Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna"

Transkrypt

1 Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska copyright Grzegorz ilcek & Maciej Hojda

2 Wybrane opisy obiektów wejściowo-wyjściowych u y=f (u) Obiekt opisany funkcyjną zależnością wyjścia od wejścia y u D u R(u,y) D y y Obiekt opisany relacyjną reprezentacją wiedzy u u (α u ) (α u,α w,α y ) y (α y ) y Obiekt opisany logiczną reprezentacją wiedzy

3 Podstawowe pojęcia ormuła logiczna opisująca obiekt składa się z formuł elementarnych α i operacji logicznych: alternatywy ( ᴠ ), koniunkcji ( ᴧ ), negacji ( ), Implikacji ( ). Np. (α 1, α 2, α 3, α 4 )= α 1 ᴠ α 2 ᴧ α 3 α 4.

4 Podstawowe pojęcia α(x) formuła elementarna ( własność zmiennych wejściowych, wyjściowych, bądź pomocniczych ogólnie oznaczonych przez x) pewne z założenia niepodzielne klocki (z założenia, tzn. zakładamy, że są niepodzielne, ale w rzeczywistości mogą składać się ze skomplikowanych formuł logicznych). Np. α(x)= Prędkość x>100 km/h lub α(x)= Dla każdego x spełniona jest relacja R(x,a)=x>a. α u,i (u)єa u i-ta (i=1,2,,n1) formuła elementarna wejściowa dotycząca tylko zmiennych u należąca do zbioru formuł wejściowych A u α y,i (y) ЄA y i-ta (i=1,2,,n2) formuła elementarna wyjściowa dotycząca tylko zmiennych y należąca do zbioru formuł wyjściowych A y α w,i (u,w,y) ЄA w i-ta (i=1,2,,n3) formuła elementarna pomocnicza (wewnętrzna systemu) dotycząca zmiennych u lub y lub w (nie tylko u i nie tylko y) należąca do zbioru formuł pomocniczych (wewnętrznych) A w (W ogólności α w,i może zależeć nie tylko od trójki (u,w, y), ale również od par (u,w), a także (w,y)).

5 Podstawowe pojęcia n=n1+n2+n3 liczba wszystkich formuł elementarnych (α u, α w, α y ) =α ciąg wszystkich formuł elementarnych a j =w(α j )Є{0,1} wartość logiczna j-ej formuły elementarnej (a u, a w, a y )=a zerojedynkowy ciąg wartości logicznych odpowiednich formuł elementarnych α u, α w, α y (takich ciągów jest 2 n dla każdego ciągu formuł elementarnych α) Np. dla ciągu formuł elementarnych α=(α u1, α u2, α w, α y ) przykładowe 4 (z 16) ciągi wartości (a i =(a u1, a u2, a w, a y ), i-numer ciągu wartości), są następujące: a 1 =(1,1,1,1), a 2 =(0,1,1,0), a 3 =(0,0,0,1), a 4 =(0,1,0,1).

6 Logiczna reprezentacja wiedzy jest zbiorem faktów (α)= 1 (α)ᴧ 2 (α)ᴧ ᴧ k (α) zbiór k faktów (definiuje relację R(u,y)) i (α) i-ty fakt, (i=1,2,,k) zapisany jako formuła logiczna składająca się z formuł elementarnych α i (a), (a) wyrażenia algebraiczne w algebrze logiki dwuwartościowej W bazie wiedzy zakłada się, że wszystkie występujące w niej formuły są faktami, czyli są prawdziwe, czyli dla każdego ciągu a, (a)=1. W literaturze fakty w formie implikacji często zwane są regułami, stąd możliwe są inne określenia jak : baza faktów, baza reguł, baza reguł i faktów.

7 akty a relacje Każdy fakt i (α) określa relację między zmiennymi wejściowymi, wyjściowymi i pomocniczymi (wewnętrznymi): R i (u,w,y)={(u,w,y) Є UΧWΧY: i [a u (u),a w (u,w,y),a y (y))]=1}, i=1,2,,k Zbiór tych relacji tworzy bazę wiedzy (k liczba reguł i faktów w bazie wiedzy). Zmienne w można wyeliminować i sprowadzić bazę wiedzy do jednej relacji: R(u,y)={(u,y) Є UΧY: V w ЄW [(u,w,y) Є R 1 (u,w,y) R k (u,w,y)]}, czyli R(u,y)={(u,y) Є UΧY: V w ЄW [(a)=1]}.

8 akty a relacje c.d. Oznacza to, że w obiekcie mogą wystąpić tylko takie wartości (u,y), dla których istnieje taka wartość w, że wszystkie fakty są prawdziwe. u (α u ) logiczna formuła wejściowa, w której występują tylko podciągi α złożone z α u,i (i=1,2,,n1) (definiuje zbiór D u ={uєu: u [a u (u)]=1}) y (α y ) logiczna formuła wyjściowa, w której występują tylko podciągi α złożone z α y,i (i=1,2,,n2) (definiuje zbiór D y ={yєy: y [a y (y)]=1})

9 Proste zadanie analizy Proste zadanie analizy, inaczej problem dowodzenia twierdzeń. Należy dla przyjętej bazy faktów i reguł podać postać formuły wejściowej u oraz y, przy czym zakłada się, że formuła u jest prawdziwa, a więc formuła ~ = u ᴧ uznana jest za prawdziwą. Należy odpowiedzieć na pytanie: Jaka jest wartość ~ logiczna podanej formuły y? (Inaczej, czy y jest logiczną konsekwencją?). Możliwe odpowiedzi to: TAK, NIE, NIE WIEM. (Ta ostatnia oznacza, że wartość logiczna y nie jest zdeterminowana zbiorem faktów i reguł i własnością u.) W rzeczywistości wyznaczenie algorytmu wnioskowania (z użyciem odpowiednich reguł wnioskowania) dla skomplikowanych struktur logicznych może być bardzo trudne, o ile w ogóle możliwe.

10 Zadanie analizy Zadanie analizy polega na wyznaczeniu najlepszej* postaci formuły wyjściowej y dla zadanej formuły wejściowej u, a więc odpowiedniego zdania logicznego zawierającego elementarne formuły wyjściowe połączone odpowiednimi spójnikami logicznymi, które spełnia implikację u ᴧ y. (#) *Najlepsza oznacza taką formułę, która implikuje wszystkie inne. Np. jeśli M formuł 1 y, 2 y, 3 y,, M y spełnia (#) oraz zachodzi ( 1 y 2 y) ᴧ ( 1 y 3 y) ᴧ ᴧ ( 1 y M y), to najlepszą formułą jest 1 y Zadanie można więc sformułować następująco: Dane: u, Wyznacz: najlepszą* y spełniającą (#).

11 Zadanie podejmowania decyzji (sterowania) Zadanie podejmowania decyzji (sterowania) polega na wyznaczeniu najlepszej** postaci formuły wejściowej u dla zadanej formuły wyjściowej y, a więc odpowiedniego zdania logicznego zawierającego elementarne formuły wejściowe połączone odpowiednimi spójnikami logicznymi, które spełnia implikację u ᴧ y. (#) **Najlepsza oznacza taką formułę, która jest implikowana przez wszystkie inne. Np. jeśli M formuł 1 u, 2 u, 3 u,, M u spełnia (#) oraz zachodzi ( 2 u 1 u) ᴧ ( 3 u 1 u) ᴧ ᴧ ( M u 1 u), to najlepszą formułą jest 1 u Zadanie można więc sformułować następująco: Dane: y, Wyznacz: najlepszą** u spełniającą (#).

12 Metoda logiczno-algebraiczna Metoda logiczno-algebraiczna, zwana też metodą Bubnickiego. Polega na rozwiązaniu zadania analizy bądź podejmowania decyzji poprzez przejście z reprezentacji zdania w formie zmiennych logicznych na ich reprezentację w algebrze dwuwartościowej, rozwiązaniu postawionego równoważnego zadania zastępczego, a następnie powrotu do reprezentacji w formie zmiennych logicznych.

13 Dodatkowe oznaczenia A zbiór wszystkich ciągów a=(a u,a w,a y ) S a ={a Є A: (a)=1} zbiór równoważny formule (α). S u ={a u Є A: u (a u )=1} zbiór równoważny formule u (α u ). S y ={a y Є A: y (a y )=1} zbiór równoważny formule y (α y )

14 Rozwiązanie zadania analizy Równoważny problem analizy polega na wyznaczeniu najmniejszego zbioru S y, dla którego spełniona jest implikacja a u ЄS u a y ЄS y Aby rozwiązać zadanie analizy należy znaleźć wszystkie ciągi wartości formuł elementarnych a y (czyli zbiór S y ), dla których spełnione jest (a u,a w,a y )=1 ᴧ u (a u )=1

15 Rozwiązanie zadania podejmowania decyzji (sterowania) Równoważny problem analizy polega na wyznaczeniu największego zbioru S u, dla którego spełniona jest implikacja a u ЄS u a y ЄS y Aby rozwiązać zadanie podejmowania decyzji należy znaleźć wszystkie ciągi wartości formuł elementarnych a u (czyli zbiór S u ), dla których spełnione jest (a u,a w,a y )=1 ᴧ y (a y )=1 ale niespełnione jest (a u,a w,a y )=1 ᴧ y (a y )=0

16 Rozwiązanie zadania podejmowania decyzji (sterowania) c.d. W praktyce należy wyznaczyć dwa zbiory S u1 i S u2. Dla S u1 spełnione jest (a u,a w,a y )=1 ᴧ y (a y )=1, Dla S u2, spełnione jest (a u,a w,a y )=1 ᴧ y (a y )=0. Ostatecznie S u = S u1 S u2

17 Powrót do reprezentacji w formie zmiennych logicznych Aby przejść z reprezentacji algebraicznej do logicznej, wystarczy utworzyć formułę stworzoną z alternatyw koniunkcji zmiennych logicznych (formuł elementarnych), których wartości występują w odpowiednim zbiorze S u lub S y, przy czym jeśli w danym ciągu wartości przy odpowiadającej zmiennej logicznej jest wartość 0, to w formule ta zmienna wystąpi z negacją. Jest to tzw. postać dysjunkcyjna. Przykład: Dla rozwiązania zadania analizy S y ={(0,1);(1,0);(1,1)}, formuła wyjściowa wygląda następująco: y = ( α y1 ᴧ α y2 ) ᴠ (α y1 ᴧ α y2 ) ᴠ (α y1 ᴧ α y2 ). Otrzymaną formułę często można uprościć stosując prawa i twierdzenia rachunku zdań logicznych, np. powyższą formułę można zapisać prościej jako y = α y1 ᴠ α y2.

18 Dodatkowe informacje W sformułowanych rozwiązaniach zastępczych, zadań analizy i podejmowania decyzji wykorzystujących algebrę dwuwartościową, można zauważyć, że do znalezienia rozwiązania należy przeglądnąć wszystkie możliwe ciągi wartościowań formuł elementarnych. Dla dużych i skomplikowanych problemów zadanie może być bardzo trudne, głównie ze względu na jego czasochłonność. Aby dla wielu przypadków uprościć procedurę rozwiązania zaproponowano metody dekompozycji. Metoda logicznoalgebraiczna jak i metody dekompozycji zarówno dla zadania analizy jak i podejmowania decyzji zostały opisane m.in. w następujących publikacjach:

19 Literatura Bubnicki, Z. (1990), Wstęp do systemów ekspertowych, PWN, W-wa. Bubnicki, Z. (1992), Decomposition of a system described by logical model. R. Trappl (red.) Cybernetics and System Research, t. 1, Singapore: World Scientific, Bubnicki, Z. (1997), Logic-algebraic method for a class of knowledge-based systems.. Pichler, R. Moreno-Diaz (red.) Computer Aided System Theory, Lecture Notes in Computer Science, Springer-Verlag, 1333, Berlin, Bubnicki, Z. (1997), Logic-algebraic method for a class of dynamical knowledge-based systems. A. Sydow (red.) Proc. of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, t. 4, , Berlin Bubnicki, Z. (1998), Logic-algebraic method for knowledge-based relation systems. Sys. Anal. Model. Simul., 33, Bubnicki, Z. (1999), Learning processes and logic-algebraic method in knowledge-based control systems. S.G. Tzafestas, G. Schmidt (red.) Progress in System and Robot Analysis and Control Design. Lecture Notes in Control and Information Sciences, 243. Springer-Verlag, London, Bubnicki, Z. (2002), Teoria i algorytmy sterowania, PWN, W-wa

20 Przykłady Na kolejnych slajdach znajdują się przykłady ilustrujące przedstawioną teorię

21 System grzewczy - schemat u 2 u 4 u 1 y 1 u 3 Grzejnik wody Podsystem sterujący () y 2 u 5 y 3 copyright Maciej Hojda

22 Wejścia i wyjścia u [0, ) Doprowadzone napięcie zasilające do grzałki [V ] 1 u {0,1} 2 Włącznik grzejnika [wył., wł.] u (, ) Wprowadzona docelowa temperatura wody [ C 3 u (, ) Zmierzona aktualna temperatura wody [ C 4 u [0, ) Poziom wody w zbiorniku [ cm] 5 ] ] y { brak, zielony, czerwony } Sygnał kontrolki [nieaktywny, ogrzewanie włączone, ogrzewanie 1 niemożliwe] y {0,1} 2 Podanie napięcia na grzałkę [nie, tak] y (, ) Różnica między temperaturami: docelową, a aktualną[ C ] 3 copyright Maciej Hojda

23 ormuły elementarne i fakty u1 {0,1} " 24 u " u2 {0,1} " u 2 1" u3 {0,1} " u3 u4 " u4 {0,1} " u 10 " 5 y1 {0,1} " y ~ brak 1 " y2 {0,1} " y zielony y3 {0,1} " y 1" 1 " 2 y4 {0,1} " y 0 " 3 w1 {0,1} Czy system jest gotowy do ogrzewania wody [nie, tak] w2 {0,1} Czy woda powinna być ogrzana [nie, tak] 1 u1 u2 w1 2 u3 u4 w2 3 w1 w2 y2 y3 4 u3 y4 4 u3 y4 copyright Maciej Hojda

24 Przykładowe przekształcenia między wejściami, wyjściami, a formułami D u u 1 [210,240], 1 3 1, 1, 1, 0 u u1 u2 elementarnymi u 2, u 30, u 20, u 5 u3 u4 u ( u ) u1 u2 u3 u4 u ( u ) u1 u2 u3 u4 1, 0, 0, 1 u u1 u2 4 u3 u4 2 3 u u 5 D u u 1 [40,460], u 0, u 4, 10 5 D y y y1 brak, y2 tak, y 3 0 0, 0, 1, 1 y1 y2 y3 y4 1, 1, 0, 1 y D y y1 y2 y3 y1 zielony, y2 nie, y 3 0 y4 Przez formuły wejściowe u i wyjściowe y rozumiemy koniunkcje odpowiednich formuł elementarnych. copyright Maciej Hojda

25 Przykładowa reprezentacja wiedzy 1 u1 u2 w1 Zadanie analizy ~ 2 w1 u2 y1 ) 3 w1 y1 (~ y 2 u y ~ u1 u2? Zadanie syntezy y u ~ ( ~ ) y1 y2? copyright Maciej Hojda

26 Zadanie analizy - rozwiązanie a a u1 u2 a w1 a y1 a y u u S y {(1,0), (0,1), (1,1)} y ( y1 ~ y2) (~ y1 y2) ( y1 y2) y1 y2 copyright Maciej Hojda

27 a u1 Zadanie syntezy - rozwiązanie a u2 a w1 a y1 a y y y ~ y S u1 {(0,0),(0,1),(0,1),(1,1)} S u2 {(0,0),(1,0),(0,1)} S u {(1,1)} copyright Maciej Hojda u u1 u2

28 Uproszczony system grzewczy u 1 u 2 Grzejnik wody Podsystem sterujący () y 1 u 3 u {0,1} Włącznik grzejnika [wył., wł.] 1 u (, ) Wprowadzona docelowa temperatura wody [ C 2 u (, ) Zmierzona aktualna temperatura wody [ C 3 ] ] y {0,1} Podanie napięcia na grzałkę [nie, tak] 1 copyright Maciej Hojda

29 Uproszczony system grzewczy {0,1} " u 1 " u2 2 {0,1} " u u " u3 3 4 {0,1} " y zielony y2 1 " {0,1} " y 1 " y3 2 {0,1} Czy system jest gotowy do ogrzewania wody [nie, tak] w1 {0,1} Czy woda powinna być ogrzana [nie, tak] y2 copyright Maciej Hojda

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyka Lab 1 Teoria mnogości i algebra logiki Harmonogram zajęć Układy przełączające: 1. Algebra logiki - Wprowadzenie 2. Funkcje logiczne - minimalizacja funkcji 3. Bramki logiczne - rysowanie układów

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych

Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych Politechnika Warszawska Zakład Systemów Ciepłowniczych i Gazowniczych Prof. dr hab. inż. Andrzej J. Osiadacz Dr hab. inż. Maciej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Optymalizacja układów wielopoziomowych Układy wielopoziomowe układy

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku

Bardziej szczegółowo

technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych.

technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych. Informatyka Coraz częściej informatykę utoŝsamia się z pojęciem technologii informacyjnych. Za naukową podstawę informatyki uwaŝa się teorię informacji i jej związki z naukami technicznymi, np. elektroniką,

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Funkcje bazy danych. Funkcje bazodanowe są specyficzną kategorią

Funkcje bazy danych. Funkcje bazodanowe są specyficzną kategorią e829ac02-3954-48d6-9877-7bc45bd1ba7e Funkcje bazy danych Mariusz Jankowski analityk, programista rozwiązań wsparcia biznesowego; Pytania: czytelnicy.controlling@infor.pl W niniejszym opracowaniu omawiamy

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A

Bardziej szczegółowo

Dedukcyjne bazy danych i rekursja

Dedukcyjne bazy danych i rekursja Dedukcyjne bazy danych i rekursja Wykład z baz danych dla studentów matematyki 23 maja 2015 Bazy danych z perspektywy logiki Spojrzenie na bazy danych oczami logika pozwala jednolicie opisać szereg pojęć.

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Reprezentacja wiedzy i wnioskowanie

Reprezentacja wiedzy i wnioskowanie i wnioskowanie Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wiedza AI to nauka o komputerowych modelach wiedzy umożliwiających rozumienie, wnioskowanie i działanie. Inteligentne

Bardziej szczegółowo

MODELOWANIE SYSTEMÓW INFORMACYJNYCH

MODELOWANIE SYSTEMÓW INFORMACYJNYCH MODELOWANIE SYSTEMÓW INFORMACYJNYCH Wykładowca: dr inż. Grażyna Hołodnik-Janczura Instytut Organizacji i Zarządzania Politechnika Wrocławska GHJ 1 LITERATURA 1. Barker R., Longman C., CASE*Method: Modelowanie

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

Technologia inteligentnych agentów. Autor: dr Jacek Jakieła

Technologia inteligentnych agentów. Autor: dr Jacek Jakieła Autor: dr Jacek Jakieła WYKŁAD... 3 Reprezentacja wiedzy agenta... 3 Konceptualizacja... 3 Formalizacja wiedzy agenta... 4 Alfabet języka... 4 Poprawnie sformułowane formuły języka rachunku predykatów...

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

ZARYS STRUKTURY ZINTEGROWANEGO SYSTEMU ENERGETYKI PROSUMENCKIEJ

ZARYS STRUKTURY ZINTEGROWANEGO SYSTEMU ENERGETYKI PROSUMENCKIEJ Mirosław Zaborowski ZARYS STRUKTURY ZINTEGROWANEGO SYSTEMU ZARZĄDZANIA I STEROWANIA PROCESAMI ENERGETYKI PROSUMENCKIEJ zaborowski.miroslaw@gmail.com 204 02 25 Plan prezentacji. Struktura oprogramowania

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Bazy dedukcyjne. 1. Filozofia nowego sposobu projektowania baz danych. 2. Wady klasycznych systemów bazodanowych

Bazy dedukcyjne. 1. Filozofia nowego sposobu projektowania baz danych. 2. Wady klasycznych systemów bazodanowych Bazy dedukcyjne 1. Filozofia nowego sposobu projektowania baz danych Bazy dedukcyjne to nowe podejście do projektowania baz danych, oparte na logice matematycznej. W porównaniu do poprzednich modeli baz

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

1.2.3 Funkcjonalna pełność

1.2.3 Funkcjonalna pełność 1.2.3 Funkcjonalna pełność Przedstawione przykłady sprawdzania tautologiczności formuł zamknietych metodą niewprost dobrze ilustrują, Ŝe załoŝenie niewrost o przypisaniu formule wartości fałszu, a następnie

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba

Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba Programowanie od pierwszoklasisty do maturzysty Grażyna Koba Krąg trzydziestolecia nauki programowania C++, Java Scratch, Baltie, Logo, Python? 2017? Informatyka SP, GIMN, PG 1987 Elementy informatyki

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Synteza strukturalna automatu Moore'a i Mealy

Synteza strukturalna automatu Moore'a i Mealy Synteza strukturalna automatu Moore'a i Mealy (wersja robocza - w razie zauważenia błędów proszę o uwagi na mail'a) Załóżmy, że mamy następujący graf automatu z 2 y 0 q 0 z 1 z 1 z 0 z 0 y 1 z 2 q 2 z

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132.

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. Bramki logiczne 1. Czas trwania: 3h 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. 3. Wymagana znajomość pojęć stany logiczne Hi, Lo, stan

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. 1 Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. Funkcje pierwotnie rekurencyjne. Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2 Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

MODELOWANIE I PROGRAMOWANIE PRACY

MODELOWANIE I PROGRAMOWANIE PRACY Tadeusz MIKULCZYSKI 1, Daniel NOWAK 2, Rafał WICŁAWEK 3 Instytut Technologii Maszyn i Automatyzacji Politechniki Wrocławskiej, Wrocław 1. Streszczenie. Zaprezentowano metod Grafpol modelowania dyskretnych

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

Techniki informacyjne dla wnioskowania oraz generowania, reprezentacji i zarządzania wiedzą

Techniki informacyjne dla wnioskowania oraz generowania, reprezentacji i zarządzania wiedzą Zakład Zaawansowanych Technik Informacyjnych (Z-6) Techniki informacyjne dla wnioskowania oraz generowania, reprezentacji i zarządzania wiedzą Zadanie nr 2 Relacyjne systemy dedukcyjne: teoria i zastosowania

Bardziej szczegółowo

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo