1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb."

Transkrypt

1 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie między dwoma wierzchołkami w grafie. Aby zbadać istnienie połączenia w grafie podajemy dwa wierzchołki: pierwszy - zwany stanem początkowym, oraz drugi - zwany stanem końcowym. W przypadku przeszukiwania grafów skończonych omawiane algorytmy są równoważne, tzn zbieżność algorytmu przeszukiwania w głąb pociąga za sobą zbieżność algorytmu przeszukiwania wszerz i odwrotnie. Jeżeli przeszukujemy graf nieskończony, algorytm przeszukiwania wszerz jest zbieżny, natomiast algorytm przeszukiwania w głąb nie. Brak zbieżności ma miejsce wówczas, gdy przeszukujemy krawiędź nieskończoną, która nie prowadzi do wierzchołka końcowego. Omawiając algorytm posłużymi się przykładem. Zadamy konkretny graf oraz stany: początkowy i końcowy i opiszemy przebieg działania algorytmu. Niech dany będzie graf: Rysunek 1: Graf do przeszukiwania. Dowolny graf można opisać w postaci listy połączeń. Lista zawiera n linii, gdzie n oznacza liczbę wierzchołków grafu. W i tej linii są umiszczone numery wierzchołków, z którymi i ty wierzchołek jest połączony. Lista połączeń dla rozważanego grafu wygląda następująco: 1. 2, 6, , , , , 8, , 7 1

2 7. 6, , , , , 10 Przeszukiwanie wszerz Przeszukiwanie grafu wszerz polega na odwiedzaniu wszystkich wierzchołków grafu sąsiadujących z wierzchołkiem początkowym, następnie wierzchołków w odległośi 2 od wierzchołka początkowego i tak kolejno. Przy każdym odwiedzeniu należy sprawidzić, czy stan, w którym się znajdujemy jest stanem końcowym. Odwiedzając kolejne wierzchołki należy pamiętać, żeby nie odwiedzać wierzchołków wcześniej odwiedzonych, tzn. każdy wierzchołek możemy odwiedzić dokładnie raz. W przypadku, gdy odwiedzimy wszystkie możliwe wierzchołki i nie znajdziemy stanu końcowego, nie istnieje droga miedzy szukanymi wierzchołkami. Zaletą algorytmu przeszukiwania wszerz jest to, że na pewno nie pominiemy żadnego wierzchołka, zwykle jednak odwiedzamy za dużo wierzchołków, co jest wadą algorytmu. Przeszukiwanie wszerz odbywa się przy użyciu kolejki FIFO (first in first out). Algorytm przebiega następująco: 1. Utwórz kolejkę FIFO 2. Zapisz do kolejki stan początkowy 3. Pobierz z kolejki stan i nazwij go S 4. Jesli (a) S jest poszukiwanym stanem końcowym zwróć SUKCES i zakończ algorytm (b) S=NULL (lista jest pusta) zwróć BRAK ROZWIAZANIA i zakończ algorytm (c) S nie jest poszukiwanym stanem końcowym to generuj wszystkie możliwe stany następujące po S (które można wyprowadzić z S zgodnie z wcześniej ustalonymi regułami a które nie były już rozważane) i zapisz je do kolejki 5. Idz do 3 Zadanie polega na stwierdzeniu, czy w wyżej podanym grafie wierzchołki 1 i 5 są połączone. Wykorzystywane funkcje: make fifo() - funkcja tworzy listę typu FIFO put fifo(x) - funkcja dodaje element x do listy get fifo() - funkcja pobiera elemet z listy Oto przebieg wykonywania algorytmu: 2

3 Numer Krok Wykonywana Stan Odwiedzone etapu algorytmu operacja kolejki wierzchołki 1 1 make fifo() NULL NULL 2 2 put fifo(1) S:=get fifo() (S=1) NULL put fifo(2), put fifo(6), put fifo(9) 5 5 Powrót do S:=get fifo() (S=2) put fifo(3) 8 5 Powrót do S:=get fifo() (S=6) put fifo(7) 11 5 Powrót do S:=get fifo() (S=9) put fifo(10) 14 5 Powrót do S:=get fifo() (S=3) put fifo(4) 17 5 Powrót do S:=get fifo() (S=7) put fifo(8) 20 5 Powrót do S:=get fifo() (S=10) put fifo(11) 23 5 Powrót do S:=get fifo() (S=4) put fifo(5) 26 5 Powrót do S:=get fifo() (S=8) nic 29 5 Powrót do S:=get fifo() (S=11) nic 32 5 Powrót do S:=get fifo() (S=5) NULL NULL return(sukces) 3

4 Przeszukiwanie w głąb Przeszukiwanie grafu w głąb polega na przeszukiwaniu poszczególnych krawędzi grafu. Przechodzimy krawędz najdalej ja się da, jeżeli dana ścieżka nie doprowadziła nas do wierzchołka końcowego wówczas cofamy sie do momentu, z którego możemy pójść inną scieżką. Podobnie jak w przypadku przeszukiwania wszerz, przeszukując graf metodą w głąb pojedynczy wierzchołek może być odwiedziny dokładnie jeden raz. Przy każdym odwiedzeniu należy sprawidzić, czy nie znajdujemy się w stanie końcowym. W przypadku, gdy odwiedzimy wszystkie możliwe wierzchołki i nie znajdziemy stanu końcowego, nie istnieje droga miedzy szukanymi wierzchołkami. Zaletą algorytmu przeszukiwania w głąb jest to, że nie przeszukujemy wszystkich wierzchołków grafu, dodatkowo przeszukując ścieżką prowadzącą bezpośrednio do wierzchołka końcowego możemy odwiedzić minimalną ilość wierzchołków łączących stan początkowy z końcowym. Wadą jest to, że zwykle przszukiwanie odbywa się niewłaściwą scieżką co prowadzi do zabrnięcia w ślepą uliczkę, z której należy się wycofać do wierzchołka, z którego istnieje możliwość pójścia dalej. Przeszukiwanie w głąb odbywa się przy użyciu kolejki LIFO (last in first out) zwanej inaczej STOS. Algorytm przebiega następująco: 1. Utwórz STOS 2. Zapisz na stos stan początkowy 3. Pobierz ze stosu stan i nazwij go S 4. Jesli (a) S jest poszukiwanym stanem końcowym zwróć SUKCES i zakończ algorytm (b) S=NULL (lista jest pusta) zwróć BRAK ROZWIAZANIA i zakończ algorytm (c) S nie jest poszukiwanym stanem końcowym to generuj wszystkie możliwe stany następujące po S (które można wyprowadzić z S zgodnie z wcześniej ustalonymi regułami a które nie były już rozważane) i zapisz je do kolejki 5. Idz do 3 Zadanie polega na stwierdzeniu, czy w wyżej podanym grafie wierzchołki 1 i 5 są połączone. Wykorzystywane funkcje: make stos() - funkcja tworzy STOS put stos(x) - funkcja dodaje element x na stos get stos() - funkcja pobiera elemet ze stosu Oto przebieg wykonywania algorytmu: 4

5 Numer Krok Wykonywana Stan Odwiedzone etapu algorytmu operacja kolejki wierzchołki 1 1 make stos() NULL NULL 2 2 put stos(1) S:=get stos() (S=1) NULL put stos(2), put stos(6), put stos(9) 5 5 Powrót do S:=get stos() (S=9) put stos(10) Powrót do S:=get stos() (S=10) put stos(11) Powrót do S:=get stos() (S=11) put stos(5) Powrót do S:=get stos() (S=5) Wykonywanie punktu (a) return(sukces) W tak realizowanym algorytmie poruszamy się wzdłuż jednej krawędzi ale dla danego wierzchołka odwiedzamy wszystkich jego sąsiadów. Możemy skonstruować algorytm tak, aby z danego wierzchołka generować tylko jeden (wybrany) stan następującey po nim. Wówczas algorytm będzie przebiegał następująco: 1. Utwórz STOS 2. Przyjmij S stan początkowy i zapisz na stos 3. Jesli (a) S jest poszukiwanym stanem końcowym zwróć SUKCES i zakończ algorytm (b) S=NULL (lista jest pusta) zwróć BRAK ROZWIAZANIA i zakończ algorytm (c) S nie jest poszukiwanym stanem końcowym to: 4. Idz do 3 i. jeśli istnieje możliwy stan następujący po S to S przyjmij ten stan i zapisz na stos ii. w przeciwnym przypadku zdejmij element ze stosu, następnie S przyjmij stan ze stosu (nie zdejmując elementu ze stosu) 5

6 Zadanie polega na swierdzeniu, czy wierzchołki 1 i 11 są połączone. Oto przebieg wykonywania algorytmu: Numer Krok Wykonywana Stan Odwiedzone etapu algorytmu operacja stosu wierzchołki 1 1 make stos() NULL NULL 2 2 S=1; put stos(s) Wykonywanie punktu i S=2; put stos(s) 4 4 Powrót do Wykonywanie punktu i S=3; put stos(s) 6 4 Powrót do Wykonywanie punktu i S=4; put stos(s) 8 4 Powrót do Wykonywanie punktu i S=5; put stos(s) 10 4 Powrót do Wykonywanie punktu i S=8; put stos(s) 12 4 Powrót do Wykonywanie punktu i S=7; put stos(s) 14 4 Powrót do Wykonywanie punktu i S=6; put stos(s) 16 4 Powrót do Wykonywanie punktu ii S=get stos() put stos(s) (S=7) 18 4 Powrót do Wykonywanie punktu ii S=get stos() put stos(s) (S=8) 20 4 Powrót do Wykonywanie punktu ii S=get stos(); put stos(s) (S=5) 22 4 Powrót do Wykonywanie punktu i S=11; put stos(s) 24 4 Powrót do Wykonywanie punktu a return(sukces) Taki przebieg algorytmu oprócz odpowiedzi na pytanie czy dwa wierzchołki są ze sobą połączone, generuje drogę prowadzacą od wierzchołka początkowego do wierzchołka końcowego (zwykle nie jest to optymalna droga). Jest to stan stosu w momencie zakończenia działania algorytmu. 6

7 Zadania Zadanie będą polegały na zastosowaniu powyższych algorytmów do sprawdzenia, czy dwa wierzchołki w grafie są ze sobą połączone. Zadanie 1 Napisać program, w oparciu o padane algorytmy, sprawdzającey, czy dwa wierzchołki w grafie są połączone. Zakładamy, ze program wczytuje graf z pliku o podanej w linii poleceń nazwie. Następnie pyta o numery wierzchołków do sprawdzenia. Wierzchołki numerujemy liczbami naturalnymi z przedziału [1, 100]. W pliku pierwsza linia zawiera liczbę wierzchołków, kolejne są listowym opisem grafu. Tak więc linia 2 zawiera sopis wierzchołków, z którymi łączy się wierzchołek 1, linia 3 - spis wierzchołków, z którymi łączy się wierzchołek 2, itd. Kolejne wierzchołki w linii rozdzielone są spacją. Każda linia na końcu zawiera liczbę 0, która oznacza koniec listy wierzchołków sąsiadujących z danym wierzchołkiem. Oto przykładowy plik z danymi dla rozważanego w przykładach grafu: Zadanie 2 Napisać program, w oparciu o podany algorytm, sprawdzający czy możliwe jest przejście w labiryncie od jednego miejsca do drugiego. Zakładamy że program wczytuje labirynt z pliku o podanej w linii poleceń nazwie. Następnie pyta się o współrzędne pola startowego i końcowego. Maksymalny rozmiar planszy to 100 wierszy i 100 kolumn. Każde pole na planszy ma numer z przedziału [0, 15]. Numer ten oznacza jekiego typu jest pole, to znaczy gdzie możemy się z niego przemieścić. Oto dostępne pola (lewe górne ma numer 0, prawe dolne - 15, numeracja wierszami): Rysunek 2: Pola labryntu. W pliku pierwsza linia zawiera liczbę wierszy, druga - liczbę kolumn, kolejne natomiast to opis pól w danym wierszu. Tak więc linia 3 zawiera opis pól wiersza 7

8 1, linia 4 - opis pól wiersza drugiego, itd. Kolejne pola w wierszu rozdzielone są spacjami. Oto przykładowy wygląd labiryntu i odpowiadającego mu pliku z danymi: Rysunek 3: Plansza labiryntu Ilustrowany na ekranie - na przykład pola odwiedzone niech mają inny kolor. W realizacji tekstowej program powinien wyświetlać (lub zapisywać do pliku) współrzędne odwiedzanych pól. Uwaga Jak łatwo zauważyć labirynt można utożsamiać z grafem. Poszczególne pola labiryntu są wierzchołkami, a rodzaj pola jednoznacznie definiuje listę wieszchołków sąsiadujących z rozważanym. Dla powyższego labiryntu plik opisujący go jako graf wygląda następująco:

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Znajdowanie wyjścia z labiryntu

Znajdowanie wyjścia z labiryntu Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn Klucz Napisać program sprawdzający czy dany klucz pasuje do danego zamka. Dziurka w zamku reprezentowana jest w postaci tablicy zero-jedynkowej i jest spójna. Klucz zakodowany jest jako ciąg par liczb

Bardziej szczegółowo

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Zadanie 1: Piętnastka

Zadanie 1: Piętnastka Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski

Bardziej szczegółowo

Projekty zaliczeniowe Podstawy Programowania 2012/2013

Projekty zaliczeniowe Podstawy Programowania 2012/2013 Projekty zaliczeniowe Podstawy Programowania 2012/2013 0. Zasady ogólne W skład projektu wchodzą następujące elementy: dokładny opis rozwiązywanego problemu opis słowny rozwiązania problemu wraz z pseudokodami

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria C

Pomorski Czarodziej 2016 Zadania. Kategoria C Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych zajęć

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel Wstęp do programowania Zastosowania stosów i kolejek Piotr Chrząstowski-Wachtel FIFO - LIFO Kolejki i stosy służą do przechowywania wartości zbiorów dynamicznych, czyli takich, które powstają przez dodawanie

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

5.4. Tworzymy formularze

5.4. Tworzymy formularze 5.4. Tworzymy formularze Zastosowanie formularzy Formularz to obiekt bazy danych, który daje możliwość tworzenia i modyfikacji danych w tabeli lub kwerendzie. Jego wielką zaletą jest umiejętność zautomatyzowania

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Wykaz stali z projektu.

Wykaz stali z projektu. Wykaz stali z projektu. Program służy do wykonywania wykazu stali z wielu rysunków. Może być również wykorzystywany do sprawdzania poprawności opisu stali na wykonywanym rysunku. Aby korzystać z programu

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu http://www.jarsoft.poznan.pl/ 1. STRUKTURA PROGRAMU Program EWIDENCJA ODZIEŻY ROBOCZEJ jest aplikacją wspierającą

Bardziej szczegółowo

Przychodnia 0. Stwórz projekt aplikacja konsolowa lub WPF (przemyśl wybór, bo zmiana może być czasochłonna). 1. Stwórz abstrakcyjną klasę Osoba.

Przychodnia 0. Stwórz projekt aplikacja konsolowa lub WPF (przemyśl wybór, bo zmiana może być czasochłonna). 1. Stwórz abstrakcyjną klasę Osoba. Przychodnia 0. Stwórz projekt aplikacja konsolowa lub WPF (przemyśl wybór, bo zmiana może być czasochłonna). 1. Stwórz abstrakcyjną klasę Osoba. W tej klasie wykonaj następujące czynności: a) dodaj pole

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1 ISaGRAF WERSJE 3.4 LUB 3.5 1 1. SFC W PAKIECIE ISAGRAF 1.1. Kroki W pakiecie ISaGRAF użytkownik nie ma możliwości definiowania własnych nazw dla kroków. Z każdym krokiem jest związany tzw. numer odniesienia

Bardziej szczegółowo

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy.

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy. 1. Kalkulator czterech działań. Kalkulator czterech działań: +, -, *, \ (bez nawiasów). Wejście: łańcuch znakowy, np. 1+2*3\4-5\2=, -2+4e-1= Liczby mogą być w formacie, np. +1.45, -2, 1e-10. 2. Konwersja

Bardziej szczegółowo

1. Przypisy, indeks i spisy.

1. Przypisy, indeks i spisy. 1. Przypisy, indeks i spisy. (Wstaw Odwołanie Przypis dolny - ) (Wstaw Odwołanie Indeks i spisy - ) Przypisy dolne i końcowe w drukowanych dokumentach umożliwiają umieszczanie w dokumencie objaśnień, komentarzy

Bardziej szczegółowo

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska 1 Przykład wyliczania wyrażeń arytmetycznych Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Copyright

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może

Bardziej szczegółowo

Opis programu Konwersja MPF Spis treści

Opis programu Konwersja MPF Spis treści Opis programu Konwersja MPF Spis treści Ogólne informacje o programie...2 Co to jest KonwersjaMPF...2 Okno programu...2 Podstawowe operacje...3 Wczytywanie danych...3 Przegląd wyników...3 Dodawanie widm

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej WPROWADZANIE DANYCH DO SYSTEMU INFORMACJI OŚWIATOWEJ dla szkół i placówek oświatowych Moduł: DANE ZBIORCZE czerwiec 2013 2

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury

Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury Marcin Stępniak Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury 1. Informacje 1.1. Stos Stos jest strukturą danych, w której dane dokładane są na wierzch stosu

Bardziej szczegółowo

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu http://www.jarsoft.poznan.pl/ 1. STRUKTURA PROGRAMU Program EWIDENCJA ODZIEŻY ROBOCZEJ jest aplikacją pracującą

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Budowa i generowanie planszy

Budowa i generowanie planszy Gra Saper została napisana w. Jest dostępna w każdej wersji systemu Windows. Polega na odkrywaniu zaminowanej planszy tak, aby nie trafić na minę. Gra działa na bardzo prostej zasadzie i nie wymaga zaawansowanego

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

UMOWY INSTRUKCJA STANOWISKOWA

UMOWY INSTRUKCJA STANOWISKOWA UMOWY INSTRUKCJA STANOWISKOWA Klawisze skrótów: F7 wywołanie zapytania (% - zastępuje wiele znaków _ - zastępuje jeden znak F8 wyszukanie według podanych kryteriów (system rozróżnia małe i wielkie litery)

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Badanie struktury sieci WWW

Badanie struktury sieci WWW Eksploracja zasobów internetowych Wykład 1 Badanie struktury sieci WWW mgr inż. Maciej Kopczyński Białystok 214 Rys historyczny Idea sieci Web stworzona została w 1989 przez Tima BernersaLee z CERN jako

Bardziej szczegółowo

System Obsługi Zleceń

System Obsługi Zleceń System Obsługi Zleceń Podręcznik Administratora Atinea Sp. z o.o., ul. Chmielna 5/7, 00-021 Warszawa NIP 521-35-01-160, REGON 141568323, KRS 0000315398 Kapitał zakładowy: 51.000,00zł www.atinea.pl wersja

Bardziej szczegółowo

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej WPROWADZANIE DANYCH DO SYSTEMU INFORMACJI OŚWIATOWEJ Nauczyciel Wersja kwiecień 2013 2 Spis treści ZBIÓR DANYCH O NAUCZYCIELACH...

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Programowanie aplikacji mobilnych

Programowanie aplikacji mobilnych Katedra Inżynierii Wiedzy laborki 3 Rysunek: Tworzymy projekt Rysunek: Tworzymy projekt Tworzenie GUI szybki sposób - ustawiamy kontrolki tak, aby łącznie uzyskać 9 przycisków typu ToggleButton oraz 3

Bardziej szczegółowo

Praca z tekstem: WORD Listy numerowane, wstawianie grafiki do pliku

Praca z tekstem: WORD Listy numerowane, wstawianie grafiki do pliku Praca z tekstem: WORD Listy numerowane, wstawianie grafiki do pliku W swoim folderze utwórz folder o nazwie 29_10_2009, wszystkie dzisiejsze zadania wykonuj w tym folderze. Na dzisiejszych zajęciach nauczymy

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Na poniższym rysunku widać fragment planszy. Pozycja pionka jest oznaczona przez. Pola, na które może dojść (w jednym ruchu), oznaczone są.

Na poniższym rysunku widać fragment planszy. Pozycja pionka jest oznaczona przez. Pola, na które może dojść (w jednym ruchu), oznaczone są. Dwuwymiarowy Nim VII OIG zawody indywidualne, etap I. 8 XI 0-7 I 0 Dostępna pamięć: 6 MB. Jaś i Małgosia grają w nietypową grę. Odbywa się ona na planszy ograniczonej z dołu i z lewej, a nieskończonej

Bardziej szczegółowo

Projektowanie aplikacji internetowych Pisanie skryptów wiersza poleceń - pętle

Projektowanie aplikacji internetowych Pisanie skryptów wiersza poleceń - pętle Instrukcja numer 06 Projektowanie aplikacji internetowych Pisanie skryptów wiersza poleceń - pętle Zadanie 06 Pętle w skryptach wiersza poleceń Zadanie omawia zagadnienia związane ze stosowaniem instrukcji

Bardziej szczegółowo

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB... MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Tematy lekcji informatyki klasa 4a luty/marzec 2013

Tematy lekcji informatyki klasa 4a luty/marzec 2013 Tematy lekcji informatyki klasa 4a luty/marzec 2013 temat 11. z podręcznika (str. 116-120) Jak uruchomić edytor tekstu MS Word 2007? ćwiczenia 2-5 (str. 117-120); Co to jest przycisk Office? W jaki sposób

Bardziej szczegółowo

Zawartość. Wstęp. Moduł Rozbiórki. Wstęp Instalacja Konfiguracja Uruchomienie i praca z raportem... 6

Zawartość. Wstęp. Moduł Rozbiórki. Wstęp Instalacja Konfiguracja Uruchomienie i praca z raportem... 6 Zawartość Wstęp... 1 Instalacja... 2 Konfiguracja... 2 Uruchomienie i praca z raportem... 6 Wstęp Rozwiązanie przygotowane z myślą o użytkownikach którzy potrzebują narzędzie do podziału, rozkładu, rozbiórki

Bardziej szczegółowo

Ćwiczenie 1: Pierwsze kroki

Ćwiczenie 1: Pierwsze kroki Ćwiczenie 1: Pierwsze kroki z programem AutoCAD 2010 1 Przeznaczone dla: nowych użytkowników programu AutoCAD Wymagania wstępne: brak Czas wymagany do wykonania: 15 minut W tym ćwiczeniu Lekcje zawarte

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

System Gokart Timing

System Gokart Timing System Gokart Timing 1 Spis treści System Gokart Timing... 1 Wstęp... 3 Słownik pojęć:... 3 Ogólny opis systemu... 3 Wymagania... 3 Aplikacja pomiarowa... 4 Interfejs... 4 Opis funkcji... 5 Aplikacja do

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23 Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Plik... 7 Okna... 8 Aktywny scenariusz... 9 Oblicz scenariusz... 10 Lista zmiennych... 11 Wartości zmiennych... 12 Lista scenariuszy/lista

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

Jak utworzyć plik SIO dla aktualnego spisu?

Jak utworzyć plik SIO dla aktualnego spisu? System Informacji Oświatowej Jak utworzyć plik SIO dla aktualnego spisu? Programy Arkusz Optivum, Kadry Optivum, Płace Optivum, Sekretariat Optivum oraz Księgowość Optivum dostarczają znaczną część danych

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

enova Systemowe Kolorowanie list

enova Systemowe Kolorowanie list enova Systemowe Kolorowanie list Sebastian Wabnik Narzędzie kolorowania list Od wersji enova 7.6 dodano do organizatora listy możliwości konfigurowania kolorowania wierszy (zapisów/rekordów) oraz poszczególnych

Bardziej szczegółowo

Edytor materiału nauczania

Edytor materiału nauczania Edytor materiału nauczania I. Uruchomienie modułu zarządzania rozkładami planów nauczania... 2 II. Opuszczanie elektronicznej biblioteki rozkładów... 5 III. Wyszukiwanie rozkładu materiałów... 6 IV. Modyfikowanie

Bardziej szczegółowo

Wyniki operacji w programie

Wyniki operacji w programie R O Z D Z I A Ł 6 Wyniki operacji w programie Dowiesz się jak: Przeglądać wyniki przeprowadzonych operacji Zatwierdzać i wycofywać przeprowadzane operacje Przeglądać listy środków w centrach kosztów i

Bardziej szczegółowo

Prezentacja multimedialna MS PowerPoint 2010 (podstawy)

Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Cz. 1. Tworzenie slajdów MS PowerPoint 2010 to najnowsza wersja popularnego programu do tworzenia prezentacji multimedialnych. Wygląd programu w

Bardziej szczegółowo

PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest

PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ Opis działania raportów w ClearQuest Historia zmian Data Wersja Opis Autor 2008.08.26 1.0 Utworzenie dokumentu. Wersja bazowa dokumentu. 2009.12.11 1.1

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

ERGODESIGN - Podręcznik użytkownika. Wersja 1.0 Warszawa 2010

ERGODESIGN - Podręcznik użytkownika. Wersja 1.0 Warszawa 2010 ERGODESIGN - Podręcznik użytkownika Wersja 1.0 Warszawa 2010 Spis treści Wstęp...3 Organizacja menu nawigacja...3 Górne menu nawigacyjne...3 Lewe menu robocze...4 Przestrzeń robocza...5 Stopka...5 Obsługa

Bardziej szczegółowo

Instrukcja do modułu Kontroli Zarządczej (KZ)

Instrukcja do modułu Kontroli Zarządczej (KZ) Instrukcja do modułu Kontroli Zarządczej (KZ) www.budzet-zadaniowy.com 1 Spis treści I Kontrola Zarządcza... 3 II Ogólna budowa KZ... 4 III Tworzenie nowych dokumentów KZ opcja Nowy... 5 IV Otwieranie

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Finanse VULCAN. Jak wprowadzić fakturę sprzedaży?

Finanse VULCAN. Jak wprowadzić fakturę sprzedaży? Finanse VULCAN Jak wprowadzić fakturę sprzedaży? Wprowadzanie nowej faktury sprzedaży 1. Zaloguj się do Platformy VULCAN jako księgowy i uruchom aplikację Finanse VULCAN. 2. Na wstążce przejdź do widoku

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Microsoft Access zajęcia 3 4. Tworzenie i wykorzystanie kwerend, formularzy i raportów

Microsoft Access zajęcia 3 4. Tworzenie i wykorzystanie kwerend, formularzy i raportów Microsoft Access zajęcia 3 4 Tworzenie i wykorzystanie kwerend, formularzy i raportów Kwerendy służą do tworzenia unikalnych zestawów danych, niedostępnych bezpośrednio z tabel, dokonywania obliczeń zawartych

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical;

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

WellCommerce Poradnik: CMS

WellCommerce Poradnik: CMS WellCommerce Poradnik: CMS Spis treści well W tej części poradnika poznasz funkcje WellCommerce które służą do zarządzania treścią - aktualnościami, stronami statycznymi i ankietami w Twoim sklepie internetowym.

Bardziej szczegółowo

Serwis jest dostępny w internecie pod adresem www.solidnyserwis.pl. Rysunek 1: Strona startowa solidnego serwisu

Serwis jest dostępny w internecie pod adresem www.solidnyserwis.pl. Rysunek 1: Strona startowa solidnego serwisu Spis treści 1. Zgłoszenia serwisowe wstęp... 2 2. Obsługa konta w solidnym serwisie... 2 Rejestracja w serwisie...3 Logowanie się do serwisu...4 Zmiana danych...5 3. Zakładanie i podgląd zgłoszenia...

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWNIKA. Spis treści. I. Wprowadzenie... 2. II. Tworzenie nowej karty pracy... 3. a. Obiekty... 4. b. Nauka pisania...

INSTRUKCJA UŻYTKOWNIKA. Spis treści. I. Wprowadzenie... 2. II. Tworzenie nowej karty pracy... 3. a. Obiekty... 4. b. Nauka pisania... INSTRUKCJA UŻYTKOWNIKA Spis treści I. Wprowadzenie... 2 II. Tworzenie nowej karty pracy... 3 a. Obiekty... 4 b. Nauka pisania... 5 c. Piktogramy komunikacyjne... 5 d. Warstwy... 5 e. Zapis... 6 III. Galeria...

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

Nowa płatność Dodaj nową płatność. Wybierz: Płatności > Transakcje > Nowa płatność

Nowa płatność Dodaj nową płatność. Wybierz: Płatności > Transakcje > Nowa płatność Podręcznik Użytkownika 360 Księgowość Płatności Wprowadzaj płatności bankowe oraz gotówkowe, rozliczenia netto pomiędzy dostawcami oraz odbiorcami, dodawaj nowe rachunki bankowe oraz kasy w menu Płatności.

Bardziej szczegółowo

Instrukcja korzystania z portalu Diagnoza Nowej Ery

Instrukcja korzystania z portalu Diagnoza Nowej Ery Instrukcja korzystania z portalu Diagnoza Nowej Ery 1. Przypisanie szkoły do nauczyciela Po zalogowaniu się lub rejestracji nowego konta należy wybrać zakładkę Szkoły u góry ekranu. Przejdziesz do okna

Bardziej szczegółowo

Ocenianie opisowe Optivum. Jak przygotować i wydrukować świadectwa lub arkusze ocen?

Ocenianie opisowe Optivum. Jak przygotować i wydrukować świadectwa lub arkusze ocen? Ocenianie opisowe Optivum Jak przygotować i wydrukować świadectwa lub arkusze ocen? W programie Ocenianie opisowe Optivum można przygotowywać raporty w oparciu o wcześniej sporządzony szablon dokumentu,

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo