Wyszukiwanie informacji w internecie. Nguyen Hung Son

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyszukiwanie informacji w internecie. Nguyen Hung Son"

Transkrypt

1 Wyszukiwanie informacji w internecie Nguyen Hung Son

2 Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy główne moduły Zarządzanie pająków; Serwer indeksowania; Interfejs użytkownika Wyniki wyszukiwania: Lista rankingowa

3 Architektura Menedżer indeksów Serwer indeksowania Wstępne przetwarza nie i tworzenie indeksów Adresy url Wyniki Wyszukiwarka Internetowa Menedżer pająków zapytania Zawartość strony Pająki

4 Lista rankingowa nie jest doskonała!

5 Lista rankingowa nie jest doskonała!

6 Grupowanie wyników wyszukiwania (ang. SRC: Search Result Clustering)

7 SRC korzysta z krótkich fragmentów tekstu (snippets)

8 SRC czy grupowanie dokumentów? Grupowanie dokumentów: Miliardy stron; Ich treści ciągle się zmieniają; Skalowalność wzg. liczby dokumentów Są to niestrukturalne i różnorodne dane; dodatkowe informacje: hiperłącze, przejścia między stronami (click-through data), itp. SRC Próba 100~400 wyników wyszukiwania Informacje są aktualne Działa na bieżąco Skalowalność wzg. potrzeby użytkownika Zbyt mała, zaszumiona informacja gorsza jakość grup

9 Problemy w SRC

10 Wymagania Kryteria oceniania jakości metod SRC: Semantyczność: dokumenty w jednej grupie powinny dotyczyć tego samego tematu Znaczenie etykiet grup: powinny one dobrze opisać zawartość całej grupy. Mała liczba grup: należy pokryć jak najwięcej dokumentów używając przy tym jak najmniej grup. Te kryteria są raczej subiektywne aniżeli obiektywne.

11 Model wektorowy dokumentów T={t 1,,t n } zbiór wybranych wyrazów (słów, fraz) Dokument d i = [w i,1,,w i,n ] gdzie w i,j jest wagą wyrazu t j w dokumencie d i Schemat ważenia wyrazów TFxIDF w i, j fi, j log N df t j w i,j : częstość występowania wyrazu t j w dokumencie d i N : liczba dokumentów df(t j ): liczba dokumentów zawierających t j

12 Podobieństwo dokumentów Miara cosinusa: n i k i n i j i n i k i j i k j k j k j w w w w d d d d d d sim 1 2, 1 2, 1,, ), ( t 1 d 2 d 1 t 3 t 2 θ

13 Istniejące metody

14 Klasyfikacja algorytmów grupowania Płaska struktura czy hierarchiczna? Czy grupy są rozłączne? Ostry czy miękki podział? Przyrostowa metoda? Czy liczba grup jest z góry zadana? Czy miary odległości lub podobieństwa muszą być zadane z góry? Z użyciem odległości Hierarchiczna struktura Agglomerative Hierarchical Clustering (AHC) Płaska struktura K-centroidów (możliwe rozmycie) Inkrementalna (Single-pass) Inne Suffix Tree Clustering (Grouper) SOM (Kohonen) Latent Semantic Indexing (LSI) (zmniejsza wymiar)

15 Grupowanie hierarchiczne (AHC)

16 Wynik grupowania: hierarchia pojęć

17 Różne wersje AHC Istnieją różne metody mierzenia podobieństwa grup Maksymum (complete-link) Minimum (single-link) Średnia (average)

18 K-centroidów (k=3)

19 Metoda inkrementalna (single-pass)

20 Grouper (Zamir and Etzioni 1997, 1999) Działa na bieżąco (online) Grupuje wyniki wyszukiwania (snippets) Grupuje dokumenty, które mają wiele wspólnych fraz Grupowanie drzewem sufiksowym (STC - Suffix Tree Clustering) Czas liniowy Metoda inkrementalna Grupy nie są rozłączne Może być hierarchiczna.

21 Algorytm STC (Suffix Tree Clustering) Krok 1: Czyszczenie danych: Normalizacja (stemming, stop-words elimination) Identyfikacja fraz i zdań. Eliminacja znaków interpunkcyjnych. Krok 2: Budowa drzewa sufiksowego: Stworzenie grup bazowych Ocena grup bazowych za pomocą ich rozmiaru i ocen fraz Krok 3: Łączenie grup bazowych: Grupy mające dużą część wspólną są połączone.

22 Drzewo sufiksowe = minimalne drzewo zawierające sufiksy wszystkich napisów 1. cat ate cheese 2. mouse ate cheese too 3. cat ate mouse too Odwrotny indeks fraz

23 Krok 2 Identyfikacja grup bazowych Wierzchołki reprezentują grupy dokumentów mających wspólną frazę Każda grupa B definiowana przez frazę P jest oceniona przez S(B) = B f( P )

24 Krok 3 Łączenie grup bazowych Podobieństwo między grupami bazowymi: 1 sim 0 Łączymy grupy algorytmem przyrostowym B n B B n m 0.5 oraz wpp. B n B B m m 0.5

25 Lingo (S.Osiński, D. Weiss) Korzysta z rozkładu macierzy wzg. wartości osobliwych (SVD) Reprezentacja zbioru dokumentów (snippets) w przestrzeni rzutowej o małym wymiarze Wektory osobliwe wyznaczają etykiety grup Dokumenty są dopisane do grup według miary cosinusa. Implementacja: Carrot2: Search Results Clustering Framework

26 Rozkład wzg. wartości osobliwych (ang. SVD - Singular Value Decomposition) A macierz m x n A =U V T Kolumny U wektory własne AA T Kolumny V wektory własne A T A = diag( 1,, n ): 1,, n wartości osobliwe A 1 > > k > n Aproksymacja: A U k k V kt = U k C k

27 SVD Współrzędne dokumentów w przestrzeni rzutowej Wektory własne wektory własne A U k C k

28 SVD wyznacza etykiety grup Możliwa etykieta

29 Konkluzje SRC próba przyśpieszania procesu wyszukiwania informacji w internecie i w bibliotekach elektronicznych. Temat atrakcyjny również dla dużych graczy Problemy: Brak obiektywnego kryterium oceny Brak personalizacji Źródła informacji: Historie procesów wyszukiwania w przeszłości Publiczne katalogi internetowe Leksykon semantycznych powiązań, np. Wordnet Profil użytkownika

O szukaniu sensu w stogu siana

O szukaniu sensu w stogu siana O szukaniu sensu w stogu siana Algorytmy grupowania wyników z wyszukiwarek internetowych i propozycje ich ulepszenia przy wykorzystaniu wiedzy lingwistycznej. Dawid Weiss Instytut Informatyki Politechnika

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Grupowanie opisowe dużych repozytoriów danych tekstowych. Grupowanie opisowe

Grupowanie opisowe dużych repozytoriów danych tekstowych. Grupowanie opisowe Grupowanie opisowe dużych repozytoriów danych tekstowych Stanisław Osiński, Dawid Weiss, Carrot Search info@carrotsearch.com https://carrotsearch.com Stanisław Osiński, Dawid Weiss Grupowanie opisowe to

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych

Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Informatyki i Elektroniki Instrukcja do zajęć laboratoryjnych wersja: 1.0 Nr ćwiczenia: 12, 13 Temat: Cel ćwiczenia: Wymagane przygotowanie

Bardziej szczegółowo

Analiza danych tekstowych i języka naturalnego

Analiza danych tekstowych i języka naturalnego Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Wyszukiwanie dokumentów/informacji

Wyszukiwanie dokumentów/informacji Wyszukiwanie dokumentów/informacji Wyszukiwanie dokumentów (ang. document retrieval, text retrieval) polega na poszukiwaniu dokumentów tekstowych z pewnego zbioru, które pasują do zapytania. Wyszukiwanie

Bardziej szczegółowo

Semantyczne podobieństwo stron internetowych

Semantyczne podobieństwo stron internetowych Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Marcin Lamparski Nr albumu: 184198 Praca magisterska na kierunku Informatyka Semantyczne podobieństwo stron internetowych Praca wykonana

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Marcin Deptuła Julian Szymański, Henryk Krawczyk Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Architektury

Bardziej szczegółowo

Wyszukiwanie boolowskie i strukturalne. Adam Srebniak

Wyszukiwanie boolowskie i strukturalne. Adam Srebniak Wyszukiwanie boolowskie i strukturalne Adam Srebniak Wyszukiwanie boolowskie W wyszukiwaniu boolowskim zapytanie traktowane jest jako zdanie logiczne. Zwracane są dokumenty, dla których to zdanie jest

Bardziej szczegółowo

Grupowanie wyników zapytań do wyszukiwarek internetowych

Grupowanie wyników zapytań do wyszukiwarek internetowych Grupowanie wyników zapytań do wyszukiwarek internetowych oraz propozycje usprawnień algorytmów przy pomocy fraz poprawnych językowo Dawid Weiss Instytut Informatyki Politechnika Poznańska Seminarium Instytut

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

Pobieranie i przetwarzanie treści stron WWW

Pobieranie i przetwarzanie treści stron WWW Eksploracja zasobów internetowych Wykład 2 Pobieranie i przetwarzanie treści stron WWW mgr inż. Maciej Kopczyński Białystok 2014 Wstęp Jedną z funkcji silników wyszukiwania danych, a właściwie ich modułów

Bardziej szczegółowo

Eksploracja złożonych typów danych Text i Web Mining

Eksploracja złożonych typów danych Text i Web Mining Eksploracja złożonych typów danych Text i Web Mining Jerzy Stefanowski Instytut Informatyki Politechniki Poznańskiej Wykład AiED, Poznań 2002 Co będzie? Eksploracja danych tekstowych Wyszukiwanie informacji

Bardziej szczegółowo

Wstęp do przetwarzania języka naturalnego

Wstęp do przetwarzania języka naturalnego Wstęp do przetwarzania języka naturalnego Wykład 9 Wektoryzacja dokumentów i podstawowe miary podobieństwa Wojciech Czarnecki 17 grudnia 2013 Section 1 Przypomnienie Bag of words model Podejście Przypomnienie

Bardziej szczegółowo

METODY INDEKSOWANIA DOKUMENTÓW TEKSTOWYCH W SYSTEMACH WEBOWYCH

METODY INDEKSOWANIA DOKUMENTÓW TEKSTOWYCH W SYSTEMACH WEBOWYCH Indeksowanie, Indeks Inwersyjny Grupowanie, Pliki Podpisu Daniel Halikowski METODY INDEKSOWANIA DOKUMENTÓW TEKSTOWYCH W SYSTEMACH WEBOWYCH Zasoby sieci Internet to miliardy plików zlokalizowanych na całym

Bardziej szczegółowo

Podstawy grupowania danych w programie RapidMiner Michał Bereta

Podstawy grupowania danych w programie RapidMiner Michał Bereta Podstawy grupowania danych w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Grupowanie hierarchiczne Grupowanie (analiza skupieo, ang. clustering) ma na celu automatyczne wykrycie grup istniejących

Bardziej szczegółowo

AUTOMATYKA INFORMATYKA

AUTOMATYKA INFORMATYKA AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów

Bardziej szczegółowo

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne: WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji

Bardziej szczegółowo

Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym

Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym Paweł Szołtysek 09 listopada 2009 1/46 metod metod 2/46 metod 199 stron, 2 cytowania własne 7rozdziałów Promotor: NT Nguyen 3/46 metod

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Projektowanie architektury informacji katalogu biblioteki w oparciu o badania użytkowników Analiza przypadku

Projektowanie architektury informacji katalogu biblioteki w oparciu o badania użytkowników Analiza przypadku Projektowanie architektury informacji katalogu biblioteki w oparciu o badania użytkowników Analiza przypadku dr Stanisław Skórka Biblioteka Główna Instytut Informacji Naukowej i Bibliotekoznawstwa Uniwersytet

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

1. Dane punkty na płaszczyźnie. Trzeba narysować dendrogram centroidu

1. Dane punkty na płaszczyźnie. Trzeba narysować dendrogram centroidu 1. Dane punkty na płaszczyźnie. Trzeba narysować dendrogram centroidu Dendrogram obrazuje powiązania między klastrami. Liście obiekty Korzeń wynik grupowania Linia odcinająca pokazuje, w którym momencie

Bardziej szczegółowo

POZYCJONOWANIE STRONY SKLEPU

POZYCJONOWANIE STRONY SKLEPU . Wszystko O Pozycjonowaniu I Marketingu. >>>POZYCJONOWANIE STRON LEGNICA POZYCJONOWANIE STRONY SKLEPU >>>WIĘCEJ

Bardziej szczegółowo

ang. file) Pojęcie pliku (ang( Typy plików Atrybuty pliku Fragmentacja wewnętrzna w systemie plików Struktura pliku

ang. file) Pojęcie pliku (ang( Typy plików Atrybuty pliku Fragmentacja wewnętrzna w systemie plików Struktura pliku System plików 1. Pojęcie pliku 2. Typy i struktury plików 3. etody dostępu do plików 4. Katalogi 5. Budowa systemu plików Pojęcie pliku (ang( ang. file)! Plik jest abstrakcyjnym obrazem informacji gromadzonej

Bardziej szczegółowo

Grupowanie dokumentów tekstowych z wykorzystaniem technik NLP

Grupowanie dokumentów tekstowych z wykorzystaniem technik NLP Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Matematyki i Informatyki Krzysztof Sielski nr albumu: 301650 Grupowanie dokumentów tekstowych z wykorzystaniem technik NLP Praca magisterska na kierunku:

Bardziej szczegółowo

Metody indeksowania dokumentów tekstowych

Metody indeksowania dokumentów tekstowych Metody indeksowania dokumentów tekstowych Paweł Szołtysek 21maja2009 Metody indeksowania dokumentów tekstowych 1/ 19 Metody indeksowania dokumentów tekstowych 2/ 19 Czym jest wyszukiwanie informacji? Wyszukiwanie

Bardziej szczegółowo

Część I Rozpoczęcie pracy z usługami Reporting Services

Część I Rozpoczęcie pracy z usługami Reporting Services Spis treści Podziękowania... xi Wprowadzenie... xiii Część I Rozpoczęcie pracy z usługami Reporting Services 1 Wprowadzenie do usług Reporting Services... 3 Platforma raportowania... 3 Cykl życia raportu...

Bardziej szczegółowo

Eksploracja danych a serwisy internetowe Przemysław KAZIENKO

Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Wydział Informatyki i Zarządzania Politechnika Wrocławska kazienko@pwr.wroc.pl Dlaczego eksploracja danych w serwisach internetowych? Kanały

Bardziej szczegółowo

Badanie struktury sieci WWW

Badanie struktury sieci WWW Eksploracja zasobów internetowych Wykład 1 Badanie struktury sieci WWW mgr inż. Maciej Kopczyński Białystok 214 Rys historyczny Idea sieci Web stworzona została w 1989 przez Tima BernersaLee z CERN jako

Bardziej szczegółowo

Techniki grupowania danych w środowisku Matlab

Techniki grupowania danych w środowisku Matlab Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe

Bardziej szczegółowo

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Grupowanie danych. Wprowadzenie. Przykłady

Grupowanie danych. Wprowadzenie. Przykłady Grupowanie danych str. 1 Wprowadzenie Celem procesu grupowania jest podział zbioru obiektów, fizycznych lub abstrakcyjnych, na klasy obiektów o podobnych cechach, nazywane klastrami lub skupieniami Klaster

Bardziej szczegółowo

KATEGORIA OBSZAR WIEDZY

KATEGORIA OBSZAR WIEDZY Moduł 3 - Przetwarzanie tekstów - od kandydata wymaga się zaprezentowania umiejętności wykorzystywania programu do edycji tekstu. Kandydat powinien wykonać zadania o charakterze podstawowym związane z

Bardziej szczegółowo

Ontologie, czyli o inteligentnych danych

Ontologie, czyli o inteligentnych danych 1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Wstęp do przetwarzania języka naturalnego. Wykład 10 Zaawansowana wektoryzacja i klasyfikacja

Wstęp do przetwarzania języka naturalnego. Wykład 10 Zaawansowana wektoryzacja i klasyfikacja Wstęp do przetwarzania języka naturalnego Wykład 10 Zaawansowana wektoryzacja i klasyfikacja Wojciech Czarnecki 8 stycznia 2014 Section 1 Wektoryzacja tfidf document x y z Antony and Cleopatra 5.25 1.21

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

CLUSTERING II. Efektywne metody grupowania danych

CLUSTERING II. Efektywne metody grupowania danych CLUSTERING II Efektywne metody grupowania danych Plan wykładu Wstęp: Motywacja i zastosowania Metody grupowania danych Algorytmy oparte na podziałach (partitioning algorithms) PAM Ulepszanie: CLARA, CLARANS

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa

EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa , semantyczne powiązanie i podobieństwo, odległość Projekt przejściowy ARR Politechnika Wrocławska Wydział Elektroniki Wrocław, 22 października 2013 Spis treści 1 językowa 2, kryteria 3 Streszczenie artykułu

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych

Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Probabilistic Topic Models Jakub M. TOMCZAK Politechnika Wrocławska, Instytut Informatyki 30.03.2011, Wrocław Plan 1. Wstęp

Bardziej szczegółowo

Kompresja bezstratna. Entropia. Kod Huffmana

Kompresja bezstratna. Entropia. Kod Huffmana Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)

Bardziej szczegółowo

Wyszukiwanie strukturalne

Wyszukiwanie strukturalne Wyszukiwanie strukturalne Wprowadzenie Wyszukiwanie indeksowe (Wyszukiwanie strukturalne)- podejście tradycyjne Każdy dokument jest opatrzony w opis strukturalny dokumentu (właściwości indeksu / właściwości

Bardziej szczegółowo

Wyszukiwanie dokumentów WWW bazujące na słowach kluczowych

Wyszukiwanie dokumentów WWW bazujące na słowach kluczowych Eksploracja zasobów internetowych Wykład 3 Wyszukiwanie dokumentów WWW bazujące na słowach kluczowych mgr inż. Maciej Kopczyński Białystok 2014 Wstęp Wyszukiwanie dokumentów za pomocą słów kluczowych bazujące

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Wyszukiwanie tekstów

Wyszukiwanie tekstów Wyszukiwanie tekstów Dziedzina zastosowań Elektroniczne encyklopedie Wyszukiwanie aktów prawnych i patentów Automatyzacja bibliotek Szukanie informacji w Internecie Elektroniczne teksy Ksiązki e-book Artykuły

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

Klasteryzacja danych

Klasteryzacja danych Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Klasteryzacja danych na podstawie: Leszek Rutkowski. Metody i techniki

Bardziej szczegółowo

Systemy organizacji wiedzy i ich rola w integracji zasobów europejskich bibliotek cyfrowych

Systemy organizacji wiedzy i ich rola w integracji zasobów europejskich bibliotek cyfrowych Systemy organizacji wiedzy i ich rola w integracji zasobów europejskich bibliotek cyfrowych Adam Dudczak Poznańskie Centrum Superkomputerowo-Sieciowe (maneo@man.poznan.pl) I Konferencja Polskie Biblioteki

Bardziej szczegółowo

Indeksowanie full text search w chmurze

Indeksowanie full text search w chmurze Prezentacja przygotowana dla: 5. Konferencja MIC w Poznaniu, 16.06.20111 Lucene.NET Indeksowanie full text search w chmurze K2 i Windows Azure dlaczego dla nas to możliwe? 1. Mamy unikalne połącznie kompetencji

Bardziej szczegółowo

PROJEKT Z BAZ DANYCH

PROJEKT Z BAZ DANYCH POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PROJEKT Z BAZ DANYCH System bazodanowy wspomagający obsługę sklepu internetowego AUTOR: Adam Kowalski PROWADZĄCY ZAJĘCIA: Dr inż. Robert Wójcik, W4/K-9 Indeks:

Bardziej szczegółowo

Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści

Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, 2016 Spis treści Przedmowa XI I Podstawy języka Python 1. Wprowadzenie 3 1.1. Język i środowisko

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Relacja zakresu nauk humanistyczno-społecznych z Krajową Inteligentną Specjalizacją

Relacja zakresu nauk humanistyczno-społecznych z Krajową Inteligentną Specjalizacją Relacja zakresu nauk humanistyczno-społecznych z Krajową Inteligentną Specjalizacją Inteligentne uczenie się Moduł nr 1 Inteligentne szkolnictwo wyższe dla inteligentnej gospodarki i jej kadr Inteligentne

Bardziej szczegółowo

Internet, jako ocean informacji. Technologia Informacyjna Lekcja 2

Internet, jako ocean informacji. Technologia Informacyjna Lekcja 2 Internet, jako ocean informacji Technologia Informacyjna Lekcja 2 Internet INTERNET jest rozległą siecią połączeń, między ogromną liczbą mniejszych sieci komputerowych na całym świecie. Jest wszechstronnym

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

OPTYMALIZACJA SERWISÓW INTERNETOWYCH >>>WIĘCEJ<<<

OPTYMALIZACJA SERWISÓW INTERNETOWYCH >>>WIĘCEJ<<< INTERNETOWYCH. Wszystko O Pozycjonowaniu I Marketingu. >>>POZYCJONOWANIE STRON BYDGOSZCZ OPTYMALIZACJA SERWISÓW INTERNETOWYCH >>>WIĘCEJ

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ Temat pracy: Projekt i realizacja serwisu ogłoszeń z inteligentną wyszukiwarką

REFERAT PRACY DYPLOMOWEJ Temat pracy: Projekt i realizacja serwisu ogłoszeń z inteligentną wyszukiwarką REFERAT PRACY DYPLOMOWEJ Temat pracy: Projekt i realizacja serwisu ogłoszeń z inteligentną wyszukiwarką Autor: Paweł Konieczny Promotor: dr Jadwigi Bakonyi Kategorie: aplikacja www Słowa kluczowe: Serwis

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

media Wyszukiwanie pełnotekstowe z wykorzystaniem Search Engine

media Wyszukiwanie pełnotekstowe z wykorzystaniem Search Engine Wyszukiwanie pełnotekstowe z wykorzystaniem Search Engine Wyszukiwanie pełnotekstowe (ang. full-text search) - co to jest? Jest sposobem przeszukiwania danych tekstowych, który bazuje na analizie poszczególnych

Bardziej szczegółowo

KATEGORIA OBSZAR WIEDZY

KATEGORIA OBSZAR WIEDZY Moduł 7 - Usługi w sieciach informatycznych - jest podzielony na dwie części. Pierwsza część - Informacja - wymaga od zdającego zrozumienia podstawowych zasad i terminów związanych z wykorzystaniem Internetu

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Praca magisterska Jakub Reczycki. Opiekun : dr inż. Jacek Rumiński. Katedra Inżynierii Biomedycznej Wydział ETI Politechnika Gdańska

Praca magisterska Jakub Reczycki. Opiekun : dr inż. Jacek Rumiński. Katedra Inżynierii Biomedycznej Wydział ETI Politechnika Gdańska System gromadzenia, indeksowania i opisu słownikowego norm i rekomendacji Praca magisterska Jakub Reczycki Opiekun : dr inż. Jacek Rumiński Katedra Inżynierii Biomedycznej Wydział ETI Politechnika Gdańska

Bardziej szczegółowo

Zadania. Przygotowanie zbiorów danych. 1. Sposób 1: 2. Sposób 2:

Zadania. Przygotowanie zbiorów danych. 1. Sposób 1: 2. Sposób 2: Wstęp Jednym z typowych zastosowań metod sztucznej inteligencji i uczenia maszynowego jest przetwarzanie języka naturalnego (ang. Natural Language Processing, NLP), której typowych przykładem jest analiza

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Poradnik SEO. Ilu z nich szuka Twojego produktu? Jak skutecznie to wykorzystać?

Poradnik SEO. Ilu z nich szuka Twojego produktu? Jak skutecznie to wykorzystać? Poradnik SEO Poradnik SEO Internet to najszybciej rozwijające się medium. W Polsce jest już 15 mln użytkowników, ponad 90% z nich używa wyszukiwarki Google. Dziennie użytkownicy zadają ponad 130 milionów

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Zastosowanie wartości własnych macierzy

Zastosowanie wartości własnych macierzy Uniwersytet Warszawski 15 maja 2008 Agenda Postawienie problemu 1 Postawienie problemu Motywacja Jak zbudować wyszukiwarkę? Dlaczego to nie jest takie trywialne? Możliwe rozwiazania Model 2 3 4 Motywacja

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering

Bardziej szczegółowo

Klasyfikacja informacji naukowych w Internecie na przykładzie stron poświęconych kulturze antycznej

Klasyfikacja informacji naukowych w Internecie na przykładzie stron poświęconych kulturze antycznej Klasyfikacja informacji naukowych w Internecie na przykładzie stron poświęconych kulturze antycznej Katowice, 15 grudnia 2010 2 Informacja w kontekście projektu i marketingu L. Rosenfeld, P. Morville,

Bardziej szczegółowo

ZAPYTANIE OFERTOWE NR 2

ZAPYTANIE OFERTOWE NR 2 Łódź dn. 01.12.2010 r. Dotyczy: Projekt nr WND RPLD.04.03.00-00-022/10 ZAPYTANIE OFERTOWE NR 2 1. ZAMAWIAJĄCY A&A Marketing Sp. z o.o. 90-063 Łódź ul. Piotrkowska 146 NIP:725 187 63 48 Regon: 473237879

Bardziej szczegółowo

System plików warstwa fizyczna

System plików warstwa fizyczna System plików warstwa fizyczna Dariusz Wawrzyniak Plan wykładu Przydział miejsca na dysku Zarządzanie wolną przestrzenią Implementacja katalogu Przechowywanie podręczne Integralność systemu plików Semantyka

Bardziej szczegółowo

Wyszukiwanie pełnotekstowe (Full-Text Search) w SQL Server

Wyszukiwanie pełnotekstowe (Full-Text Search) w SQL Server Media Partners Wyszukiwanie pełnotekstowe (Full-Text Search) w SQL Server Kamil Nowioski PLSSUG Wrocław kamil.nowinski@plssug.org.pl Tomasz Libera PLSSUG Kraków tomasz.libera@plssug.org.pl Kamil Nowioski

Bardziej szczegółowo

System plików warstwa fizyczna

System plików warstwa fizyczna System plików warstwa fizyczna Dariusz Wawrzyniak Przydział miejsca na dysku Przydział ciągły (ang. contiguous allocation) cały plik zajmuje ciąg kolejnych bloków Przydział listowy (łańcuchowy, ang. linked

Bardziej szczegółowo

BAZY DANYCH wprowadzenie. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH wprowadzenie. Opracował: dr inż. Piotr Suchomski BAZY DANYCH wprowadzenie Opracował: dr inż. Piotr Suchomski Prowadzący Katedra Systemów Multimedialnych dr inż. Piotr Suchomski (e-mail: pietka@sound.eti.pg.gda.pl) (pok. 730) dr inż. Andrzej Leśnicki

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Haszowanie (adresowanie rozpraszające, mieszające)

Haszowanie (adresowanie rozpraszające, mieszające) Haszowanie (adresowanie rozpraszające, mieszające) Tadeusz Pankowski H. Garcia-Molina, J.D. Ullman, J. Widom, Implementacja systemów baz danych, WNT, Warszawa, Haszowanie W adresowaniu haszującym wyróżniamy

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

BalticBottomBase. Instytut Morski w Gdańsku Gdańsk,

BalticBottomBase. Instytut Morski w Gdańsku Gdańsk, BalticBottomBase mgr inż. Przemysław Kulesza dr Piotr Piotrowski mgr inż. Michał Wójcik Spójne wyszukiwanie w zbiorze różnorodnych danych geograficznych - metamodel i metoda wyszukiwania Instytut Morski

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania

Bardziej szczegółowo

CZĘŚĆ I. WARSTWA PRZETWARZANIA WSADOWEGO

CZĘŚĆ I. WARSTWA PRZETWARZANIA WSADOWEGO Spis treści Przedmowa Podziękowania O książce Rozdział 1. Nowy paradygmat dla Big Data 1.1. Zawartość książki 1.2. Skalowanie tradycyjnej bazy danych 1.2.1. Skalowanie za pomocą kolejki 1.2.2. Skalowanie

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo