LICZBY I ZBIORY ZADANIA
|
|
- Edward Włodarczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 LICZBY I ZBIORY ZADANIA 1 [5] Wśród liczb naleŝących do zbioru Z = { (7) } liczb 4 wymiernych jest A 1 B C D 4 [4] Spośród podanych liczb: 8 4 a wymierne b naturalne c pierwsze (1) 1 wypisz liczby 5 [5] Dana liczba x = ( ) WykaŜ Ŝe liczba x jest naturalna 4 [] Wśród liczb naturalnych naleŝących do przedziału < > : a Jedna jest liczbą pierwszą b Są dwie liczby pierwsze c Są trzy liczby pierwsze d Nie ma liczb pierwszych 5 [4] RozwiąŜ nierówność x < 9 a Odpowiedź zapisać w postaci przedziału b Podaj najmniejszą liczbę pierwszą naleŝącą do tego przedziału c Podaj najmniejszą liczbę naturalną nienaleŝącą do tego przedziału 6 [] Podaj najmniejszy przedział otwarty ( a b) gdzie a Z i b Z do którego naleŝy liczba: a + b 1 c 1 d [6] Oblicz resztę z dzielenia liczby n przez liczbę m gdy: a n = 11 m = 7 b n = 65 m = 11 c n = 9 m = 1 d n = 710 m = 17
2 8 [6] W Polsce Numer Identyfikacji Podatnika NIP zarówno dla osób fizycznych jak i spółek prawa handlowego składa się z 10 cyfr: c1cc c4c5c6 c7c8 c9c10 przy czym kreski oddzielające grupy cyfr nie mają Ŝadnego znaczenia słuŝą ułatwieniu w podawaniu numeru Pierwsze dwie cyfry są nadawane w oparciu o zakres numerów przyporządkowanych do danego regionu następne siedem cyfr jest generowanych losowo lub przydzielanych w pewien określony sposób a ostatnia cyfra jest cyfrą kontrolną wyliczaną za pomocą procedury opisanej poniŝej Cyfra kontrolna sprawdza podany numer NIP i w przypadku braku zgodności kwestionuje jego poprawność A oto procedura obliczania cyfry kontrolnej: obliczamy liczbę n : n = 6c + 5c + 7c + c + c + 4c + 5c + 6c + c obliczamy resztę r z dzielenia liczby n przez 11 cyfrą kontrolną jest reszta z dzielenia liczby r przez 10 Sprawdź czy następujący numer dziesięciocyfrowy moŝe być uznany za poprawny numer NIP w Polsce: a b c d [6] Wypisz wszystkie elementy zbioru A gdy A jest zbiorem: a wszystkich całkowitych nieujemnych jednocyfrowych liczb parzystych b wszystkich liczb całkowitych dodatnich mniejszych od 6 c wszystkich dwucyfrowych liczb pierwszych mniejszych od 0 d wszystkich dodatnich dzielników liczby 6 10 [6] Wypisz wszystkie elementy zbioru A gdy: a A = { n : n 0 n > 0} b A = { n : n N n < 0 NWD( n18) = 1} c A = { n : n N n < 5 NWD( n4) = } d A = { n : n N NWW ( n1) = 48} 11 [6] Wyznacz zbiory: A B C A B C ( A \ C ( A \ C A \ ( B C) gdy A = {14 } B = {145 } C ={45} 1 [] Wyznacz działanie i zaznacz na osi liczbowej punkty których współrzędne naleŝą do zbioru: a ( 11) {1 } b < 5) {} c R \ ( 0) d R \ < 0 1 [] Przedział < 1) jest wynikiem działania: A ( 4) (15 ) B < 1 ( C < 1 0) < 0) D < 11) ( ) 9
3 14 [] JeŜeli A = ( > i B = ( to iloczyn A B jest równy: A ( B ( > C ( ) D < 15 [] JeŜeli A = 7 ) i B = N to iloczyn A B jest równy: ( 5 A { 11 } B < 0) C { 1} D { 01 } 16 [] JeŜeli A = ( ) ( B =< 5 5 > C =< > to zbiór ( A C jest równy zbiorowi: A A B B C C D D 17 [] JeŜeli A = R i B =< ) to róŝnica A \ B jest równa: A ( ) B < C ( > D ( ) ( 18 [4] Wyznacz: A B A B A \ B jeśli A = ( 5) B =<1 19 [] Zaznacz na osi liczbowej zbiory A B A B A \ B B \ A gdy: a A = ( 7) i B =< 7 b A =< 0 4 > i B =< 0 > c A =< 0 > i B =< 1 4 > d A = ( 4) (4 i B = ( ) ( 0 [1] Zaznacz na osi liczbowej zbiory A B A B A \ B B \ A gdy: a A = ( 1) (5) B =< 0 > < 4 8 > b A =< B = ( > < 7 c A = ( > < 10 B = ( 0) (510 ) 1 [5] Dane są dwa przedziały liczbowe A =< 6 > B = ( 7) Przedział B \ A to A < 6 > B < 6 ) C < 7) D ( 7) [5] Dane są przedziały A = ( 5) B =< 0 6 > Wyznacz przedziały A B oraz A \ B [5] Dane są przedziały A = ( ) B =< 4 Wyznacz przedziały A B oraz B \ A 4 [4] Dane są zbiory: A = ( 1) ( B =< 5 > C = ( Wyznacz ( A \ C Podaj największą liczbę całkowitą naleŝącą do ( A \ C 1 x 1 5 []Niech A = { x R : < 6} oraz B = { x R : x 9} a Wyznacz zbiory A i B b Wyznacz zbiór A B c Wyznacz wszystkie liczby całkowite naleŝące do zbioru A B
4 1 6 [] Niech A = x R : < x < } B = { x R : x 4x} Wyznacz zbiory: A B A B { 7 [] Dane są zbiory: A = { x : x 1 < x R} B = { x : x x < 0 x R} Wyznacz A B 8 [1] Przedstaw na osiach liczbowych zbiory A B A B A B A \ B B \ A a A = { x : x R x } B = { x : x R x } b A = { x : x R x + x 9x 18 > 0} B = { x : x R x + x 4 < 0} Otrzymane zbiory zapisz za pomocą przedziałów lub sumy przedziałów gdy: 9 [1] Przedstaw na osiach liczbowych zbiory A i B gdy A = { x : x R x 9 > 0} B = { x : x R x 4x 0} a Na osiach liczbowych zaznacz zbiory: A B ( A \ ( B \ A) A B b Graficzne obrazy zbiorów z punktu a opisz za pomocą przedziałów lub sumy przedziałów liczbowych 0 [] WskaŜ przedziały liczbowe A i B które spełniają jednocześnie warunki: A B =< 0) A B = ( 5 A \ B = ( 50) 1 [6] Niech A oznacza zbiór osób znających język angielski B oznacza zbiór osób znających język niemiecki Za pomocą A B oraz odpowiednich działań opisz zbiory: a zbiór osób znających angielski i niemiecki b zbiór osób znających angielski lub niemiecki c zbiór osób znających angielski i nie znających niemieckiego d zbiór osób znających dokładnie jeden z tych języków [5] Dane są przedziały A = ( m 6) B =< 5m 10 > a Dla m = wyznacz A B A B oraz A \ B b Wyznacz wszystkie wartości parametru m przy których część wspólna tych przedziałów jest zbiorem pustym [1] Wyznacz wszystkie wartości liczby m dla których część wspólna przedziałów ( m + > i (m + m gdzie m R jest zbiorem jednoelementowym 4 [4] Wyznacz wszystkie wartości liczby m tak aby część wspólna przedziałów ( m + 8) i ( m była przedziałem Dla największej całkowitej liczby m o tej własności podaj tę część wspólnych przedziałów 5 [1] Wyznacz zbiór ( A C gdy x x + 1 x x 6 A = { x : x R log( x 10) < 1} B = { x : x R 1} C = { x : x R < 1} x [1] WykaŜ Ŝe zbiór D = ( A C gdy A = x : x N x 5 < 4 } { B = { x : x R x x 9x + 18 = 0} C = { x : x N \{} x 6x + 5 0} D = { x : x R x = 1}
5 7 Wyznacz A B dla a A = {7} B = { x a} b A = { o α} B = { 0 a1} c A = B = {1456 } d 1 A = [ 1) B = ( 1) e A = { x R : x 4 0} B = { x R : x > 4} f A = { x N : x x + 1} B = ( 11] {} g A = Z B = [ 1 h A = { x R : 0 < x 4} B = [ 1] 8 Niech A = { x Z : x < 7} B = { x N : 1 x < } Wyznacz następujące zbiory a [( A B] \ [ B ( A ] b P (( A \ ( B \ A)) 9 Wykazać Ŝe dla dowolnych zbiorów A B C D mamy a A ( B C) = ( A ( A C) b ( A C = ( A C) ( B C) c A ( B \ C) = ( A \ ( A C) d ( A ( C D) = ( A C) ( B D) 40 Udowodnić Ŝe dla dowolnych zbiorów A B C D mamy a ( A \ C = ( A \ C) ( B \ C) b A \ ( B \ C) = ( A \ ( A C) c A \ ( B C) = ( A \ \ C) d ( A \ ( C \ D) = ( A C) \ ( B D) 41 Dowieść Ŝe zachodzą implikacje a ( A ( C D) ( A C B D) b ( A ( C D) ( A \ D B \ C) c ( A ( C \ B C \ A) 4 Wyznaczyć P (A) gdzie a A = b A = { a b} c A = { x y1} 4 Udowodnij Ŝe dla dowolnych zbiorów A B mamy a A B P( A) P( b P( A) P( = P( A c P( A) P( P( A
6 Literatura podstawowa: [1] A Cewe J Kobierowska H Nowakowska I Stepuro J Witkowska Matura z matematyki od roku 010 Zbiór zadań maturalnych z zakresu kształcenia rozszerzonego Wyd Podkowa 009 [] Praca zbiorowa pod redakcją A Cewe i H Nahorskiej Zbiór zadań maturalnych z zakresu kształcenia podstawowego Matura z matematyki od roku 010 Wyd Podkowa 009 [] D Masłowska T Masłowski PNodyński E Słowińska A Strzelczyk Zbiór testów maturalnych Wyd Aksjomat Toruń 008 [4] M Orlińska Matematyka Matura 009 Poziom podstawowy i rozszerzony Testy dla maturzysty Operon Gdynia 008 [5] M Orlińska Matematyka Matura 010 Poziom podstawowy Testy dla maturzysty Operon Gdynia 009 [6] A Zalewska E Stachowski Obowiązkowa matura z matematyki materiały pomocnicze dla ucznia klasa 1 Oficyna Wydawniczo-Poligraficzna ADAM Warszawa 008 Literatura uzupełniająca: [7] M Bodnar Zbiór zadań z matematyki dla biologów Wydawnictwa Uniwersytetu Warszawskiego Warszawa 008 [8] N M Gubareni Logika dla studentów Wydawnictwo Politechniki Częstochowskiej Częstochowa 00 [9] J Kraszewski Wstęp do matematyki WNT Warszawa 007 [10] W Marek J Onyszkiewicz Elementy logiki i teorii mnogości w zadaniach PWN Warszaw 197 [11] W Mizerski ABC maturzysty Matematyka repetytorium Grupa Wydawnicza Adamantan Warszawa 009 [1] D Wrzosek Matematyka dla biologów Wydawnictwa Uniwersytetu Warszawskiego Warszawa 008
1.8. PRZEDZIAŁY LICZBOWE
.8. PRZEDZIAŁY LICZBOWE Przedziały liczbowe Nazwa zbioru Oznaczenie Warunek, które spełniają liczby naleŝące do zbioru Ilustracja graficzna Przedział otwarty ( b) a, a < x < b Przedział domknięty a, b
Bardziej szczegółowoSkrypt 31. Powtórzenie do matury Liczby rzeczywiste
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoWIELOMIANY I FUNKCJE WYMIERNE
WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru
Bardziej szczegółowoMATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy I Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy I Liceum Propozycja zadań maturalnych sprawdzających opanowanie wiadomości i umiejętności matematycznych
Bardziej szczegółowoMATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie naleŝy powielać ani udostępniać w Ŝadnej formie
Bardziej szczegółowoPodzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest
Bardziej szczegółowoMatura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
Bardziej szczegółowoIndukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bardziej szczegółowoPrzykłady zadań do standardów.
Przykłady zadań do standardów 1 Wykorzystanie i tworzenie informacji 1 Oblicz wartośd wyrażenia: log 5 log8 log Odp: 1 1 3 5 8 Wyrażenie 5 1 0,5 : 3 zapisz w postaci p, gdzie p jest liczbą całkowitą Odp:
Bardziej szczegółowoW każdym zadaniu za 0, 1, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0, 1, 3, 6, 10 punktów.
Kolokwium 5 Wersja testu E 9 maja 205 r. W każdym zadaniu za 0,, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0,, 3, 6, 0 punktów.. Liczbę naturalną q nazwiemy fajniutką, jeżeli istnieje taka
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
Bardziej szczegółowoMaria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Bardziej szczegółowo11. Liczby rzeczywiste
. Liczby rzeczywiste Zdający: Wymagania, jakie stawia przed Tobą egzamin maturalny z przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.
W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas
Bardziej szczegółowoZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.
ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Bardziej szczegółowoPodręczniki obowiązujące w XLO w roku szkolnym 2012/2013 klasy I
Podręczniki obowiązujące w XLO w roku szkolnym 2012/2013 klasy I PRZEDMIOT POLSKI KLASA I Tytuł Autor Wydawnictwo Przeszłość to dziś kl. I cz.1 i 2 (wydanie nowe-2012) K. Mrowcewicz STENTOR Matura Masters
Bardziej szczegółowoI) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
Bardziej szczegółowoKlasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
ODBIERZ KOD DO GIEŁDY MATURALNEJ Zobacz klucz odpowiedzi Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 016 Instrukcja dla zdającego Czas pracy:
Bardziej szczegółowoLICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 17 stron
Bardziej szczegółowoWymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin
. Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowo2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,
Bardziej szczegółowoMATURA Przygotowanie do matury z matematyki
MATURA 2012 Przygotowanie do matury z matematyki Część I: Liczby rzeczywiste ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej.
Bardziej szczegółowoSkrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
Bardziej szczegółowoDr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2014 Czas pracy: 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia
Bardziej szczegółowoZadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Bardziej szczegółowoTeoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych
Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie
Bardziej szczegółowoStudia niestacjonarne
Oferta kształcenia Studium Języków Obcych UWM w roku akademickim 2014/2015 Studia niestacjonarne Uwaga!!! Proszę zastanowić się przed dokonaniem wyboru języka! Po rozpoczęciu lektoratu nie jest możliwa
Bardziej szczegółowoPróbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Bardziej szczegółowoWŁASNOŚCI FUNKCJI MONOTONICZNYCH
Dorota Sasiuk WŁASNOŚCI FUNKCJI MONOTONICZNYCH WSTĘP... WIADOMOŚCI WSTĘPNE... 3. DEFINICJA FUNKCJI:... 3. DZIAŁANIA ARYTMETYCZNE NA FUNKCJACH:... 3.3 ZŁOŻENIE FUNKCJI:... 3.4 FUNKCJA ODWROTNA:... 4.5 FUNKCJA
Bardziej szczegółowoCiekawe zadania o... liczbach całkowitych poziom 3
1/9 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 3 Zadanie 1 Zapisz pięć liczb całkowitych co najmniej trzycyfrowych oraz liczby do nich przeciwne. Następnie uszereguj
Bardziej szczegółowoKONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Bardziej szczegółowoRównania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze
Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Bardziej szczegółowoKURS MATURA PODSTAWOWA
KURS MATURA PODSTAWOWA LEKCJA Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Ile liczb całkowitych należy do przedziału,
Bardziej szczegółowo1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron
Bardziej szczegółowoKLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Bardziej szczegółowoTematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY MARZEC 2019 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12
Bardziej szczegółowoMATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ
Klasa POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa.
Bardziej szczegółowo1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie
Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY DATA: 26 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja
Bardziej szczegółowozał.1 do Regulaminu konkursu Zostań Euklidesem
zał.1 do Regulaminu konkursu Zostań Euklidesem Zakres materiału do konkursu Zostań Euklidesem dla uczniów szkół średnich biorących udział w projekcie Młodzieżowe Uniwersytety Matematyczne w roku szkolnym
Bardziej szczegółowoPRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14
Bardziej szczegółowoI Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
Bardziej szczegółowoEGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Bardziej szczegółowoMatematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Bardziej szczegółowoKlasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Bardziej szczegółowoFunkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Bardziej szczegółowoMatura 2012 materiały dla ucznia
PEDAGOGICZNA BIBLIOTEKA WOJEWÓDZKA W RZESZOWIE WYPOŻYCZALNIA Matura 2012 materiały dla ucznia Matamatyka KSIĄŻKI: ANDRZEJCZAK, Grzegorz Matematyka; kom. red. Włodzimierz Waliszewski. - Warszawa : Wydawnictwa
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoProdukt Woda Białko Tłuszcze Węglowodany Orzechy laskowe Fasola
IMIE I NAZWISKO ZADANIE ( PKT) Suma dwóch liczb niewymiernych A) jest zawsze liczba niewymierna nie może być liczba wymierna C) może być liczba całkowita D) nie może być liczba całkowita ZADANIE 2 ( PKT)
Bardziej szczegółowoZADANIE 2 (1 PKT) Największy wspólny dzielnik liczb 120 i 180, to A) 90 B) 60 C) 30 D) 20
IMIE I NAZWISKO ZADANIE ( PKT) Wymień które liczby ze zbioru { ; 4 ; ; 4; ; } ; 2π;, (). 6 sa liczbami wymiernymi. ZADANIE 2 ( PKT) Największy wspólny dzielnik liczb 20 i 0, to A) 90 60 C) 0 D) 20 ZADANIE
Bardziej szczegółowo1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
Bardziej szczegółowoUwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania
Bardziej szczegółowoWYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Bardziej szczegółowoInformacja dla ucznia
Informacja dla ucznia Test, który będziesz rozwiązywać składa się z 0 zadań o róŝnym stopniu trudności. W zadaniach wystarczy odnaleźć jedną prawidłową odpowiedź spośród kilku podanych (oznaczonych literami
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowoP r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Bardziej szczegółowoWymagania edukacyjne matematyka klasa VII
Wymagania edukacyjne matematyka klasa VII OCENA DOPUSZCZAJĄCA Dział I Liczby - zna znaki używane do zapisu liczb w systemie rzymskim - rozpoznaje liczby podzielne przez 2, 5, 10, 100, 3, 9, 4 - rozpoznaje,
Bardziej szczegółowoZadania język C++ Zad. 1. Napisz program wczytujący z klawiatury wiek dwóch studentów i wypisujący informację o tym, który z nich jest starszy.
Zadania język C++ Zad. 1 Napisz program wczytujący z klawiatury wiek dwóch studentów i wypisujący informację o tym, który z nich jest starszy. (Być moŝe są w tym samym wieku. Zrób w programie warunek,
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoBadanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-052 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
Bardziej szczegółowoWymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa
ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest
Bardziej szczegółowoSPRAWDZIAN Z MATEMATYKI KLASA I
Imię i Nazwisko:.. Klasa:. SPRAWDZIAN Z MATEMATYKI KLASA I POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 11 stron (zadania 1 19). 2. Arkusz zawiera 13 zadań
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron.
Bardziej szczegółowoWykresy i własności funkcji
Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoMATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2017 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Bardziej szczegółowoSPRAWDZIAN NR 1 GRUPA IMIĘ I NAZWISKO: KLASA: Wszelkie prawa zastrzeżone 1 ANNA KLAUZA
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzupełnij zdania. Wpisz w każdą lukę odpowiednią liczbę. a) Dziedziną funkcji jest zbiór x takich, że x. b) Zbiorem wartości funkcji są wszystkie
Bardziej szczegółowo1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
Bardziej szczegółowo1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1
WYKŁAD 1 1 1. ZBIORY. Pojęcie ZBIORU i NALEŻENIA do niego są pojęciami pierwotnymi(niedefiniowalnymi) w matematyce, reszta matematyki jest zdefiniowana lub opisana za pomocą tych pojęć. Można by, opierając
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Bardziej szczegółowo