ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA"

Transkrypt

1 Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 17 stron (zadania 1. 4.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.. W zadaniach zamkniętych (1. 5.) zaznacz jedną poprawną odpowiedź. 4. W rozwiązaniach zadań otwartych (6. 4.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 7. Zapisy w brudnopisie nie będą oceniane. 8. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów. Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione. Wydawca zezwala na kopiowanie zadań przez dyrektorów szkół biorących udział w programie Próbna Matura z OPERONEM.

2 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 ZADANIA ZAMKNIĘTE W zadaniach wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0 1) Liczba log7+ log jest równa liczbie: A. log1 B. log16 C. log4 D. log6 Zadanie. (0 1) Liczba A. 5 jest równa liczbie: Zadanie. (0 1) B. 6 Wyrażenie 5 jest równe: + 5 A. 7-5 B Zadanie 4. (0 1) 1 Funkcja f( x)= x + 1 ma: A. jedno miejsce zerowe: B. jedno miejsce zerowe: - C. dwa miejsca zerowe:,- D. dwa miejsca zerowe: 0,- Zadanie 5. (0 1) ( ) Jeśli tga = i a 90, 180, to: A. sina = 1 1 C. cosa = 1 1 C. C B. sina = 1 1 D. cosa = 1 1 D. D Zadanie 6. (0 1) Kwotę zł złożono w banku na dwa lata na % w stosunku rocznym. Odsetki są kapitalizowane w tym banku co pół roku. Po dwóch latach kwota ta wyniesie: A C B D

3 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 BRUDNOPIS (nie podlega ocenie)

4 Zadanie 7. (0 1) Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Miejscami zerowymi funkcji f( x) = 4( x 1) + 5 są liczby: A. x1 =, x = B. x1 =, x = 7 5 C. x1 =, x = D. x1 x = 7, = Zadanie 8. (0 1) Zbiór rozwiązań nierówności x > x, to: A. (, ) B. (, 0), + C. (, ) ( 0, + ) D. ( 0, ) Zadanie 9. (0 1) ( ) W okrąg o środku O wpisano trójkąt ostrokątny ABC. Jeśli ACB = 8 i prosta l jest styczną do okręgu w punkcie B, to kąt ostry między tą styczną a bokiem AB trójkąta jest równy: A. a = 8 B. a = 4 C. a = 48 D. a = 5 Zadanie 10. (0 1) n n Dany jest ciąg o wyrazie ogólnym an = Liczba dodatnich wyrazów tego ciągu jest równa: n + 1 A. 5 B. 4 C. D. Zadanie 11. (0 1) x Wykres funkcji określonej wzorem f( x)= 8 powstaje przez przesunięcie wykresu funkcji x g( x)= : A. o 8 jednostek w górę B. o 8 jednostek w lewo C. o jednostki w górę D. o jednostki w lewo Zadanie 1. (0 1) Zbiorem wartości funkcji f( x)= x + 4x+ 10 jest zbiór: A. 6,+ ) B., + ) C., + D. 6,+ Zadanie 1. (0 1) ( ) ( ) W ciągu arytmetycznym jedenasty i piętnasty wyraz są odpowiednio równe 1 i 1. Pierwszy wyraz i różnica tego ciągu są równe: A. a1 = 7, r= B. a1 = 7, r= C. a1 = 7, r= D. a1 = 7, r= 4

5 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 BRUDNOPIS (nie podlega ocenie) 5

6 Zadanie 14. (0 1) Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Prosta o równaniu y = x + 1 przecina prostą o równaniu y = 5x + w punkcie: A. P = 1, B. P = , ( ) Zadanie 15. (0 1) (, ) C. P =(, ) D. P =( ) Dana jest funkcja f( x)= x mx + 1. Prosta x = jest osią symetrii wykresu funkcji f. Oznacza to że: A. najmniejszą wartością funkcji jest 6 B. najmniejszą wartością funkcji jest ( 8) C. najmniejszą wartością funkcji jest ( 6) D. najmniejszą wartością funkcji jest 8 Zadanie 16. (0 1) Wiadomo, że sina+ cosa= ma wartość: A. B i a jest kątem ostrym. Wówczas wyrażenie W = sinacosa C D Zadanie 17. (0 1) Jeżeli stosunek długości przyprostokątnej do długości przeciwprostokątnej w trójkącie prostokątnym jest równy 1, to jeden z kątów ostrych ma miarę a taką, że: 1 A. tga = 1 B. tga = 1 C. tga = 1 D. tga = Zadanie 18. (0 1) Jeżeli największy kąt trójkąta jest o 40 większy od drugiego kąta i pięć razy większy od trzeciego kąta, to najmniejszy kąt tego trójkąta ma miarę: A. 40 B. 0 C. 0 D. 10 Zadanie 19. (0 1) Jeśli A =( 5), należy do prostej k równoległej do prostej l o równaniu y = x + 7, to prosta k ma równanie: A. y = x 1 B. y = x C. y = x + D. y = x Zadanie 0. (0 1) Podano zestaw danych: 1,,, 4, 4, 5 i określono wagę dla liczb nieparzystych 0,, a dla liczb parzystych 0,7. Średnia ważona tych danych jest równa: A.,... B.,... C.,... D.,... 6

7 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 BRUDNOPIS (nie podlega ocenie) 7

8 Zadanie 1. (0 1) Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Tworząca stożka jest nachylona do jego płaszczyzny podstawy pod kątem 60. Wysokość stożka ma długość 6. Objętość stożka jest równa: A. 48p B. 4p C. 1p D. 4p Zadanie. (0 1) Dwa najdłuższe boki trójkąta prostokątnego ABC mają długości 10 i 8. Najkrótszy bok trójkąta DEF podobnego do trójkąta ABC ma długość 9. Pole trójkąta DEF jest równe: A. 6 B. 48 C. 54 D. 60 Zadanie. (0 1) 1 Prosta l ma równanie y = x 1. Prosta k: y = 1 m+ 1 x 4 5 jest prostopadła do prostej l. Oznacza to, że: A. m = B. m = C. m = 5 D. m = 6 Zadanie 4. (0 1) Liczb trzycyfrowych nieparzystych o różnych cyfrach jest: A B C D Zadanie 5. (0 1) Sześcian przecięto płaszczyzną przechodzącą przez przekątną dolnej podstawy i wierzchołek górnej podstawy. Otrzymany przekrój jest trójkątem o polu 1. Pole powierzchni całkowitej sześcianu jest równe: A. 96 B. 64 C. 48 D. 16 8

9 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 BRUDNOPIS (nie podlega ocenie) 9

10 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 ZADANIA OTWARTE Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 6. (0 ) Wykaż, że jeśli suma n początkowych wyrazów ciągu arytmetycznego wyraża się wzorem 5n + 1n Sn =, to wyraz ogólny jest równy an = 5n+ 1. Zadanie 7. (0 ) Rzucamy dwa razy kostką do gry. Oblicz prawdopodobieństwo, że iloczyn wyrzuconych oczek będzie podzielny przez. 10

11 Zadanie 8. (0 ) Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Wyznacz największą i najmniejszą wartość funkcji f( x)= x 4 x w przedziale 0,. Zadanie 9. (0 ) ( ) jest geome- Wykaż, że jeśli punkt A =( x, y) należy do wykresu funkcji f( x)= 1 i ciąg x, y,7 x tryczny, to x = 1. 11

12 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Zadanie 0. (0 ) Dany jest trójkąt równoboczny o boku a= 1. W ten trójkąt wpisano kwadrat w ten sposób, że jeden bok kwadratu jest zawarty w boku trójkąta, a dwa wierzchołki należą do pozostałych boków trójkąta. Wyznacz długość boku kwadratu. 1

13 Zadanie 1. (0 4) Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Dane są trzy liczby, z których pierwsza jest dwukrotnością drugiej i trzecia jest o większa od drugiej. Suma kwadratów tych liczb jest równa 945. Wyznacz te liczby. 1

14 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Zadanie. (0 4) Dany jest trójkąt ABC o wysokości CD. Wiadomo, że BC równe P = 6. Wyznacz długość boku AC. = 10, AB = 1 i pole trójkąta jest 14

15 Zadanie. (0 5) Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Dany jest ostrosłup czworokątny, w którym dwie ściany są prostopadłe do płaszczyzny podstawy. Podstawa ostrosłupa jest kwadratem o boku długości 4. Dwie ściany boczne tworzą z płaszczyzną podstawy kąt 60. Oblicz pole powierzchni bocznej bryły. 15

16 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 Zadanie 4. (0 ) ( ) =( ) =( ) Dane są współrzędne wierzchołków trójkąta: A = 4,, B 06,, C 51,. Wyznacz długość środkowej CD tego trójkąta. 16

17 Próbna Matura z OPERONEM i Gazetą Wyborczą II edycja Marzec 016 BRUDNOPIS (nie podlega ocenie) 17

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2014 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2013 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA ODBIERZ KOD DO GIEŁDY MATURALNEJ Zobacz klucz odpowiedzi Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy:

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2014 Czas pracy: 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2011 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA ODBIERZ KOD DO GIEŁDY MATURALNEJ Zobacz klucz odpowiedzi Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 016 Instrukcja dla zdającego Czas pracy:

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 013 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2012 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2012 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY STYCZEŃ ROK 2009 Czas pracy 180 minut

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 03 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron (zadania 30).. Arkusz zawiera 0 zadań zamkniętych i 0 zadań

Bardziej szczegółowo

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM PODSTAWOWY DATA: 25 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P3 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 010 Instrukcja dla zdającego Czas pracy 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2010 Instrukcja dla zdającego Czas pracy 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 011 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-052 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut LUBELSKA PRÓBA PRZED MATURĄ 016 poziom podstawowy M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy CZERWIEC 2014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1. 19.). 2. Arkusz zawiera 13 zadań zamkniętych i 6

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY DATA: 26 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI CZERWIEC 20 POZIOM PODSTAWOWY Czas pracy 00 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 6 stron (zadania 9). 2. Arkusz zawiera 3 zadań zamkniętych i

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI dysleksja MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 14 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 2 CZERWCA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 2 CZERWCA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2009 Czas pracy 180 minut Instrukcja

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony 1 MATEMATYKA - poziom rozszerzony klasa II CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 3

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ Klasa POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa.

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Czas pracy 170 minut Klasa 3 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie naleŝy powielać ani udostępniać w Ŝadnej formie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR 2016 1 MATEMATYKA - poziom rozszerzony LO MARZEC 016 Instrukcja dla zdaj cego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy

Próbny egzamin maturalny z matematyki Poziom podstawowy Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY. Matura. z Akademią Maturalną PWN

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY. Matura. z Akademią Maturalną PWN PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Matura z Akademią Maturalną PWN Instrukcja dla zdającego 1. Arkusz egzaminacyjny zawiera 17 stron (zadania 1 34). Zadania 1 5 to zadania zamknięte,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo