Wyznaczanie charakterystyk częstotliwościowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie charakterystyk częstotliwościowych"

Transkrypt

1 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod określania właściwości układów dynamicznych jes wyznaczanie ich charakerysyk częsoliwościowych. Charakerysyka częsoliwościowa opisuje odpowiedź układu na wymuszenie harmoniczne (sinusoidalne) o częsoliwości zmieniającej się w określonym zakresie (charaker fizyczny sygnału wejściowego i wyjściowego może być różny). Sygnał harmoniczny jes szczególnie przydany jako sygnał esowy ponieważ kolejne punky charakerysyki wyznaczane są oddzielnie, za każdym razem używając pełnej dopuszczalnej ze względu na nieliniowość ampliudy sygnału pomiarowego wpływ zakłóceń jes zaem mniejszy niż przy meodach czasowych. Zasosowanie charakerysyk częsoliwościowych - Projekowanie układów regulacji - Modelowanie obieku - Dobór częsoliwości próbkowania sygnału wyjściowego w układach dyskrenych Doświadczalne wyznaczanie charakerysyk częsoliwościowych polega na znalezieniu zależności między ampliudami i fazami sygnałów wejściowego i wyjściowego w sanie usalonym, gdy na wejście doprowadzony jes pomiarowy sygnał sinusoidalny o sałej ampliudzie i częsoliwości. Dokonanie ego rodzaju pomiarów przy różnych częsoliwościach pozwala znaleźć kolejne punky charakerysyki; jeśli dokonamy ego w odpowiednim paśmie częsoliwości (eoreycznie w paśmie od f=0 do f= ), orzymana charakerysyka w pełni scharakeryzuje własności obieku. Do wykonania pomiarów konieczne jes użycie generaora przebiegów sinusoidalnych (najczęściej generaora sygnału elekrycznego) o regulowanej częsoliwości i ampliudzie sygnału. Sygnał wejściowy i wyjściowy obieku należy podłączyć do urządzenia rejesrującego (oscyloskop, kara przeworników A/C, rejesraor pisakowy ip.) i na podsawie zarejesrowanych oscylogramów wyznaczyć sosunek ampliud G(jω) - wzór (1) i przesunięcie fazowe arg G(jω) - wzór (2) przy danej częsoliwości (rys 1). 2A G( j ) M ( ) 2A 2 1 (1) Tx ( ) argg( j ) 2 T (2) we() wy() Tx 2A2 2A1 T Rys. 1 Wyznaczanie modułu i przesunięcia fazowego na podsawie oscylogramów

2 2. Układy pomiarowe do wyznaczania charakerysyk częsoliwościowych W najprosszym przypadku gdy mamy do czynienia z obiekem małej mocy o wejściu i wyjściu w posaci sygnału napięciowego układ pomiarowy do wyznaczania charakerysyk częsoliwościowych przedsawiony zosał na rys 2: CH1 Generaor Obiek CH2 Rys. 2 Schema blokowy układu do wyznaczania charakerysyk częsoliwościowych W prakyce sygnał z generaora sygnału elekrycznego ma zby małą moc żeby można go było podłączyć bezpośrednio do wejścia badanego obieku. Konieczne jes jego wzmocnienie w elemencie wykonawczym, kóry dodakowo zamienia sygnał napięciowy na inną, wymaganą do serowania badanym obiekem wielkość np. na siłę, przemieszczenie, ciśnienie, przepływ ip. Dodakowo sygnał wyjściowy z obieku nie zawsze jes napięciowy; należy wówczas zasosować odpowiedni przewornik pomiarowy (zakładamy że jego wpływ na wyniki pomiarów jes pomijalny). Ponieważ elemen wykonawczy jes połączony szeregowo z obiekem, zwykle wyznacza się wypadkową charakerysykę częsoliwościową ych elemenów rys 3. CH1 Generaor Urządzenie wykonawcze Obiek Przewornik pomiarowy CH2 Rys. 3 Schema blokowy układu do wyznaczania charakerysyk częsoliwościowych obieku z urządzeniem wykonawczym na wejściu Na rys 4 przedsawiono schema blokowy układu do wyznaczanie charakerysyk częsoliwościowych obieku pracującego w układzie zamknięym z regulaorem liniowym. W ym przypadku generaor działa na obiek za pośrednicwem regulaora, kóry serując poprzez urządzenie wykonawcze obiekem, wymusza na jego wyjściu sygnał zadany czyli przebieg sinusoidalny. W ym przypadku ampliuda sygnału wyjściowego będzie miała sałą warość, niezależną od częsoliwości sygnału z generaora. Zależna od częsoliwości będzie warość sygnału na wejściu obieku. Przewornik pomiarowy CH1 Generaor Regulaor Urządzenie wykonawcze Obiek Przewornik pomiarowy CH2 Rys. 4 Schema blokowy układu do wyznaczania charakerysyk częsoliwościowych obieku w układzie zamknięym z liniowym regulaorem

3 Układ en nadaje się do badania obieków asaycznych, kóre całkują sygnał wejściowy. W przypadku układu pomiarowego z rys. 3 składowa sała w sygnale na wejściu spowoduje ciągłe narasanie (lub opadanie) sygnału wyjściowego co uniemożliwia poprawny odczy ampliudy oscylacji i przesunięcia fazowego. Dodakowo może dojść do przekroczenia dopuszczalnych warości sygnału wyjściowego lub innych sygnałów i w szczególności do uszkodzenia urządzenia. Układ pomiarowy z regulaorem odwarza na wyjściu obieku składową sałą sygnału z generaora: sygnał wyjściowy oscyluje wokół usalonej warości. 3. Prakyczne problemy pojawiające się podczas wyznaczania charakerysyk częsoliwościowych 3.1 Dobór ampliudy sygnału wejściowego Przy doborze ampliudy sygnału pomiarowego należy przede wszyskim zwrócić uwagą na nieliniowości wysępujące w układzie. Z doświadczenia wiemy że w oaczającym nas świecie zdecydowana większość zmiennych fizycznych nie może przyjmować dowolnie dużych warości. Dlaego w każdym rzeczywisym obiekcie może pojawić się nieliniowość związana z nasyceniem sygnałów (Dodaek 1). Częso celowo wprowadza się nasycenie sygnału wejściowego lub innych sygnałów w obiekcie, w celu zabezpieczenia urządzenia przed uszkodzeniem (np. ograniczenie maksymalnego prądu płynącego przez uzwojenie silnika), czy eż dla bezpieczeńswa obsługi (np. ograniczenie maksymalnej prędkości samochodu) UWAGA: W rakcie wyznaczania charakerysyki częsoliwościowej należy ak dobrać ampliudę sygnału wejściowego, aby żaden z sygnałów w badanym obiekcie nie uległ nasyceniu. Zgrubnej oceny czy kóryś z sygnałów uległ nasyceniu można dokonać na podsawie obserwacji kszału sygnału wyjściowego. Przykładowo jeśli nasycenie pojawia się bezpośrednio na wyjściu obieku o można je zobaczyć na oscylogramie (Dodaek 1/rys. 1b). W pewnych syuacjach nasyceniu może ulec kóryś z sygnałów wewnąrz obieku. Jeżeli sygnały e są niedosępne dla pomiarów wówczas o ewenualnym wysąpieniu nasycenia można wnioskować na podsawie obserwacji kszału sygnału wyjściowego; wymaga o jednak analizy częsoliwościowej ego sygnału. Jeżeli w widmie pojawią się dodakowe prążki o częsoliwościach będących całkowiymi wielokronościami częsoliwości sygnału wejściowego o oznacza, że kóryś z sygnałów ulega nasyceniu. W akim przypadku należy zmniejszyć ampliudę sygnału wejściowego. 3.2 Zakres zmian częsoliwości sygnału wejściowego Pewną rudność sprawia zazwyczaj określenie pasma częsoliwości, w kórym rzeba dokonać pomiarów. Niekiedy zaleca się rozpoczynać pomiary od doświadczalnego wyznaczenia częsoliwości f π, przy kórej przesunięcie fazowe φ = π. Nasępnie przeprowadza się pomiary dla częsoliwości z zakresu od 0 do 2f π. 3.3 Dobór składowej sałej sygnału wejściowego W wielu przypadkach sygnał serujący nie może przyjmować warości ujemnych (np. nie można dosarczyć ujemnej mocy do grzałki, zaworu usawionego w zerowej pozycji nie da się bardziej zamknąć ip.). Wówczas do sinusoidalnego sygnału wymuszenia należy dodać składową sałą, o warości odpowiadającej ypowemu punkowi pracy urządzenia (lub w połowie zakresu liniowości). Zwykle owarzyszy emu pojawienie się składowej sałej w odpowiedzi badanego obieku Dodaek 1/rys. 2. W przypadku sygnałów z niezerową składową sałą może pojawić się problem z wyznaczeniem czasu Tx (wzór (2)). Wc ej syuacji należy skorzysać z meody przedsawionej w dodaku 2. UWAGA Składowa sała w sygnale wejściowym nie zmienia charakerysyki częsoliwościowej

4 4. Przebieg ćwiczenia 1. Włączyć zasilanie przysawki oscyloskopowej ADC-200; wejścia pomiarowe A i B przysawki pozosawić odłączone. 2. Uruchomić program PicoScope. Usawić paramery oscyloskopu zgodnie z rys. 1. skala czasu mnożnik skali czasu yp sprzężenia yp sprzężenia Podsawa czasu Kanał A Kanał B synchronizacja Rys 1 Usawienia począkowe paramerów oscyloskopu 3. Wykonać procedury kalibracji offseów; polecenie Seings/Offse null/chanell x. 4. Połączyć układ pomiarowy zgodnie z rys.2. Generaor Sała czasowa obieku G1 G1 0 max G2 MOD-1 A B ADC-200 Do kompuera Rys.2 Schema blokowy układu do wyznaczania charakerysyk częsoliwościowych 5. Usawić sałą czasową ransmiancji G 1 na 0 wówczas G 1 (S)=1; w ym przypadku idenyfikowana będzie ransmiancja G Poprosić prowadzącego o sprawdzenie połączeń. 7. Włączyć zasilanie obieku. 8. Włączyć zasilanie generaora. Przyciskiem WAVE wybrać rodzaj przebiegu wyjściowego z generaora przebieg sinusoidalny. Usawić częsoliwość na 50 Hz (pokręło i przyciski w prawym górnym narożniku generaora). Na moniorze pojawią się przebiegi sygnału z generaora (kanał A niebieski) i sygnału na wyjściu obieku (kanał B czerwony). UWAGA Jeśli w rakcie pomiarów przebiegi nie będą sinusoidalne należy poprosić prowadzącego. 9. Przy pomocy pokręła AMPL w dolnej części generaora usawić ampliudę sygnału z generaora na 10 V odczy z oscylogramu.

5 10. Nacisnąć przycisk STOP w lewym dolnym narożniku okna oscylogramu. Nasępnie umieścić na oscylogramie poziome linie naciskając prawy przycisk myszy (rysowanie linii: Dodaek 3). Przesunąć srzałkami linie ak aby przechodziły przez maksima i minima sygnału na wyjściu obieku rys.3. Rys.3 Usawienia kursorów i odczy max i min sygnału w kanale B 11. Odczyać warość międzyszczyową (wielkość xo nad oscylogramem). Wynik zapisać w abeli 1 - kolumna 2A Narysować pionowe linie w punkach, w kórych narasające zbocza sygnałów osiągają warość 0. Linię x na sygnale wejściowym (niebieski), linię o na sygnale wyjściowym (czerwony). W celu zwiększenia precyzji usawienia linii należy usawić mnożnik skali czasu na x1 0 rys. 4. Rys. 4 Usawienia linii pionowych do pomiaru czasu opóźnienia

6 13. Odczyać czas pomiędzy liniami (wielkość xo nad oscylogramem). Wynik zapisać w abeli 1 kolumna T X Powórzyć pomiar czasu dla linii umieszczonych na opadających zboczach sygnałów. Wynik zapisać w abeli 1 kolumna T X Usawić mnożnik skali czasu na x Nacisnąć przycisk GO w lewym dolnym narożniku okna oscylogramu. 17. Powórzyć punky od 9 do 16 dla wszyskich częsoliwości z abeli 1. Skalę czasu (Rys. 1) dobierać ak aby na oscylogramie widoczne były przynajmniej po dwa minima i maksima przebiegu sygnału wyjściowego. UWAGA 1. Dla częsoliwości powyżej 100 Hz usawić w obu kanałach yp sprzężenia na AC 2. Wyniki pomiarów na bieżąco wpisywać do programu Malab lub Excel 18. Na podsawie wykonanych pomiarów i obliczeń wykreślić charakerysyki Bodego obieku o ransmiancji G Poprosić prowadzącego o sprawdzenie wyników pomiarów i usawienie sałej czasowej dla ransmiancji G Powórzyć pomiary (punky od 10 do 17) dla szeregowego połączenia ransmiancji G 1 i G Wyłączyć zasilanie: generaora, obieku i przysawki oscyloskopowej. Transmiancja G 2 LP Usawienia Pomiary Obliczenia f 2A 1 2A 2 T X1 T X2 T T X_śr G(ω) φ(ω) Uwagi [Hz] [V] [V] [ms] [ms] [ms] [ms] [V/V] [rad] k 9 2k 10 5k 11 10k 12 20k 13 50k k k Transmiancja G 1 G k 9 2k 10 5k 11 10k 12 20k 13 50k k k Tabela 1

7 Sprawozdanie Do obliczeń i worzenia wykresów wykorzysać program Malab lub Excel. 1. Na podsawie wykonanych pomiarów i obliczeń wykreślić charakerysykę ampliudowo-fazową (Nyquis a) i charakerysyki Bodego obieku o ransmiancji G 2 2. Na podsawie uzyskanych w punkcie 1 charakerysyk określić jaki o jes obiek. Podać ransmiancję i wyznaczyć paramery. Warości paramerów należy określić na podsawie charakerysyk asympoycznych dorysowanych na wykresach wyznaczonych charakerysyk logarymicznych. 3. Na podsawie wykonanych pomiarów i obliczeń wykreślić charakerysykę ampliudowo-fazową (Nyquis a) i charakerysyki Bodego obieku złożonego z szeregowego połączenia ransmiancji G 1 i G Wiedząc że badany obiek składa się z szeregowego połączenia dwóch bloków wyznaczyć charakerysyki Bodego bloku G 1. Wskazówka: Należy od uzyskanych w punkcie 3 charakerysyk odjąć charakerysyki z punku Na podsawie uzyskanych w punkcie 4 charakerysyk określić jaki o jes obiek. Podać ransmiancję i wyznaczyć paramery. Warości paramerów należy określić na podsawie charakerysyk asympoycznych dorysowanych na wykresach wyznaczonych charakerysyk logarymicznych. 6. Podać ransmiancję wypadkową obieku. Na podsawie ransmiancji wykreślić charakerysykę ampliudowo-fazową (Nyquis a) i charakerysyki Bodego (na wspólnym rysunku z punku 3. Określić czy orzymane charakerysyki pokrywają się (jeśli nie o dlaczego) 7. Na podsawie wykreślonych charakerysyk Bodego określić czy badany obiek jes minimalnofazowy czy nieminimalnofazowy; odpowiedź uzasadnić [3]. Pyanie dodakowe dla dociekliwych: 1. Czy do wyznaczania charakerysyk częsoliwościowych można użyć innego niż sinusoida sygnału wejściowego (np. przebieg prosokąny lub rapezoidalny)? Wskazówka: [1] rozdział 3.3 Lieraura [1] W. Findeisen: Technika regulacji auomaycznej, PWN, Warszawa [2] Jerzy Pułaczewski: Podsawy regulacji auomaycznej [3] Andrzej Markowski: Auomayka w pyaniach i odpowiedziach, Warszawa 1979, Wydawnicwa Naukowo-Techniczne

8 Dodaek 1 Nasycenie Zjawisko nasycenia ma miejsce wedy, gdy po przekroczeniu przez sygnał wejściowy pewnej warości usaje przyros sygnału wyjściowego. Analiyczny opis jes wedy nasępujący: wy Y max wy wy Y max wy X min X min X max we X max we Y min Y min we we a) sygnał wejściowy w zakresie liniowym b) sygnał wejściowy poza zakresem liniowym Rys.1 Wpływ nasycenia na kszał sygnału wyjściowego w zależności od warości sygnału wejściowego Nieliniowość charakerysyki obieku nie musi być symeryczna względem począku układu współrzędnych. Na rys 2 przedsawiono charakerysykę sayczną przewornika pomiarowego ciśnienia z wyjściem prądowym. W ym przypadku sygnał wyjściowy przyjmuje wyłącznie warości większe od zera z przedziału 4-20 ma. Dodakowo zakres zmian sygnału wejściowego zosał ograniczony do warości większych od zera. I wy 20 ma I wy 4 ma składowa sała sygnału wyjściowego pmin pmax ciśnienie ciśnienie składowa sała sygnału wejściowego Rys. 2 Charakerysyka sayczna przewornika pomiarowego z wyjściem prądowym 4-20 ma

9 Dodaek 2 Wyznaczanie przesunięcia fazowego w przypadku sygnałów z niezerową składową sałą Pomiar czasu opóźnienia T X wymaga precyzyjnego określenia momenów w kórych badane sygnały mają jednakowe fazy. Jeśli analizowane sygnały mają różne składowe sałe może o być kłopoliwe. W akim przypadku do wyznaczenia czasu T X można skorzysać z zależności (3). T X1 we() wy() T X2 a T X a b b T X Rys. 1 Wyznaczanie przesunięcia fazowego w przypadku sygnałów z niezerową składową sałą Na podsawie rys. 1 można napisać układ równań (1): (1) Dodając powyższe równania sronami orzymujemy (2): (2) Osaecznie po przekszałceniu orzymujemy (3): (3) Jak widać wyznaczony czas T X nie zależy od warości składowych sałych przebiegów i przyjęego poziomu na kórym dokonujemy pomiarów T X1 i T X2 (niebieska linia na rys.1). W prakyce ze względu na szumy pomiarowe najlepiej jes przyjąć poziom na kórym dokonujemy pomiarów blisko miejsca w kórym sygnały mają maksymalne sromości.

10 Dodaek 3 Rysowanie linii pomocniczych na wykresie Aby dodać pionową linię: 1. Przesuń kursor w okolice miejsca w kórym ma znaleźć się linia, zaczynając w górnej części okna. 2. Naciśnij i przyrzymaj wciśnięy lewy przycisk myszy 3. Przeciągnij myszą w dół 4. PicoScope wyświela pionową linijkę 5. Przesuń mysz lewo lub w prawo, aby usawić żądaną pozycję. 6. Zwolnij przycisk myszy Aby dodać poziomą linię: 1. Przesuń kursor w okolice miejsca w kórym ma znaleźć się linia, w pobliżu lewej srony okna 2. Naciśnij i przyrzymaj wciśnięy prawy przycisk myszy 3. Przeciągnij mysz w prawo 4. PicoScope wyświela poziomą linijkę 5. Przesuń mysz w górę lub w dół, aby usawić żądaną pozycję. 6. Zwolnij przycisk myszy Jeżeli są dwie osie Y, o naciśnięcie lewego przycisku myszy przy rysowaniu przypisuje linię do osi z lewej srony, naomias naciśnięcie prawego przycisku myszy przy rysowaniu przypisuje linię do osi z prawej srony (na końcu linii pojawia się znacznik z kolorem osi do kórej zosała ona przypisana) Można dodać maksymalnie dwie linie; dodawanie kolejnej spowoduje usunięcie najsarszej. Program PicoScope wyświela akualne pozycje linii. Jeśli dwie linie są na ej samej osi, PicoScope wyświela również różnicę warości pomiędzy nimi (wielkość xo w górnej części ekranu) Narysowane linie można przemieszczać przy pomocy srzałek na klawiaurze. Aby wybrać linię kóra będzie przesuwana należy usawić kursor w pobliżu wybranej linii i kliknąć lewym przyciskiem myszy linia przesunie się ak że będzie przechodzić przez akualne położenie kursora. Nasępnie przy pomocy srzałek na klawiaurze można precyzyjnie usawić położenie linii.

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

Podstawy Automatyki ĆWICZENIE 4

Podstawy Automatyki ĆWICZENIE 4 Podstawy Automatyki Politechnika Poznańska Instytut Automatyki i Robotyki ĆWICZENIE 4 Wyznaczanie charakterystyk częstotliwościowych Ćwiczenie ma na celu przedstawienie praktycznych metod wyznaczania charakterystyk

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie:

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie: Wydział EAIiIB Kaedra Merologii i Elekroniki Laboraorium Podsaw Elekroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw.. Wprowadzenie do obsługi przyrządów pomiarowych cz. Daa wykonania:

Bardziej szczegółowo

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników Insrukcja do ćwiczenia laboraoryjnego Badanie liczników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 3. 4. Budowa licznika cyfrowego. zielnik częsoliwości, różnice między licznikiem

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603 ZAŁĄCZNIK NR 1 INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 5463 Do rejesracji przebiegów czasowych i charakerysyk służy oscyloskop cyfrowy. Drukarka przyłączona do oscyloskopu umożliwia wydrukowanie zarejesrowanych

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817 LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC87 Ceem badań jes ocena właściwości saycznych i dynamicznych ransopora PC 87. Badany ransopor o

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki

Podstawy Elektroniki dla Elektrotechniki AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru

Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ćwiczenie 33 Inererencja al akusycznych - dudnienia Tabela I. Wyznaczanie częsoliwości dudnień Pomiar Czas,

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości.

4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości. EiT Vsemesr AE Układy radioelekroniczne Modulacje kąowe 1/26 4. Modulacje kąowe: FM i PM. Układy demodulacji częsoliwości. 4.1. Modulacje kąowe wprowadzenie. Cecha charakerysyczna: na wykresie wskazowym

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

ĆWICZENIE 2. Autor pierwotnej i nowej wersji; mgr inż. Leszek Widomski

ĆWICZENIE 2. Autor pierwotnej i nowej wersji; mgr inż. Leszek Widomski ĆWICZENIE Auor pierwonej i nowej wersji; mgr inż. Leszek Widomski UKŁADY LINIOWE Celem ćwiczenia jes poznanie właściwości i meod opisu linioch układów elekrycznych i elekronicznych przenoszących sygnały.

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

Badanie transformatora 3-fazowego

Badanie transformatora 3-fazowego adanie ransormaora 3-azowego ) Próba sanu jałowego ransormaora przy = N = cons adania przeprowadza się w układzie połączeń pokazanych na Rys.. Rys.. Schema połączeń do próby sanu jałowego ransormaora.

Bardziej szczegółowo

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 1 Poznawanie i posługiwanie się programem Multisim 2001 Wersja

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA DODATEK A POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI ĆWICZENIE NR 1 CHARAKTERYSTYKI CZASOWE I CZĘSTOTLIWOŚCIOWE PROSTYCH UKŁADÓW DYNAMICZNYCH PRACOWNIA SPECJALISTYCZNA

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych Ćwiczenie 6 BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERNKOWEGO MiCOM P127 1. Przeznaczenie i zasosowanie przekaźników kierunkowych Przekaźniki kierunkowe, zwane eż kąowymi, przeznaczone

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

OSCYLOSKOP CEL ĆWICZENIA: PROGRAM ĆWICZENIA

OSCYLOSKOP CEL ĆWICZENIA: PROGRAM ĆWICZENIA OSCYLOSKOP CEL ĆWICZENIA: Celem ćwiczenia jes poznanie budowy, zasady działania i obsługi oscyloskopu oraz sposobów jego właściwego wykorzysania do obserwacji przebiegów czasowych sygnałów elekronicznych.

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia

Bardziej szczegółowo

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA Ćwiczenie Zmodyfiowano 7..5 Prawa auorsie zasrzeżone: Kaedra Sysemów Przewarzania Sygnałów PWr SZEREGI OURIERA Celem ćwiczenia jes zapoznanie się z analizą i synezą sygnałów oresowych w dziedzinie częsoliwości.

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6b

Instrukcja do ćwiczenia laboratoryjnego nr 6b Instrukcja do ćwiczenia laboratoryjnego nr 6b Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

... nazwisko i imię ucznia klasa data

... nazwisko i imię ucznia klasa data ... nazwisko i imię ucznia klasa daa Liczba uzyskanych punków Ocena TEST SPRAWDZAJĄCY Z PRZYRZĄDÓW POMIAROWYCH W dniu dzisiejszym przysąpisz do esu pisemnego, kóry ma na celu sprawdzenie Twoich umiejęności

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET Wydział Elekroniki Mikrosysemów i Fooniki Poliechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 5 Przełącznikowy ranzysor mocy MOSFET Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Kondensacyjne gazowe nagrzewnice powietrza GMS9- górnonadmuchowy/leżący GDS9 - dolnonadmuchowy

Kondensacyjne gazowe nagrzewnice powietrza GMS9- górnonadmuchowy/leżący GDS9 - dolnonadmuchowy Kondensacyjne gazowe nagrzewnice powierza - górnonadmuchowy/leżący - dolnonadmuchowy Kondensacyjne nagrzewnice gazowe jednosopniowe Goodman / posiadają opaenowany, aluminiowany salowy rurowy wymiennik

Bardziej szczegółowo

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41 Ćwiczenie I4 Poliechnika Białosocka Wydział Elekryczny Kaedra Elekroechniki Teoreycznej i Merologii Spis reści Insrukcja do pracowni specjalisycznej INFORMTYK Kod zajęć ESC 9 Tyuł ćwiczenia ZSTOSOWNIE

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI D-1 Ćwiczenie nr 6. Okresowe sygnały elektryczne, parametry amplitudowe

WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI D-1 Ćwiczenie nr 6. Okresowe sygnały elektryczne, parametry amplitudowe WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących z analogowymi sygnałami zmiennymi,

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE

POMIARY OSCYLOSKOPOWE Ćwiczenie 51 E. Popko POMIARY OSCYLOSKOPOWE Cel ćwiczenia: wykonanie pomiarów wielkości elektrycznych charakteryzują-cych przebiegi przemienne. Zagadnienia: prąd przemienny, składanie drgań, pomiar amplitudy,

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji) WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH (komputerowe metody symulacji) Zagadnienia: Filtr bierny, filtry selektywne LC, charakterystyka amplitudowo-częstotliwościowa, fazowo-częstotliwościowa, przebiegi

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

9. Napęd elektryczny test

9. Napęd elektryczny test 9. Napęd elekryczny es 9. omen silnika prądu sałego opisany jes związkiem: a. b. I c. I d. I 9.. omen obciążenia mechanicznego silnika o charakerze czynnym: a. działa zawsze przeciwnie do kierunku prędkości

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU 5. Cel ćwiczenia Celem ćwiczenia jes poznanie podsawowych meod pomiaru częsoliwości, okresu, czasu rwania impulsu, czasu przerwy, ip. 5.2 Wprowadzenie Częsoliwością

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo