i zmienia się w granicach od ok. 6 kv/cm do ok. 15 kv/cm w zależności od biegunowości napięcia, odległości miedzy elekrodami i układu elekrod. Znajomość warości przedsawionych na wykresach jes o yle isona, że w prakyce większość układów izolacyjnych ma rozkład pola niejednosajny i pod względem wyrzymałości może być reprezenowana przez modelowe układy ypu sworzeń-sworzeń lub sworzeń-płya. Takie charakerysyki mogą służyć do przybliżonego określenia napięć przeskoku izolaorów. Izolaory wiszące z okuciami przeciwłukowymi mają charakerysyki podobne do układu sworzeń-sworzeń. Naomias izolaory napowierzne sojące oraz izolaory wnęrzowe wsporcze - do układu sworzeń-płya, a właściwości wyrzymałościowe izolaorów przepusowych kondensaorowych odpowiadaj charakerysykom wyrzymałości elekrycznej układu sworzeń-sworzeń. W układach o niesymerii pola elekrycznego zaznacza się wpływ biegunowości napięcia udarowego na wyrzymałość udarów. Wpływ en jes znacznie silniejszy w układzie sworzeń-płya z powodu dużej niesymerii pola. Napięcie przeskoku w ych układach jes większe przy znaku

4 ujemnym udaru. Różnice między dodanim i ujemnym udarowym napięciem przeskoku dochodzą do około 5% w układzie sworzeń-płya. 33 kv cm p a udary 1,2 / 5 25 (c) znak udaru (+) 2 (c) znak udaru (-) 15 1 (a) znak udaru (-) (b) znak udaru (-) (a) znak udaru (+) (b) znak udaru (+) Rys Warość średniego naprężenia przeskoku dla rzech układów elekrod: (a) sworzeńsworzeń uziemiony, (b) sworzeń-płya uziemiona, (c) kula-kula uziemiona Zjawiskiem odpowiedzialnym za e różnice, podobnie jak przy napięciu sałym [2], jes obecność ładunku przesrzennego powsającego w przerwie międzyelekrodowej. Jednak wpływ biegunowości udarów na napięcie przeskoku jes słabszy niż przy napięciu sałym, ze względu na o, że przy krókich czasach do przeskoku gęsość ładunku przesrzennego jes mniejsza. Wpływ rozkładu pola elekrycznego i biegunowości napięcia na wyrzymałość udarową powierza w układach o polu niejednosajnym może być ujęy empirycznymi wzorami wg [3], słusznymi w zakresie 2 cm a 2 cm w normalnych warunkach amosferycznych dla układów: a cm sworzeń-sworzeń uziemiony (+) 5 = 5,7 a + 5 [kv] (3.2) (-) 5 = 6,5 a + 5 [kv] (3.3) sworzeń-płya uziemiona (+) 5 = 5,6 a + 2 [kv] (3.4 (-) 5 = 7,6 a + 13 [kv] (3.5) Wyrzymałość udarowa powierza zależy od warunków amosferycznych (emperaury, ciśnienia i wilgoności). Wpływ ciśnienia i emperaury, przy niezby wysokich emperaurach, kiedy nie wysępuje jeszcze jonizacja cieplna, sprowadza się do wpływu gęsości [1]. Przy wzroście gęsości δ wyrzymałość elekryczna wzrasa. Dla niezby szerokiego zakresu można przyjęć proporcjonalność zmian napięcia przeskoku w funkcji gęsości. Przy bardzo krókich czasach udaru wpływ δ jes znacznie mniejszy. Wpływ wilgoności na napięcie przeskoku jes wyraźny ylko w układach o wybinie niejednosajnym rozkładzie pola elekrycznego, np. w iskiernikach osrzowych, między przewodami równoległymi, na powierzchniach izolaorów. Przy zwiększaniu wilgoności napięcie przeskoku wzra-

5 sa mniej więcej liniowo, ale dość słabo, zwłaszcza przy krószych czasach udarów. Wzros napięcia przeskoku przy zwiększeniu wilgoności o 1g/m3 wynosi dla udarów normalnych i krókich odpowiednio: ok. 1% i,5%. Wpływ wilgoności jes nieco większy przy udarach o znaku dodanim niż przy udarach ujemnych [1] PRZEBIEG ĆWICZENIA Należy zapoznać się ze schemaem i budową wielosopniowego generaora udarów oraz usalić kszał udaru na podsawie paramerów generaora. Nasępnie wyznaczyć wyrzymałość udarową powierza dla kilku układów izolacyjnych o różnych rozkładach pola elekrycznego, np. iskiernika kulowego, układu sworzeń płya, izolaora liniowego. Na rys. 3.6 pokazano schema układu generaora udarów napięciowych (5 kv, 1,2 kws), przeznaczonego do wykonania ćwiczenia. Należy zwrócić uwagę na konsrukcję i rolę poszczególnych elemenów wpływających na kszał i paramery elekryczne napięcia udarowego. Po zapoznaniu się ze schemaem generaora obliczyć kszał udaru na podsawie danych generaora, przyjmując dodakowo, że pojemność doziemna obwodu wysokiego napięcia generaora wynosi 15 pf. 34 R 1Z n=5 R 1 R i R 1 R 1 IZ R 2 C 1 DN OB C R i R 1 TR TP D R IZT W 22V~ DNŁ C R 2 SMT 1L ua Rys Schema układu probierczego; TR - ransformaor regulacyjny 22/-25 V, TP - ransformaor podwyższający 22 V/1 kv, D - dioda prosownicza 23 kv, R - rezysor ograniczający 6 kω, DNŁ - dzielnik napięcia ładowania, C - kondensaory główne generaora,1 µf, IT - iskiernik zapalający rójelekrodowy, I - iskierniki międzysopniowe, R 2 - rezysory grzbieowe 986 Ω, R 1 - rezysory czołowe 2 Ω, R i - rezysory ograniczajce 1 kω, R 1z - rezysor czołowy zewnęrzny 25 Ω, R 1 - rezysor ograniczający zewnęrzny 55 Ω, I p - iskiernik pomiarowy, DN - dzielnik napięcia udarowego 1 kω, C 1 - pojemność czołowa 3 pf, OB - obiek badany, µa - mikroamperomierz w układzie do pomiaru napięcia ładowania, P- układ do pomiaru warości szczyowej udaru

6 Przed przysąpieniem do wykonania prób wyrzymałości udarowej wyznaczyć warunki amosferyczne w laboraorium w celu określenia warości odpowiednich współczynników poprawkowych (parz: wiadomości ogólne p. 2). Nasępnie zainsalować na polu probierczym generaora izolaor liniowy wsporczy o wysokości 12 cm i wyznaczyć jego charakerysykę prawdopodobieńswa przeskoku dla udarów dodanich. Określić warości, 5 i 1. Dla udarów ujemnych wyznaczyć ylko 5. W dalszej kolejności wyznaczyć wyrzymałość udarową powierza w układzie sworzeńpłya uziemiona. W ym celu należy przeprowadzić pomiary napięć przeskoku oraz charakerysyk prawdopodobieńswa przeskoku dla udarów dodanich i ujemnych przy kilku odsępach międzyelekrodowych w zakresie 1 cm 2 cm. Osanim obiekem badań będzie iskiernik kulowy o średnicy kul 25 cm. Dla ego iskiernika należy wyznaczyć charakerysyki prawdopodobieńswa przeskoku dla udarów dodanich i ujemnych przy kilku odsępach międzyelekrodowych w zakresie 2 cm 6 cm. Wyznaczanie krzywych prawdopodobieńswa przeskoku oraz napięć przeskoku przeprowadzić zgodnie z meodyką pomiarów opisaną w wiadomościach ogólnych p. 1. Podczas prób należy również odczyywać dane konieczne do wyznaczenia sprawności generaora udarów. Wyniki badań zesawić w ablicach wg wzoru podanego w ablicy Obiek badań Tab1ica 3.1 Wyniki badań wyrzymałości udarowej powierza Znak Wyniki pomiarów i obliczeń a udaru ł k Napięcie przeskoku Wyrzymałość udarowego [kv] udarowa [kv/cm] cm - kv % p pn E pn Oznaczenia: a - odsęp między elekrodami, ł - napięcie ładowania generaora udarów, k - procen przeskoków na obiekcie, p - napięcie przeskoku w warunkach pomiaru, pn - napięcie przeskoku w warunkach normalnych OCENA WYNIKÓW I WNIOSKI Wyniki badań wyrzymałości udarowej powierza uzyskane z prób należy przeliczyć na warunki normalne i przedsawić na wykresach w aki sposób, aby można było określić i porównać wyrzymałość udarową powierza w zależności od: 1. rozkładu pola elekrycznego między elekrodami, 2. biegunowości napięcia udarowego, 3. odległości między elekrodami. Porównania należy dokonać w sosunku do przebiegów charakerysyk prawdopodobieńswa przeskoku, jak również w sosunku do warości średniej naprężenia przeskoku obliczonego dla napięcia 5. W dalszej części, korzysając z wyników badań wyrzymałości saycznej powierza dla ych samych układów elekrod kula-kula i sworzeń-płya z ćwiczenia 2, należy obliczyć współczynnik udaru k u. Orzymane wyniki badań i obliczeń należy omówić. W rozważaniach wziąć pod uwagę przydaność badania prosych układów iskiernikowych dla określenia udarowego napięcia przeskoku rzeczywisych układów izolacyjnych (izolaor). Dodakowo usosunkować się do sposobu wykonania generaora udarów i przyoczyć obliczenia kszału udaru i sprawności generaora. Próby na iskiernikach kulowych należy wykorzysać do opisania pomiaru napięć udarowych za pomocą iskierników kulowych, a wyniki porównać z wynikami orzymanymi z pomiaru pośredniego za

7 pomocą dzielnika udarowego współpracującego z miernikiem warości szczyowej. Wskazać zaley i wady każdego z ych układów PYTANIA KONTROLNE 1. Zasada działania generaora udarów napięciowych. 2. Kszał napięcia udarowego i zasady jego formowania. 3. Meody pomiaru napięć udarowych. 4. Sprawność generaora udarów. 5. Charakerysyka prawdopodobieńswa przeskoku.. 6. Isoa i charaker przebiegu charakerysyk udarowych. 7. Wpływ rozkładu pola elekrycznego na wyrzymałość udarową powierza. 8. Wpływ biegunowości napięcia na napięcie przeskoku w warunkach udarowych. 9. Średnia wyrzymałość udarowa powierza (wzory, warości). 1. Współczynnik udaru. 11. Zmiany współczynnika udarów w zależności od kszału udaru. 12. Wpływ emperaury, ciśnienia i wilgoności na wyrzymałość udarową powierza. LITERATRA 1. Szpor S.: Ochrona odgromowa. Tom 1 i 2. Warszawa, WNT Szpor S.: Wyrzymałość elekryczna i echnika izolacyjna. Warszawa, PWN Biermanns J.: Hochspannung und Hochleisung. Monachium, CH Verlag PN-92/E-46*. Wysokonapięciowa echnika probiercza. Ogólne określenia i wymagania probiercze * Dane akualne w chwili druku. Sprawdzić akualność norm przed sosowaniem. 36

Pomiar wysokich napięć

Pomiar wysokich napięć Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

Wytrzymałość udarowa powietrza

Wytrzymałość udarowa powietrza Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Wytrzymałość udarowa powietrza

Wytrzymałość udarowa powietrza POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 5 Wytrzymałość udarowa powietrza Grupa dziekańska... Data wykonania

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

BADANIE IZOLACJI ODŁĄCZNIKA ŚREDNIEGO NAPIĘCIA

BADANIE IZOLACJI ODŁĄCZNIKA ŚREDNIEGO NAPIĘCIA LABORATORIUM APARATÓW I URZĄDZEŃ WYSOKONAPIĘCIOWYCH POLITECHNIKA WARSZAWSKA INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Pomiar wysokich napięć udarowych

Pomiar wysokich napięć udarowych POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 5 Pomiar wysokich napięć udarowych Grupa dziekańska... Data wykonania

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz

Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu stałym

Badanie wytrzymałości powietrza przy napięciu stałym POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wytrzymałości powietrza przy napięciu stałym Grupa

Bardziej szczegółowo

Badanie wytrzymałości powietrza napięciem przemiennym 50 Hz przy różnych układach elektrod

Badanie wytrzymałości powietrza napięciem przemiennym 50 Hz przy różnych układach elektrod Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0- Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do ćwiczenia

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz

Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 2 Badanie wytrzymałości powietrza przy napięciu Grupa dziekańska...

Bardziej szczegółowo

Badanie wytrzymałości powietrza napięciem przemiennym 50 Hz przy różnych układach elektrod

Badanie wytrzymałości powietrza napięciem przemiennym 50 Hz przy różnych układach elektrod POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wytrzymałości powietrza napięciem przemiennym 0 Hz przy

Bardziej szczegółowo

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817 LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC87 Ceem badań jes ocena właściwości saycznych i dynamicznych ransopora PC 87. Badany ransopor o

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH

4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH 4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu stałym

Badanie wytrzymałości powietrza przy napięciu stałym Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-1 Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do

Bardziej szczegółowo

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Rozkład napięcia na łańcuchu izolatorów wiszących

Rozkład napięcia na łańcuchu izolatorów wiszących POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 13 Rozkład napięcia na łańcuchu izolatorów wiszących Grupa dziekańska...

Bardziej szczegółowo

Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, Spis treści.

Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, Spis treści. Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, 2017 Spis treści Wstęp 13 ROZDZIAŁ 1 Laboratorium Wysokich Napięć. Organizacja i zasady bezpiecznej

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

4.4. Obliczanie elementów grzejnych

4.4. Obliczanie elementów grzejnych 4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).

Bardziej szczegółowo

ĆWICZENIE 6 PRÓBY NAPIĘCIOWE ELEKTROENERGETYCZNYCH IZOLATORÓW WYSOKIEGO NAPIĘCIA

ĆWICZENIE 6 PRÓBY NAPIĘCIOWE ELEKTROENERGETYCZNYCH IZOLATORÓW WYSOKIEGO NAPIĘCIA ĆWICZENIE 6 PRÓBY NAPIĘCIOWE ELEKTROENERGETYCZNYCH IZOLATORÓW WYSOKIEGO NAPIĘCIA 6.1. WPROWADZENIE Izolatory wysokiego napięcia izolują przewody linii elektroenergetycznych, szyny rozdzielni, zaciski aparatów,

Bardziej szczegółowo

Badanie wyładowań ślizgowych

Badanie wyładowań ślizgowych POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wyładowań ślizgowych Grupa dziekańska... Data wykonania

Bardziej szczegółowo

Paweł Rózga Politechnika Łódzka, Instytut Elektroenergetyki

Paweł Rózga Politechnika Łódzka, Instytut Elektroenergetyki Wytrzymałość udarowa izolacji gazowej, ciekłej i stałej - doświadczenia z laboratoryjnych prac eksperymentalnych Paweł Rózga Politechnika Łódzka, Instytut Elektroenergetyki 16.05.2019, Toruń 2 Plan prezentacji

Bardziej szczegółowo

Wytrzymałość układów uwarstwionych powietrze - dielektryk stały

Wytrzymałość układów uwarstwionych powietrze - dielektryk stały Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 8 Wytrzymałość

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSTANCYJNYCH CZUJNIKÓW TEMPERATURY

BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSTANCYJNYCH CZUJNIKÓW TEMPERATURY BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSANCYJNYCH CZUJNIKÓW EMPERAURY. Cel ćwiczenia Celem ćwiczenia jes eksperymenalne wyznaczenie charakerysyk dynamicznych czujników ermomerycznych w różnych ośrodkach

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ. (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2

KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ. (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2 KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2 Cel zajęć: Celem zajęć jest podanie celowości i specyfiki

Bardziej szczegółowo

Badanie wyładowań ślizgowych

Badanie wyładowań ślizgowych Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-1 Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

ĆWICZENIE 1 METODY POMIARÓW WYSOKICH NAPIĘĆ PRZEMIENNYCH, STAŁYCH I UDAROWYCH

ĆWICZENIE 1 METODY POMIARÓW WYSOKICH NAPIĘĆ PRZEMIENNYCH, STAŁYCH I UDAROWYCH ĆWICZENIE 1 METODY POMIAÓW WYSOKICH NAPIĘĆ PZEMIENNYCH, STAŁYCH I UDAOWYCH 1.1. WPOWADZENIE 1.1.1. Metoda iskiernikowa Iskiernik jest najprostszym przyrządem pomiarowym służącym do bezpośredniego pomiaru

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

Badanie ograniczników przepięć

Badanie ograniczników przepięć POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 1 Badanie ograniczników przepięć Grupa dziekańska... Data wykonania

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

Drgania relaksacyjne (pomiar pojemności)

Drgania relaksacyjne (pomiar pojemności) Drgania relaksacyjne (pomiar pojemności) I. el ćwiczenia: zapoznanie z działaniem oraz własnościami najprosszej dwuelekrodowej lampy gazowej neonówki II. Przyrządy: płyka pomiarowa, kondensaor dekadowy,

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po

Bardziej szczegółowo

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych Ćwiczenie 6 BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERNKOWEGO MiCOM P127 1. Przeznaczenie i zasosowanie przekaźników kierunkowych Przekaźniki kierunkowe, zwane eż kąowymi, przeznaczone

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

6. NADPRĄDOWA, PODNAPIĘCIOWA l NADNAPIĘCIOWA OCHRONA URZĄDZEŃ ELEKTRYCZNYCH 1

6. NADPRĄDOWA, PODNAPIĘCIOWA l NADNAPIĘCIOWA OCHRONA URZĄDZEŃ ELEKTRYCZNYCH 1 78 Zasady energoelekryki 6. NADPRĄDOWA, PODNAPIĘCIOWA l NADNAPIĘCIOWA OCHRONA URZĄDZEŃ EEKTRYCZNYCH 6.. EEKTRYCZNY ŁUK ŁĄCZENIOWY Wyładowania łukowe zachodzące w lampach wyładowczych, spawarkach elekrycznych

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Badanie oleju izolacyjnego

Badanie oleju izolacyjnego POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie oleju izolacyjnego Grupa dziekańska... Data wykonania

Bardziej szczegółowo

Wyznaczanie charakterystyk częstotliwościowych

Wyznaczanie charakterystyk częstotliwościowych Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Rozkład napięcia na łańcuchu izolatorów wiszących

Rozkład napięcia na łańcuchu izolatorów wiszących Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

Badanie ograniczników przepięć

Badanie ograniczników przepięć Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-18 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów

Bardziej szczegółowo

Maszyny prądu stałego - charakterystyki

Maszyny prądu stałego - charakterystyki Maszyny prądu sałego - charakerysyki Dwa podsawowe uzwojenia w maszynach prądu sałego, wornika i wzbudzenia, mogą być łączone ze sobą w różny sposób (Rys. 1). W zależności od ich wzajemnego połączenia

Bardziej szczegółowo

Przewód o izolacji wysokonapięciowej elementem urządzenia piorunochronnego

Przewód o izolacji wysokonapięciowej elementem urządzenia piorunochronnego VI Lubuska Konferencja Naukowo-Techniczna i-mitel 2010 Andrzej SOWA 1, Krzysztof WINENIK 2 Politechnika Białostocka, Wydział Elektryczny (1), DEHN Polska (2) Przewód o izolacji wysokonapięciowej elementem

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła POLITECHNIKA BIAŁOSTOCKA Wydział Budownicwa i Inżynierii Środowiska Kaedra Ciepłownicwa, Ogrzewnicwa i Wenylacji Insrukcja do zajęć laboraoryjnych Ćwiczenie nr 6 Laboraorium z przedmiou Alernaywne źródła

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET Wydział Elekroniki Mikrosysemów i Fooniki Poliechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 5 Przełącznikowy ranzysor mocy MOSFET Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku

Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku Pior GRZEJSZCZK, Roman BRLIK Wydział Elekryczny, Poliechnika Warszawska doi:1.15199/48.215.9.12 naliyczny opis łączeniowych sra energii w wysokonapięciowych ranzysorach MOSFET pracujących w mosku Sreszczenie.

Bardziej szczegółowo

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP./43201/81/13/14

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP./43201/81/13/14 Fizyka Klasa VII Szkoły Podsawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP./43201/81/13/14 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

Ć W I C Z E N I E N R E-9

Ć W I C Z E N I E N R E-9 INSTYTT FIZYKI WYDZIAŁ INŻYNIERII PRODKJI I TEHNOLOGII MATERIAŁÓW POLITEHNIKA ZĘSTOHOWSKA PRAOWNIA ELEKTRYZNOŚI I MAGNETYZM Ć W I Z E N I E N R E-9 DRGANIA RELAKSAYJNE I. Zagadnienia do przesudiowania

Bardziej szczegółowo

opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez tarcie

opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez tarcie Wymagania szczegółowe na poszczególne oceny z przedmiou fizyka do programu nauczania Świa fizyki Wymagania dososowane do indywidualnych porzeb i możliwości uczniów. O elekryczności saycznej 81 Elekryzowanie

Bardziej szczegółowo

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA LINIA DŁUGA Z Z, τ e u u Z L l Konspek do ćwiczeń laboraoryjnych z przedmiou TECHNIKA CYFOWA SPIS TEŚCI. Definicja linii dłuiej... 3. Schema zasępczy linii dłuiej przedsawiony za pomocą elemenów o sałych

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot: Technika wysokich napięć Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E7_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: trzeci Semestr: piąty

Bardziej szczegółowo

Wymagania programowe z fizyki w klasie II gimnazjum rok szkolny 2013/2014

Wymagania programowe z fizyki w klasie II gimnazjum rok szkolny 2013/2014 Wymagania programowe z fizyki w klasie II gimnazjum rok szkolny 013/014 0 Zajęcia organizacyjne 1. Jak opisujemy ruch? Lp. Tema lekcji Wymagania konieczne i podsawowe 1 Układ odniesienia. Tor ruchu, droga

Bardziej szczegółowo

Plan wynikowy z fizyki dla klasy II gimnazjum. 1. Siły w przyrodzie

Plan wynikowy z fizyki dla klasy II gimnazjum. 1. Siły w przyrodzie Plan wynikowy z fizyki dla klasy II gimnazjum. 1. Siły w przyrodzie 1. Wzajemne oddziaływanie ciał. Trzecia zasada dynamiki. Wypadkowa sił działających na ciało wzdłuż jednej prosej. Siły równoważące się

Bardziej szczegółowo

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP.4320/81/12/13

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP.4320/81/12/13 Fizyka Klasa VII Szkoły Podsawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP.4320/81/12/13 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

Wytrzymałość układów uwarstwionych powietrze - dielektryk stały

Wytrzymałość układów uwarstwionych powietrze - dielektryk stały Politechnika Lbelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0- Lblin, l. Nadbystrzycka A www.keitwn.pollb.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrkcja do ćwiczenia

Bardziej szczegółowo