Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) Mazowieckie Centrum Analizy Powierzchni

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) Mazowieckie Centrum Analizy Powierzchni"

Transkrypt

1 Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) Mazowieckie Centrum Analizy Powierzchni Mikroanalizator Microlab 350 firmy Thermo Electron (VG Scientific) jest urządzeniem przeznaczonym do badania składu chemicznego powierzchni materiałów stałych o gwarantowanych parametrach analizy, umożliwiających badanie obiektów o szerokości kilkudziesięciu nanometrów i grubości - charakterystycznej dla spektrometrii elektronów Augera - rzędu kilku monowarstw atomowych (~ 1 nm). Przyrząd umożliwia m.in. zobrazowanie rozkładu powierzchniowego i liniowego pierwiastków oraz profilowania ich stężeń w głąb materiału z rozdzielczością 0,5-1 nm i czułością analityczną rzędu ułamka % at. Rys. 1. Przykładowa zależność średniej drogi swobodnej elektronów od ich energii kinetycznej dla azotku galu, wyznaczona metodą EPES*. Standardowa spektroskopia Augera (AES) pozwala określić skład chemiczny powierzchni, który jest wartością średnią z głębokości porównywalnej do średniej drogi swobodnej elektronów (inelastic mean free path-imfp) w materiale. Rozdzielczość w głąb w spektroskopii AES jest ściśle limitowana wielkością IMFP (średnia droga swobodna), a ta z kolei zależy od składu chemicznego strefy przypowierzchniowej.

2 * M.Krawczyk, L.Zommer, A.Jablonski, I.Grzegory, M.Bockowski, Surface Science (2004) Możliwości analityczne urządzenia Microlab 350 Obrazowanie powierzchni próbki w elektronach SE (Secondary Electrons), rozdzielczość pozioma ~ 7 nm, napięcie 25 kv. Wykonywanie lokalnych analiz jakościowych (rozdzielczość pozioma ~ 20 nm, rozdzielczość w głąb 0,5-1 nm; zakres analizowanych pierwiastków od litu (Z = 3) wzwyż; wykrywalność ok. 0,3 % at.). Wykonywanie obrazów powierzchniowego rozmieszczenia pierwiastków. Wykonywanie analiz liniowych rozmieszczenia pierwiastków (rozdzielczość pozioma ~ 20 nm). Określanie względnej zawartości pierwiastków w nanoobszarach (dokładność analizy > 10 % wzgl.). Określanie stanu chemicznego atomów w nanoobszarach (rozdzielczość energii kinetycznej analizatora sferycznego 0,6-0,06%). Badanie bardzo cienkich warstw powierzchniowych (ARAES, Angle Resolved Auger Electron Spectroscopy), metoda nieniszcząca. Wyznaczanie profili zmian składu chemicznego w głąb materiału (połączone z funkcją trawienia jonowego (Ar + )), metoda niszcząca. Badania powierzchni ciał stałych za pomocą rentgenowskiej spektroskopii fotoelektronów (XPS) umożliwiają: - identyfikację stanu chemicznego składników badanego materiału, - rozszerzenie gamy możliwych do analizy materiałów o dielektryki (polimery, materiały tlenkowe- szkła, ceramika); - dokładną analizę ilościowa próbek (średni skład mikro-obszarów), w oparciu o program Mutline lub bazy danych współczynników czułości Scofielda i Wagnera - precyzyjną analizę profilu głębokościowego próbek (zmiany stanu chemicznego składników próbki w kolejnych warstwach po trawieniu). Dodatkowe możliwości: Badanie segregacji pierwiastków na granicach ziaren (wyposażenie dodatkowe: łamacz próbek w próżni w temperaturze ciekłego azotu). Rozróżnianie struktur krystalograficznych np. grafitu, diamentu, węgla amorficznego - Reflected Electron Energy Loss Spectroscopy (REELS). Rozróżnianie stanów chemicznych atomu - (AES+NLLSF (Non Linear Least Square Fitting), REELS). Rozróżnianie materiałów organicznych - (REELS). Wyznaczanie średniej nieelastycznej drogi swobodnej elektronów metodą elektronowej spektroskopii piku elastycznego - EPES (Elastic Peak Electron Spectroscopy). Komputerowy program zbierania i przetwarzania danych Avantage Data System umożliwia: sterowanie ruchem próbki (Avantage 3.44), sterowanie pracą spektrometru (Avantage 3.44), programowanie eksperymentu (Avantage 3.44), przedstawienie wyników w szeregu opcji graficznych oraz eksport danych i grafiki do popularnych programów edycyjnych (Avantage 4.70).

3 Przykłady możliwości analitycznych urządzenia Microlab 350: 1. Uzyskiwanie obrazów (SE) powierzchni próbek przy dużych powiększeniach Microlab 350 wyposażony jest w detektor elektronów wtórnych (SE) umożliwiający uzyskiwanie obrazów powierzchni próbki o rozdzielczości ok. 7 nm - spełnia więc rolę elektronowego mikroskopu skaningowego (SEM) z emisją polową (FEG Schottky Field Emission Electron Gun). Przykłady takich obrazów przedstawiono na rys. 2. a) b) Rys. 2. Zdjęcia obrazujące morfologię powierzchni stopów amorficznych 65-Hf35 (a) oraz 60-Ti40 (b) po wodorowaniu elektrochemicznym w roztworze 0.1M H 2 SO 4 (i = - 1 ma/cm 2, t = 98 h). Dodatkowo na zdjęciach zaznaczono punkty analizy lokalnej składu chemicznego. *M.Pisarek, M Janik-Czachor, A Molnar, K.Hughes: Applied Catalysis A: General 283 (2005) *M.Pisarek, M.Janik-Czachor, T.Płociński, M.Łukaszewski: Journal of Materials Science: 44 (2009) Rejestrowanie lokalnych widm elektronów Augera Microlab 350 umożliwia rejestrację widm elektronów Auger emitowanych z nano-obszarów powierzchni próbki z rozdzielczością poziomą ok. 20 nm i głębokości ~1nm zarówno w szerokim (widma przeglądowe) jak i wąskim zakresie energii kinetycznej (widma wysokorozdzielcze). Zdolność rozdzielcza analizatora sferycznego energii kinetycznej może być zmieniana w zakresie %, co umożliwia określenie stanu chemicznego analizowanych pierwiastków na podstawie położenia maksimum analizowanego sygnału linii lub zmiany jej kształtu. Na rys. 3 przedstawiono widma elektronów Augera pochodzące z punktów zaznaczonych na rys. 2 (widma przeglądowe).

4 sygnał Auger / jednostki umowne sygnał Auger / jednostki umowne P2 P2 Hf O Hf Hf Hf Hf P1 Ti Ti O P1 O energia kinetyczna / ev Ti Ti O energia kinetyczna / ev Rys. 3. Widma lokalne Augera zarejestrowane w szerokim zakresie energii kinetycznej, identyfikujące skład chemiczny w punktach P1 i P2 (patrz rys.2 a, b). * M.Pisarek, M Janik-Czachor, A Molnar, K.Hughes: Applied Catalysis A: General 283 (2005) * M.Pisarek, M.Janik-Czachor, T.Płociński, M.Łukaszewski: Journal of Materials Science: 44 (2009) Rys. 4. (a) Wysokorozdzielcze widmo Augera zarejestrowane w punkcie P1 z rozdzielczością 0.06% (RR = 40), w celu identyfikacji stanu chemicznego zamieszczono dodatkowo widmo referencyjne (LMM) (patrz, rys. 2a). (b) Wysokorozdzielcze widmo Augera Ti zarejestrowane w punkcie P2 z rozdzielczością 0.6% (RR = 20), w celu identyfikacji stanu chemicznego zamieszczono dodatkowo widma odniesienia dla tlenku tytanu i czystego Ti (patrz, rys. 2b). *M.Pisarek, M.Janik-Czachor: Microscopy and Microanalysis, 12 (2006) Badanie rozmieszczenia pierwiastków na powierzchni próbek Microlab 350 umożliwia otrzymywanie obrazów rozmieszczenia pierwiastków na powierzchni próbki z maksymalną rozdzielczością pikseli (tzw. mapy składu chemicznego). Na rys. 5a przedstawiono obraz SE wybranego mikroobszaru powierzchni próbki nanorurek tlenku tytanu uformowanych na Ti metodą polaryzacji anodowej w roztworze na bazie gliceryny z dodatkiem

5 fluorku amonu przy stałym potencjale E = 25 V z cząstkami Ag. Rys. 5b (obraz SAM) ukazuje rozkład srebra. Miejsca o jasnym kontraście odpowiadają wzbogaceniu w analizowany pierwiastek. a) b) Rys. 5. Morfologia powierzchni nanorurek TiO 2 na Ti dekorowanych Ag. Obraz rozmieszczenia Ag na tej powierzchni. *A.Roguska, A.Kudelski, M.Pisarek, M.Lewandowska, M.Dolata, M.Janik-Czachora: Journal of Raman Spectroscopy, 40(11) (2009) Innym przykładem tego typu analizy może być identyfikacja wtrąceń niemetalicznych w stalach, co pokazano na rys.6. Rys. 6. Mapa składu chemicznego S, Fe i O na powierzchni stali austenitycznej typu 303. Zlokalizowane wtrącenia na obrazie SEM wzbogacone są w S, a zubożone w tlen, co sugeruje iż tego rodzaju wtrącenie nie ulegają pasywacji (powierzchniowemu utlenieniu) w odróżnieniu od osnowy materiału. Takie miejsca stanowią nieciągłości w warstwie pasywnej stali austenitycznych, co skutkuje pogorszeniem się ich odporności na korozję lokalną. *M.Pisarek, P.Kędzierzawski, M.Janik-Czachor, K.J.Kurzydłowski: Journal of Solid State Electrochemistry (Special Issue EMRS 2007), 13 (2009) *M.Pisarek, P.Kędzierzawski, T.Płociński, M.Janik-Czachor, K.J.Kurzydłowski: Materials Characterization, 59 (9) (2008)

6 4. Wyznaczanie liniowych rozkładów rozmieszczenia pierwiastków Microlab 350 umożliwia otrzymywanie wykresów rozmieszczenia pierwiastków wzdłuż wybranej linii analizy. Na rys. 7 przedstawiono obraz rozmieszczenia Ni, Cr, S, Mn, Fe wzdłuż linii przechodzącej przez wtrącenie niemetaliczne w stali austenitycznej typu 303. Na wykresie przedstawiono zmianę koncentracji poszczególnych pierwiastków w funkcji odległości. Można wyraźnie zaobserwować granicę pomiędzy wtrąceniem, które składa się z S i Mn (zachowując stosunek 1:1), a metalicznym podłożem. Rys.7. Rozkład liniowy Ni, Cr, S, Mn i Fe wzdłuż linii przechodzącej przez wtrącenie niemetaliczne w stali austenitycznej 303. Rozdzielczość pozioma analizy w każdym punkcie ~ 20 nm. Odległość między punktami analizy ~250 nm. Zidentyfikowano wtrącenie typu MnS. * M.Pisarek, P.Kędzierzawski, M.Janik-Czachor, K.J.Kurzydłowski: Journal of Solid State Electrochemistry (Special Issue EMRS 2007), 13 (2009) *M.Pisarek, P.Kędzierzawski, T.Płociński, M.Janik-Czachor, K.J.Kurzydłowski: Materials Characterization, 59 (9) (2008) Wyznaczanie profili rozmieszczenia pierwiastków w głąb materiału połączone z funkcją trawienia jonowego Microlab 350 wyposażony jest w działo jonowe (Ar + ) EX05 umożliwiające trawienie próbki z regulowaną szybkością. Szybkość trawienia (sputtering rate nm/s) można regulować poprzez zmianę powierzchni trawienia (raster size), zakładając stałą wartość prądu jonowego. Jest to możliwe dzięki zastosowaniu zaworu automatycznego, który dozuje w czasie trwania eksperymentu jednakową ilość gazu, przy stałym ciśnieniu mbar. Ideowy schemat trawienia jonowego przedstawiono na rys. 8

7 stosunek koncentracji Cr/Fe Atomic Percent / % O KLL Atomic Percent / % X-ray, h e - electrons out photons in ion beam, Ar + analysis area *Manual Microlab 350, Issue 2 (06/03), Thermo Electron Corporation Scientific Instrument Division Zamieszczone na rys. 9 przykładowe profile zmian stężeń analizowanych pierwiastków otrzymane metodą kolejnych sekwencji trawienia jonowego i analizowania składu chemicznego wskazują, że w wyniku właściwego doboru szybkości trawienia można uzyskać profile bardzo cienkich warstw nie przekraczających kilka nm np. warstwy pasywne na metalach i ich stopach, rys Cr LMM Ni LMM Fe LMM O KLL passive oxide film substrate stainless steel 303 HE Etch Depth / nm (a) ,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 pasywna warstwa tlenkowa podłoże metaliczne (stal) 0,05 (b) 0, czas trawienia / s stal 303 HE stal 316 HE Rys. 9. (a) Znormalizowany profil składu chemicznego warstwy pasywnej (native oxide film) na stali austenitycznej 303 po procesie wyciskania hydrostatycznego (HE). Zamieszczono profil stężenia tlenu oraz dodatkowo obraz TEM mikrostruktury stali po procesie HE. Na profilu można wyraźnie dostrzec wzbogacenie warstwy tlenkowej w Cr.

8 At.% (b) Porównanie stosunku stężeń Cr/Fe w funkcji czasu trawienia dla stali austenitycznych 303 i 316 po wyciskaniu hydrostatycznym. Wykresy przedstawiają jak zmienia się stosunek Cr/Fe w głąb warstw pasywnych wytworzonych samoistnie na tego typu materiałach. Linie pionowe wskazują położenie granicy pomiędzy warstwą tlenkową a podłożem stal 303 bądź 316. Linia pozioma pokazuje nominalny stosunek Cr/Fe w badanych stalach (podłoże metaliczne). *M.Pisarek: Annales de Chimie Science des Materiaux, 32 (4) (2007) *M.Pisarek, P.Kędzierzawski, M.Janik-Czachor, K.J.Kurzydłowski: Corrosion NACE Vol.64, No.2 (2008) *M.Pisarek, P.Kędzierzawski, T.Płociński, M.Janik-Czachor, K.J.Kurzydłowski: Materials Characterization, 59 (9) (2008) *M.Pisarek, P.Kędzierzawski, M.Janik-Czachor, K.J.Kurzydłowski: Journal of Solid State Electrochemistry (Special Issue, EMRS 2007), 13 (2009) Zastosowanie odpowiedniego kąta nachylenia próbki i szybkości jej obrotu podczas trawienia może zminimalizować efekty mieszania się atomów ( ion mixing ) podczas trawienia próbki, uzyskując prawie nie zakłócone tymi efektami profile stężeń poszczególnych pierwiastków w głąb materiału (rys. 10). Na rys. 10. przedstawiono wyniki wykorzystania metody nieliniowego dopasowania funkcji (NLLSF) do sygnałów pochodzących od poszczególnych pierwiastków w widmach elektronów Augera, w celu identyfikacji stanu chemicznego atomów Ti oraz Al w powierzchniowej warstwie tlenkowej otrzymanej na drodze polaryzacji anodowej na stopie Ti6Al4V. Zastosowanie tej metody do analizy widm Augera pozwoliło na rozróżnienie stanu chemicznego Ti i Al oraz przedstawienie rozmieszczenia obu pierwiastków w tych stanach w funkcji odległości od powierzchni próbki - rys warstwa tlenkowa strefa pośrednia II I Ti ox LMM Ti m LMM O KLL Al ox KLL Al m KLL V LMM Ti-6Al-4V czas trawienia jonowego / s Rys. 10. Profil składu chemicznego warstwy tlenkowej wytworzonej na powierzchni stopu Ti-6Al-4V metodą polaryzacji anodowej w roztworze 7% kwasu siarkowego przy napięciu 47V. *M.Lewandowska, M.Pisarek, K.Rożniatowski, M.Grądzka-Dahlke, M. Janik-Czachor, K.J.Kurzydłowski: Thin Solid Film, 515 (2007) *M.Pisarek: Annales de Chimie Science des Materiaux, 32 (4) (2007) Profilowanie w głąb daje również możliwość poznania budowy warstw tlenkowych, co pokazano na rys. 11. Przestrzenne rozmieszczenie pierwiastków.

9 Intensity / cps Rys. 11. Profil składu chemicznego warstwy tlenkowej wytworzonej na powierzchni stopu amorficznego Al 70 Ta 30 w wyniku polaryzacji anodowej (V max =25V) w roztworze buforu boranowego. Zestaw wysokorozdzielczych widm AES przedstawiający zmiany położenia i kształtu widma Al podczas trawienia warstwy anodowej w głąb - od powierzchni tlenku (warstwa anodowa) do metalu (podłoże). *Z.Werner, A.Jaśkiewicz, M.Pisarek, M.Janik-Czachor, M.Barlak: Zeitschrift fur Physikalische Chemie, 219 (2005) * M.Janik-Czachor, A.Jaskiewicz, M.Dolata, Z.Werner: Materials Chemistry and Physics, 92 (2005) Spektroskopia fotoelektronów XPS Urządzenie Microlab 350 opcjonalnie może być wykorzystywane jako spektrometr XPS. Aparat ten wyposażony jest w niezależne źródło miękkiego promieniowania rentgenowskiego (< 8 kev) z podwójną anodą Mg i Al. Spektroskopia XPS dostarcza cennych informacji o stanie chemicznym analizowanych pierwiastków, a także daje możliwość wyznaczenia ilościowego składu chemicznego w oparciu o współczynniki Wagnera lub Scofielda. Ponadto rozszerza gamę badanych materiałów o dielektryki i półprzewodniki. X-ray source Al K = ev core levels 3d Ag 3p 3s Auger peaks MNV 4d 4s 4p Binding Energy / ev

10 Intensywność / jednostki umowne Intensywnośc / jednostki umowne Rys. 12 Typowe widmo przeglądowe XPS zarejestrowane na powierzchni srebra. Na widmie można wyróżnić zarówno sygnały XPS jak i Auger. *M.Pisarek - badania własne Mazowieckie Centrum Analizy Powierzchni Przykłady zastosowania analizy XPS Identyfikacja stanu chemicznego Wykorzystując wysokorozdzielczy sferyczny analizator energii kinetycznej (max. rozdzielczość energii dla metody XPS wynosi 0.83 ev) możliwe jest uzyskiwanie widm XPS analizowanych pierwiastków w celu identyfikacji ich stanu chemicznego. Do analizy XPS jako źródło wzbudzenia wykorzystuje się nie monochromatyzowane promieniowanie rentgenowskie o energii h = 1486 ev (Al K ) bądź h = 1256 ev (Mg K ). Zazwyczaj funkcja liniowa lub Shirley a odcięcia tła używana jest do wyznaczania intensywności poszczególnych sygnałów XPS. Zarejestrowane widma w wąskim zakresie energii wiązań rozplatane (deconvolution procedure) są przy użyciu asymetrycznej funkcji Gaussa/Lorentza. Zmierzone energie wiązań dla poszczególnych pierwiastków zazwyczaj korygowane są w stosunku do energii wiązania fotoelektronu węgla C1s = 285 ev (na próbce badanej). Tak jak w przypadku spektroskopii AES położenie maksimum analizowanego sygnału lub zmiana kształtu piku analizowanego sugeruje zmianę stanu chemicznego danego pierwiastka. Na rys. 13 przedstawiono typowe widma XPS dla Ti i Fe zarejestrowane w wąskim zakresie energii wiązań na powierzchni utlenionej termicznie folii tytanowej i stali austenitycznej (warstwa pasywna, ang. native oxide film ). Ti2p tlenek metal Fe2p tlenek Fe Fe warstwa tlenkowa stal austenityczna Fe metal Rys.13 Widma wysokorozdzielcze XPS dla Ti2p i Fe2p. *M.Pisarek - badania własne Mazowieckie Centrum Analizy Powierzchni Na rys. 14 przedstawiono widma dla Ca i P po procedurze dekonwolucji w celu identyfikacji stanu chemicznego analizowanych pierwiastków. Widma XPS zarejestrowano na powierzchni biomimetycznej powłoki fosforanowo-wapniowej osadzonej na podłożu tlenku tytanu.

11 Intensywność / counts/s Ca2p Ca 2+ (Ca-P bonds) P2p Intensywność / cps Ca 2+ Intensywność / cps PO 4 3- HPO Rys.14 Widma wysokorozdzielcze XPS dla Ca2p i P2p. *A.Roguska, M.Pisarek, M. Andrzejczuk, M.Dolata, M.Lewandowska, M.Janik-Czachor: Materials Science and Engineering C. Materials for Biological Applications, 31 (2011) *M.Pisarek, A.Roguska, M.Andrzejczuk, L.Marcon, S.Szunerits, M.Lewandowska, M.Janik-Czachor: Applied Surface Science, 257 (2011) Metodą XPS możliwe jest określenie w większości przypadków rodzaju wiązań węgla występujących na powierzchni badanych materiałów, co ma istotne znaczenie przy określaniu grup funkcyjnych w zawiązkach organicznych C1s ev -CF ev -CF ev C-O ev O=C-OH ev C-C Rys. 15. Widmo XPS węgla C1s zarejestrowane na powierzchni płytki Si modyfikowanej w pre-hydrolizowanym roztworze PFTS. *H.Liu, S.Szunerits, M.Pisarek, W Xu, R.Boukherroub: Applied Materials and Interfaces, 1(9) (2009) Wykonywanie profili rozmieszczenia pierwiastków w głąb materiału połączone z funkcją trawienia jonowego, identyfikacja stanu chemicznego Analiza profilu głębokościowego warstwy SiO 2 implantowanej Ge na podłożu Si wykonana przy użyciu skanującego działa jonowego usuwającego kolejne warstwy przedstawiona jest na rys. 16. Na profilu

12 Intensywność / jednostki umowne Intensywność / jednostki umowne można wyodrębnić 3 strefy: 1 wzbogacenie w Ge warstwy SiO 2, 2 warstwę SiO 2, 3 podłoże Si. Oś x została wyskalowana w funkcji głębokości trawienia w nm. Rys.16 Profil głębokościowy składu chemicznego próbki SiO 2 /Si implantowanej Ge. *M.Rosinski, J.Badziak, A.Czarnecka, P.Gasior, P.Parys, M.Pisarek, R.Turan, J.Wolowski, S.Yerci: Materials Science in Semiconductor Processing, 9 (2006) Podczas wykonywania profili składu chemicznego metodą XPS możliwe jest również rejestrowanie widm wysokorozdzielczych na podstawie których można określić jak zmienia się stan chemiczny analizowanego pierwiastka. Poniższy przykład pokazuje zmianę kształtu sygnału Al2p i Ti2p w funkcji czasu trawienia warstwy tlenkowej wytworzonej na powierzchni stopu Ti6Al4V metodą elektrochemiczną (przejście od warstwy tlenkowej Al2p ox (Ti2p ox ) do podłoża metalicznego Al2p m (Ti2p m )). a) Ti2p sub-oxides b) Al2p m Al2p 4880s Ti-6Al-4V V max =12V 3790s tlenek Ti (Ti2p ox ), 0s Ti metal (Ti2p m ), s s Al2p ox 180s Rys.17. Zmiana pozycji maksimum sygnału Ti2p i Al2p (z postaci odpowiadającej formie utlenionej do formy metalicznej) w funkcji czasu trawienia powierzchni próbki Ti6Al4V po polaryzacji anodowej (30V, 12V). Na widmie Ti wyraźnie widoczny jest efekt mieszania jonowego. Tworzą się tlenki pośrednie.

13 * M.Lewandowska, M.Pisarek, K.Rożniatowski, M.Grądzka-Dahlke, M. Janik-Czachor, K.J.Kurzydłowski: Thin Solid Film, 515 (2007) Zlecenia badań W sprawie badań prosimy o kontaktowanie się z: dr. inż. Marcin Pisarek Mazowieckie Centrum Analizy Powierzchni Instytut Chemii Fizycznej PAN ul. Kasprzaka 44/ Warszawa Tel. (22) ,

MoŜliwości analityczne Microlab 350

MoŜliwości analityczne Microlab 350 Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) w Specjalistycznym Laboratorium Fizykochemii Materiałów Mikroanalizator augerowski Microlab 350 firmy Thermo

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

Techniki próżniowe (ex situ)

Techniki próżniowe (ex situ) Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. THICK 800A DO POMIARU GRUBOŚCI POWŁOK THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zoptymalizowany do pomiaru grubości warstw Detektor Si-PIN o rozdzielczości

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych

Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych Monika KWOKA, Jacek SZUBER Instytut Elektroniki Politechnika Śląska Gliwice PLAN PREZENTACJI 1. Podsumowanie dotychczasowych prac:

Bardziej szczegółowo

WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r.

WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. B. Stypuła, J. Banaś M. Starowicz WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. ANODOWE ZACHOWANIE SIĘ

Bardziej szczegółowo

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek

Bardziej szczegółowo

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA

Bardziej szczegółowo

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Kamil Wróbel Pracownia Elektrochemicznych Źródeł Energii Kierownik pracy: prof. dr hab. A. Czerwiński Opiekun pracy: dr M. Chotkowski

Bardziej szczegółowo

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera ANALIZA POŁĄCZENIA WARSTW CERAMICZNYCH Z PODBUDOWĄ METALOWĄ Promotor: Prof. zw. dr hab. n. tech. MACIEJ HAJDUGA Tadeusz Zdziech CEL PRACY Celem

Bardziej szczegółowo

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/

Bardziej szczegółowo

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych Honorata Kazimierczak Promotor: Dr hab. Piotr Ozga prof. PAN Warstwy ochronne z cynku najtańsze

Bardziej szczegółowo

Aparatura do osadzania warstw metodami:

Aparatura do osadzania warstw metodami: Aparatura do osadzania warstw metodami: Rozpylania mgnetronowego Magnetron sputtering MS Rozpylania z wykorzystaniem działa jonowego Ion Beam Sputtering - IBS Odparowanie wywołane impulsami światła z lasera

Bardziej szczegółowo

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,

Bardziej szczegółowo

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 3/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 3/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

WYJAŚNIENIE TREŚCI SIWZ

WYJAŚNIENIE TREŚCI SIWZ Warszawa, dnia 17.11.2015r. WYJAŚNIENIE TREŚCI SIWZ Dotyczy przetargu nieograniczonego na: Dostawa stołowego skaningowego mikroskopu elektronowego wraz z wyposażeniem dla Instytutu Technologii Materiałów

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ

BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ R. ROMANKIEWICZ, F. ROMANKIEWICZ Uniwersytet Zielonogórski ul. Licealna 9, 65-417 Zielona Góra 1. Wstęp Jednym

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Politechnika Politechnika Koszalińska

Politechnika Politechnika Koszalińska Politechnika Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych NOWE MATERIAŁY NOWE TECHNOLOGIE W PRZEMYŚLE OKRĘTOWYM I MASZYNOWYM IIM ZUT Szczecin, 28 31 maja 2012, Międzyzdroje

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej Uniwersytet w Białymstoku Wydział Biologiczno-Chemiczny Efekty interferencyjne w atomowej spektrometrii absorpcyjnej Beata Godlewska-Żyłkiewicz Elżbieta Zambrzycka Ślesin 26-28.IX.2014 Jak oznaczyć zawartość

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji

Bardziej szczegółowo

Spektrometry EDXRF do analizy metali szlachetnych X-PMA i w wersji przenośnej EX-PMA

Spektrometry EDXRF do analizy metali szlachetnych X-PMA i w wersji przenośnej EX-PMA Spektrometry EDXRF do analizy metali szlachetnych X-PMA i w wersji przenośnej EX-PMA Xenemetrix jest Izraelską wiodącą firmą z ponad 40 letnim doświadczeniem w projektowaniu, produkcji i dystrybucji spektrometrów

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 17 września 2009 r. Nazwa i adres organizacji

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów

Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów 1 Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów Cel ćwiczenia Celem ćwiczenia są badania morfologiczne powierzchni materiałów oraz analiza chemiczna obszarów

Bardziej szczegółowo

FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH

FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Załącznik Nr 2 WYMAGANIA BEZWZGLĘDNE: FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Przedmiotem zamówienia jest dostawa i instalacja fabrycznie nowego skaningowego mikroskopu elektronowego (SEM) ze zintegrowanym

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

43 edycja SIM Paulina Koszla

43 edycja SIM Paulina Koszla 43 edycja SIM 2015 Paulina Koszla Plan prezentacji O konferencji Zaprezentowane artykuły Inne artykuły Do udziału w konferencji zaprasza się młodych doktorów, asystentów i doktorantów z kierunków: Inżynieria

Bardziej szczegółowo

Na rysunku przedstawiono fragment układu okresowego pierwiastków.

Na rysunku przedstawiono fragment układu okresowego pierwiastków. Na rysunku przedstawiono fragment układu okresowego pierwiastków. Zadanie 1 (0 1) W poniższych zdaniach podano informacje o pierwiastkach i ich tlenkach. Które to tlenki? Wybierz je spośród podanych A

Bardziej szczegółowo

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska Promotor: prof. nadzw. dr hab. Jerzy Ratajski Jarosław Rochowicz Wydział Mechaniczny Politechnika Koszalińska Praca magisterska Wpływ napięcia podłoża na właściwości mechaniczne powłok CrCN nanoszonych

Bardziej szczegółowo

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej! METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH Spektrometry IRMS akceptują tylko próbki w postaci gazowej! Stąd konieczność opracowania metod przeprowadzania próbek innych

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Dotacje na innowacje Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Viktor Zavaleyev, Jan Walkowicz, Adam Pander Politechnika Koszalińska

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Cel ćwiczenia: Celem ćwiczenia jest wykorzystanie promieniowania

Bardziej szczegółowo

Spektroskopia Fluorescencyjna promieniowania X

Spektroskopia Fluorescencyjna promieniowania X Spektroskopia Fluorescencyjna promieniowania X Technika X-ray Energy Spectroscopy (XES) a) XES dla określenia składu substancji (jakie pierwiastki) b) XES dla ustalenia struktury elektronicznej (informacja

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński

Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński Metoda PLD (Pulsed Laser Deposition) PLD jest nowoczesną metodą inżynierii powierzchni, umożliwiającą

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia

Bardziej szczegółowo

RENTGENOWSKA ANALIZA FLUORESCENCYJNA

RENTGENOWSKA ANALIZA FLUORESCENCYJNA RENTGENOWSKA ANALIZA FLUORESCENCYJNA Cel ćwiczenia. Celem ćwiczenia jest zidentyfikowanie pierwiastków w próbkach metodą rentgenowskiej analizy fluorescencyjnej przy zastosowaniu zestawu firmy Amptek składającego

Bardziej szczegółowo

Nowoczesne metody analizy pierwiastków

Nowoczesne metody analizy pierwiastków Nowoczesne metody analizy pierwiastków Techniki analityczne Chromatograficzne Spektroskopowe Chromatografia jonowa Emisyjne Absorpcyjne Fluoroscencyjne Spektroskopia mas FAES ICP-AES AAS EDAX ICP-MS Prezentowane

Bardziej szczegółowo

MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl. CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT

MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl. CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT ANNA KADŁUCZKA, MAREK MAZUR MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT S t r e s z c z e n i e A b s t r a c t W niniejszym artykule

Bardziej szczegółowo

Absorpcja promieni rentgenowskich 2 godz.

Absorpcja promieni rentgenowskich 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

Aleksandra Świątek KOROZYJNA STALI 316L ORAZ NI-MO, TYTANU W POŁĄ ŁĄCZENIU Z CERAMIKĄ DENTYSTYCZNĄ W ROZTWORZE RINGERA

Aleksandra Świątek KOROZYJNA STALI 316L ORAZ NI-MO, TYTANU W POŁĄ ŁĄCZENIU Z CERAMIKĄ DENTYSTYCZNĄ W ROZTWORZE RINGERA WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Aleksandra Świątek,,ODPORNOŚĆ KOROZYJNA STALI 316L ORAZ STOPÓW W TYPU CO-CR CR-MO, CR-NI NI-MO, TYTANU

Bardziej szczegółowo

Analiza składu chemicznego powierzchni

Analiza składu chemicznego powierzchni Analiza składu chemicznego powierzchni Techniki elektronowe Spektrometria elektronów Auger a (AES) zjawisko Auger a Spektrometria fotoelektronów rentgenowskich (XPS) efekt fotoelektryczny Próbka Soczewka

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Przedmiot: Inżynieria Powierzchni / Powłoki Ochronne / Powłoki Metaliczne i Kompozytowe

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO NR 113/TZ/IM/2013 Zestaw ma umożliwiać analizę termiczną próbki w symultanicznym układzie

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Źródła błędów i ich eliminacja w technice ICP.

Źródła błędów i ich eliminacja w technice ICP. Źródła błędów i ich eliminacja w technice ICP. Irena Jaroń Centralne Laboratorium Chemiczne Państwowy Instytut Geologiczny, Rakowiecka 4, 05-975 Warszawa Atomowa spektrometria emisyjna ze wzbudzeniem w

Bardziej szczegółowo

SPEKTROSKOPIA FOTOELEKTRONÓW

SPEKTROSKOPIA FOTOELEKTRONÓW SPEKTROSKOPIA FOTOELEKTRONÓW Jak szybko cząsteczka obraca się? E J=1 (CO) = B 1 (1+1) = 2B = 2 1.9 cm -1 = 3.8 cm -1 = 7.6x10-23 J = ½ I 2 Stąd 1 x 10 12 rad s -1. To daje częstość rotacji ~10-11 s. Ile

Bardziej szczegółowo

Jonizacja plazmą wzbudzaną indukcyjnie (ICP)

Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Inductively Coupled Plasma Ionization Opracowane z wykorzystaniem materiałów dr Katarzyny Pawlak z Wydziału Chemicznego PW Schemat spektrometru ICP MS Rozpylacz

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

ABSORPCYJNA SPEKTROMETRIA ATOMOWA

ABSORPCYJNA SPEKTROMETRIA ATOMOWA ABSORPCYJNA SPEKTROMETRIA ATOMOWA Ćwiczenie 1. Badanie wpływu warunków pomiaru na absorbancję oznaczanego pierwiastka Ustalenie składu gazów płomienia i położenia palnika Do dwóch kolbek miarowych o pojemności

Bardziej szczegółowo

PENETRACJA WZAJEMNA W UKŁADACH WARSTWOWYCH NIKIEL-SREBRO I NIKIEL-MIEDŹ-SREBRO

PENETRACJA WZAJEMNA W UKŁADACH WARSTWOWYCH NIKIEL-SREBRO I NIKIEL-MIEDŹ-SREBRO PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T.21-1993 nr 2, 46-53 PENETRACJA WZAJEMNA W UKŁADACH WARSTWOWYCH NIKIEL-SREBRO I NIKIEL-MIEDŹ-SREBRO AnnaWehr^^ 2) Adam Barcz ' Przeprowadzono badania penetracji

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 608

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 608 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 608 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 16, Data wydania 22 kwietnia 2016 r. Nazwa i adres Centrum

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Laboratorium Badania Materiałów Inżynierskich i Biomedycznych

Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Wydział Mechaniczny Technologiczny Politechnika Śląska Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Instytut Materiałów Inżynierskich i Biomedycznych 1 Projekt MERFLENG... W 2012 roku

Bardziej szczegółowo

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny

Bardziej szczegółowo

Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie elektronowym

Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie elektronowym WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie

Bardziej szczegółowo

Kątowa rozdzielczość matrycy fotodetektorów

Kątowa rozdzielczość matrycy fotodetektorów WYKŁAD 24 SMK ANALIZUJĄCE PRZETWORNIKI OBRAZU Na podstawie: K. Booth, S. Hill, Optoelektronika, WKŁ, Warszawa 2001 1. Zakres dynamiczny, rozdzielczość przestrzenna miara dokładności rozróżniania szczegółów

Bardziej szczegółowo

Moduł: Chemia. Fundamenty. Liczba godzin. Nr rozdziału Tytuł. Temat lekcji. Rozdział 1. Przewodnik po chemii (12 godzin)

Moduł: Chemia. Fundamenty. Liczba godzin. Nr rozdziału Tytuł. Temat lekcji. Rozdział 1. Przewodnik po chemii (12 godzin) Rozkład materiału z chemii w klasie II LO zakres rozszerzony Chemia. Fundamenty. Krzysztof Pazdro, wyd. Oficyna Edukacyjna Krzysztof Pazdro Sp. z o.o.. nr dopuszczenia 565//0 Chemia. i związki nieorganiczne.

Bardziej szczegółowo

S-MOBILE / S-MOBILE ULS

S-MOBILE / S-MOBILE ULS S-MOBILE / S-MOBILE ULS Przenośny spektrometr EDXRF Przenośny spektrometr XRF o parametrach stacjonarnego Detektor SDD o rozdzielczości 125 ev Analizy jakościowe i ilościowe od sub-ppm do 100% Szybkie

Bardziej szczegółowo

BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM. Klaudia Radomska

BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM. Klaudia Radomska WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera w Ustroniu Wydział InŜynierii Dentystycznej BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM Klaudia Radomska Praca dyplomowa napisana

Bardziej szczegółowo

ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA

ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA ANALIZA SPECJACYJNA Specjacja - występowanie różnych fizycznych i chemicznych form danego pierwiastka w badanym materiale. Analiza specjacyjna - identyfikacja i ilościowe oznaczenie

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych

Bardziej szczegółowo

Technologia cienkowarstwowa

Technologia cienkowarstwowa Physical Vapour Deposition Evaporation Dlaczego w próżni? 1. topiony materiał wrze w niższej temperaturze 2. zmniejsza się proces utleniania wrzącej powierzchni 3. zmniejsza się liczba zanieczyszczeń w

Bardziej szczegółowo

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo