Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna"

Transkrypt

1 Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska copyright Grzegorz ilcek & Maciej Hojda

2 Wybrane opisy obiektów wejściowo-wyjściowych u y=f (u) Obiekt opisany funkcyjną zależnością wyjścia od wejścia y u D u R(u,y) D y y Obiekt opisany relacyjną reprezentacją wiedzy u u (α u ) (α u,α w,α y ) y (α y ) y Obiekt opisany logiczną reprezentacją wiedzy

3 Podstawowe pojęcia ormuła logiczna opisująca obiekt składa się z formuł elementarnych α i operacji logicznych: alternatywy ( ᴠ ), koniunkcji ( ᴧ ), negacji ( ), Implikacji ( ). Np. (α 1, α 2, α 3, α 4 )= α 1 ᴠ α 2 ᴧ α 3 α 4.

4 Podstawowe pojęcia α(x) formuła elementarna ( własność zmiennych wejściowych, wyjściowych, bądź pomocniczych ogólnie oznaczonych przez x) pewne z założenia niepodzielne klocki (z założenia, tzn. zakładamy, że są niepodzielne, ale w rzeczywistości mogą składać się ze skomplikowanych formuł logicznych). Np. α(x)= Prędkość x>100 km/h lub α(x)= Dla każdego x spełniona jest relacja R(x,a)=x>a. α u,i (u)єa u i-ta (i=1,2,,n1) formuła elementarna wejściowa dotycząca tylko zmiennych u należąca do zbioru formuł wejściowych A u α y,i (y) ЄA y i-ta (i=1,2,,n2) formuła elementarna wyjściowa dotycząca tylko zmiennych y należąca do zbioru formuł wyjściowych A y α w,i (u,w,y) ЄA w i-ta (i=1,2,,n3) formuła elementarna pomocnicza (wewnętrzna systemu) dotycząca zmiennych u lub y lub w (nie tylko u i nie tylko y) należąca do zbioru formuł pomocniczych (wewnętrznych) A w (W ogólności α w,i może zależeć nie tylko od trójki (u,w, y), ale również od par (u,w), a także (w,y)).

5 Podstawowe pojęcia n=n1+n2+n3 liczba wszystkich formuł elementarnych (α u, α w, α y ) =α ciąg wszystkich formuł elementarnych a j =w(α j )Є{0,1} wartość logiczna j-ej formuły elementarnej (a u, a w, a y )=a zerojedynkowy ciąg wartości logicznych odpowiednich formuł elementarnych α u, α w, α y (takich ciągów jest 2 n dla każdego ciągu formuł elementarnych α) Np. dla ciągu formuł elementarnych α=(α u1, α u2, α w, α y ) przykładowe 4 (z 16) ciągi wartości (a i =(a u1, a u2, a w, a y ), i-numer ciągu wartości), są następujące: a 1 =(1,1,1,1), a 2 =(0,1,1,0), a 3 =(0,0,0,1), a 4 =(0,1,0,1).

6 Logiczna reprezentacja wiedzy jest zbiorem faktów (α)= 1 (α)ᴧ 2 (α)ᴧ ᴧ k (α) zbiór k faktów (definiuje relację R(u,y)) i (α) i-ty fakt, (i=1,2,,k) zapisany jako formuła logiczna składająca się z formuł elementarnych α i (a), (a) wyrażenia algebraiczne w algebrze logiki dwuwartościowej W bazie wiedzy zakłada się, że wszystkie występujące w niej formuły są faktami, czyli są prawdziwe, czyli dla każdego ciągu a, (a)=1. W literaturze fakty w formie implikacji często zwane są regułami, stąd możliwe są inne określenia jak : baza faktów, baza reguł, baza reguł i faktów.

7 akty a relacje Każdy fakt i (α) określa relację między zmiennymi wejściowymi, wyjściowymi i pomocniczymi (wewnętrznymi): R i (u,w,y)={(u,w,y) Є UΧWΧY: i [a u (u),a w (u,w,y),a y (y))]=1}, i=1,2,,k Zbiór tych relacji tworzy bazę wiedzy (k liczba reguł i faktów w bazie wiedzy). Zmienne w można wyeliminować i sprowadzić bazę wiedzy do jednej relacji: R(u,y)={(u,y) Є UΧY: V w ЄW [(u,w,y) Є R 1 (u,w,y) R k (u,w,y)]}, czyli R(u,y)={(u,y) Є UΧY: V w ЄW [(a)=1]}.

8 akty a relacje c.d. Oznacza to, że w obiekcie mogą wystąpić tylko takie wartości (u,y), dla których istnieje taka wartość w, że wszystkie fakty są prawdziwe. u (α u ) logiczna formuła wejściowa, w której występują tylko podciągi α złożone z α u,i (i=1,2,,n1) (definiuje zbiór D u ={uєu: u [a u (u)]=1}) y (α y ) logiczna formuła wyjściowa, w której występują tylko podciągi α złożone z α y,i (i=1,2,,n2) (definiuje zbiór D y ={yєy: y [a y (y)]=1})

9 Proste zadanie analizy Proste zadanie analizy, inaczej problem dowodzenia twierdzeń. Należy dla przyjętej bazy faktów i reguł podać postać formuły wejściowej u oraz y, przy czym zakłada się, że formuła u jest prawdziwa, a więc formuła ~ = u ᴧ uznana jest za prawdziwą. Należy odpowiedzieć na pytanie: Jaka jest wartość ~ logiczna podanej formuły y? (Inaczej, czy y jest logiczną konsekwencją?). Możliwe odpowiedzi to: TAK, NIE, NIE WIEM. (Ta ostatnia oznacza, że wartość logiczna y nie jest zdeterminowana zbiorem faktów i reguł i własnością u.) W rzeczywistości wyznaczenie algorytmu wnioskowania (z użyciem odpowiednich reguł wnioskowania) dla skomplikowanych struktur logicznych może być bardzo trudne, o ile w ogóle możliwe.

10 Zadanie analizy Zadanie analizy polega na wyznaczeniu najlepszej* postaci formuły wyjściowej y dla zadanej formuły wejściowej u, a więc odpowiedniego zdania logicznego zawierającego elementarne formuły wyjściowe połączone odpowiednimi spójnikami logicznymi, które spełnia implikację u ᴧ y. (#) *Najlepsza oznacza taką formułę, która implikuje wszystkie inne. Np. jeśli M formuł 1 y, 2 y, 3 y,, M y spełnia (#) oraz zachodzi ( 1 y 2 y) ᴧ ( 1 y 3 y) ᴧ ᴧ ( 1 y M y), to najlepszą formułą jest 1 y Zadanie można więc sformułować następująco: Dane: u, Wyznacz: najlepszą* y spełniającą (#).

11 Zadanie podejmowania decyzji (sterowania) Zadanie podejmowania decyzji (sterowania) polega na wyznaczeniu najlepszej** postaci formuły wejściowej u dla zadanej formuły wyjściowej y, a więc odpowiedniego zdania logicznego zawierającego elementarne formuły wejściowe połączone odpowiednimi spójnikami logicznymi, które spełnia implikację u ᴧ y. (#) **Najlepsza oznacza taką formułę, która jest implikowana przez wszystkie inne. Np. jeśli M formuł 1 u, 2 u, 3 u,, M u spełnia (#) oraz zachodzi ( 2 u 1 u) ᴧ ( 3 u 1 u) ᴧ ᴧ ( M u 1 u), to najlepszą formułą jest 1 u Zadanie można więc sformułować następująco: Dane: y, Wyznacz: najlepszą** u spełniającą (#).

12 Metoda logiczno-algebraiczna Metoda logiczno-algebraiczna, zwana też metodą Bubnickiego. Polega na rozwiązaniu zadania analizy bądź podejmowania decyzji poprzez przejście z reprezentacji zdania w formie zmiennych logicznych na ich reprezentację w algebrze dwuwartościowej, rozwiązaniu postawionego równoważnego zadania zastępczego, a następnie powrotu do reprezentacji w formie zmiennych logicznych.

13 Dodatkowe oznaczenia A zbiór wszystkich ciągów a=(a u,a w,a y ) S a ={a Є A: (a)=1} zbiór równoważny formule (α). S u ={a u Є A: u (a u )=1} zbiór równoważny formule u (α u ). S y ={a y Є A: y (a y )=1} zbiór równoważny formule y (α y )

14 Rozwiązanie zadania analizy Równoważny problem analizy polega na wyznaczeniu najmniejszego zbioru S y, dla którego spełniona jest implikacja a u ЄS u a y ЄS y Aby rozwiązać zadanie analizy należy znaleźć wszystkie ciągi wartości formuł elementarnych a y (czyli zbiór S y ), dla których spełnione jest (a u,a w,a y )=1 ᴧ u (a u )=1

15 Rozwiązanie zadania podejmowania decyzji (sterowania) Równoważny problem analizy polega na wyznaczeniu największego zbioru S u, dla którego spełniona jest implikacja a u ЄS u a y ЄS y Aby rozwiązać zadanie podejmowania decyzji należy znaleźć wszystkie ciągi wartości formuł elementarnych a u (czyli zbiór S u ), dla których spełnione jest (a u,a w,a y )=1 ᴧ y (a y )=1 ale niespełnione jest (a u,a w,a y )=1 ᴧ y (a y )=0

16 Rozwiązanie zadania podejmowania decyzji (sterowania) c.d. W praktyce należy wyznaczyć dwa zbiory S u1 i S u2. Dla S u1 spełnione jest (a u,a w,a y )=1 ᴧ y (a y )=1, Dla S u2, spełnione jest (a u,a w,a y )=1 ᴧ y (a y )=0. Ostatecznie S u = S u1 S u2

17 Powrót do reprezentacji w formie zmiennych logicznych Aby przejść z reprezentacji algebraicznej do logicznej, wystarczy utworzyć formułę stworzoną z alternatyw koniunkcji zmiennych logicznych (formuł elementarnych), których wartości występują w odpowiednim zbiorze S u lub S y, przy czym jeśli w danym ciągu wartości przy odpowiadającej zmiennej logicznej jest wartość 0, to w formule ta zmienna wystąpi z negacją. Jest to tzw. postać dysjunkcyjna. Przykład: Dla rozwiązania zadania analizy S y ={(0,1);(1,0);(1,1)}, formuła wyjściowa wygląda następująco: y = ( α y1 ᴧ α y2 ) ᴠ (α y1 ᴧ α y2 ) ᴠ (α y1 ᴧ α y2 ). Otrzymaną formułę często można uprościć stosując prawa i twierdzenia rachunku zdań logicznych, np. powyższą formułę można zapisać prościej jako y = α y1 ᴠ α y2.

18 Dodatkowe informacje W sformułowanych rozwiązaniach zastępczych, zadań analizy i podejmowania decyzji wykorzystujących algebrę dwuwartościową, można zauważyć, że do znalezienia rozwiązania należy przeglądnąć wszystkie możliwe ciągi wartościowań formuł elementarnych. Dla dużych i skomplikowanych problemów zadanie może być bardzo trudne, głównie ze względu na jego czasochłonność. Aby dla wielu przypadków uprościć procedurę rozwiązania zaproponowano metody dekompozycji. Metoda logicznoalgebraiczna jak i metody dekompozycji zarówno dla zadania analizy jak i podejmowania decyzji zostały opisane m.in. w następujących publikacjach:

19 Literatura Bubnicki, Z. (1990), Wstęp do systemów ekspertowych, PWN, W-wa. Bubnicki, Z. (1992), Decomposition of a system described by logical model. R. Trappl (red.) Cybernetics and System Research, t. 1, Singapore: World Scientific, Bubnicki, Z. (1997), Logic-algebraic method for a class of knowledge-based systems.. Pichler, R. Moreno-Diaz (red.) Computer Aided System Theory, Lecture Notes in Computer Science, Springer-Verlag, 1333, Berlin, Bubnicki, Z. (1997), Logic-algebraic method for a class of dynamical knowledge-based systems. A. Sydow (red.) Proc. of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, t. 4, , Berlin Bubnicki, Z. (1998), Logic-algebraic method for knowledge-based relation systems. Sys. Anal. Model. Simul., 33, Bubnicki, Z. (1999), Learning processes and logic-algebraic method in knowledge-based control systems. S.G. Tzafestas, G. Schmidt (red.) Progress in System and Robot Analysis and Control Design. Lecture Notes in Control and Information Sciences, 243. Springer-Verlag, London, Bubnicki, Z. (2002), Teoria i algorytmy sterowania, PWN, W-wa

20 Przykłady Na kolejnych slajdach znajdują się przykłady ilustrujące przedstawioną teorię

21 System grzewczy - schemat u 2 u 4 u 1 y 1 u 3 Grzejnik wody Podsystem sterujący () y 2 u 5 y 3 copyright Maciej Hojda

22 Wejścia i wyjścia u [0, ) Doprowadzone napięcie zasilające do grzałki [V ] 1 u {0,1} 2 Włącznik grzejnika [wył., wł.] u (, ) Wprowadzona docelowa temperatura wody [ C 3 u (, ) Zmierzona aktualna temperatura wody [ C 4 u [0, ) Poziom wody w zbiorniku [ cm] 5 ] ] y { brak, zielony, czerwony } Sygnał kontrolki [nieaktywny, ogrzewanie włączone, ogrzewanie 1 niemożliwe] y {0,1} 2 Podanie napięcia na grzałkę [nie, tak] y (, ) Różnica między temperaturami: docelową, a aktualną[ C ] 3 copyright Maciej Hojda

23 ormuły elementarne i fakty u1 {0,1} " 24 u " u2 {0,1} " u 2 1" u3 {0,1} " u3 u4 " u4 {0,1} " u 10 " 5 y1 {0,1} " y ~ brak 1 " y2 {0,1} " y zielony y3 {0,1} " y 1" 1 " 2 y4 {0,1} " y 0 " 3 w1 {0,1} Czy system jest gotowy do ogrzewania wody [nie, tak] w2 {0,1} Czy woda powinna być ogrzana [nie, tak] 1 u1 u2 w1 2 u3 u4 w2 3 w1 w2 y2 y3 4 u3 y4 4 u3 y4 copyright Maciej Hojda

24 Przykładowe przekształcenia między wejściami, wyjściami, a formułami D u u 1 [210,240], 1 3 1, 1, 1, 0 u u1 u2 elementarnymi u 2, u 30, u 20, u 5 u3 u4 u ( u ) u1 u2 u3 u4 u ( u ) u1 u2 u3 u4 1, 0, 0, 1 u u1 u2 4 u3 u4 2 3 u u 5 D u u 1 [40,460], u 0, u 4, 10 5 D y y y1 brak, y2 tak, y 3 0 0, 0, 1, 1 y1 y2 y3 y4 1, 1, 0, 1 y D y y1 y2 y3 y1 zielony, y2 nie, y 3 0 y4 Przez formuły wejściowe u i wyjściowe y rozumiemy koniunkcje odpowiednich formuł elementarnych. copyright Maciej Hojda

25 Przykładowa reprezentacja wiedzy 1 u1 u2 w1 Zadanie analizy ~ 2 w1 u2 y1 ) 3 w1 y1 (~ y 2 u y ~ u1 u2? Zadanie syntezy y u ~ ( ~ ) y1 y2? copyright Maciej Hojda

26 Zadanie analizy - rozwiązanie a a u1 u2 a w1 a y1 a y u u S y {(1,0), (0,1), (1,1)} y ( y1 ~ y2) (~ y1 y2) ( y1 y2) y1 y2 copyright Maciej Hojda

27 a u1 Zadanie syntezy - rozwiązanie a u2 a w1 a y1 a y y y ~ y S u1 {(0,0),(0,1),(0,1),(1,1)} S u2 {(0,0),(1,0),(0,1)} S u {(1,1)} copyright Maciej Hojda u u1 u2

28 Uproszczony system grzewczy u 1 u 2 Grzejnik wody Podsystem sterujący () y 1 u 3 u {0,1} Włącznik grzejnika [wył., wł.] 1 u (, ) Wprowadzona docelowa temperatura wody [ C 2 u (, ) Zmierzona aktualna temperatura wody [ C 3 ] ] y {0,1} Podanie napięcia na grzałkę [nie, tak] 1 copyright Maciej Hojda

29 Uproszczony system grzewczy {0,1} " u 1 " u2 2 {0,1} " u u " u3 3 4 {0,1} " y zielony y2 1 " {0,1} " y 1 " y3 2 {0,1} Czy system jest gotowy do ogrzewania wody [nie, tak] w1 {0,1} Czy woda powinna być ogrzana [nie, tak] y2 copyright Maciej Hojda

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych.

technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych. Informatyka Coraz częściej informatykę utoŝsamia się z pojęciem technologii informacyjnych. Za naukową podstawę informatyki uwaŝa się teorię informacji i jej związki z naukami technicznymi, np. elektroniką,

Bardziej szczegółowo

ZARYS STRUKTURY ZINTEGROWANEGO SYSTEMU ENERGETYKI PROSUMENCKIEJ

ZARYS STRUKTURY ZINTEGROWANEGO SYSTEMU ENERGETYKI PROSUMENCKIEJ Mirosław Zaborowski ZARYS STRUKTURY ZINTEGROWANEGO SYSTEMU ZARZĄDZANIA I STEROWANIA PROCESAMI ENERGETYKI PROSUMENCKIEJ zaborowski.miroslaw@gmail.com 204 02 25 Plan prezentacji. Struktura oprogramowania

Bardziej szczegółowo

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Funkcje bazy danych. Funkcje bazodanowe są specyficzną kategorią

Funkcje bazy danych. Funkcje bazodanowe są specyficzną kategorią e829ac02-3954-48d6-9877-7bc45bd1ba7e Funkcje bazy danych Mariusz Jankowski analityk, programista rozwiązań wsparcia biznesowego; Pytania: czytelnicy.controlling@infor.pl W niniejszym opracowaniu omawiamy

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Dedukcyjne bazy danych i rekursja

Dedukcyjne bazy danych i rekursja Dedukcyjne bazy danych i rekursja Wykład z baz danych dla studentów matematyki 23 maja 2015 Bazy danych z perspektywy logiki Spojrzenie na bazy danych oczami logika pozwala jednolicie opisać szereg pojęć.

Bardziej szczegółowo

Technologia inteligentnych agentów. Autor: dr Jacek Jakieła

Technologia inteligentnych agentów. Autor: dr Jacek Jakieła Autor: dr Jacek Jakieła WYKŁAD... 3 Reprezentacja wiedzy agenta... 3 Konceptualizacja... 3 Formalizacja wiedzy agenta... 4 Alfabet języka... 4 Poprawnie sformułowane formuły języka rachunku predykatów...

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

MODELOWANIE SYSTEMÓW INFORMACYJNYCH

MODELOWANIE SYSTEMÓW INFORMACYJNYCH MODELOWANIE SYSTEMÓW INFORMACYJNYCH Wykładowca: dr inż. Grażyna Hołodnik-Janczura Instytut Organizacji i Zarządzania Politechnika Wrocławska GHJ 1 LITERATURA 1. Barker R., Longman C., CASE*Method: Modelowanie

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

QualitySpy moduł persystencji

QualitySpy moduł persystencji Projektowanie oprogramowania Instytut Informatyki, Automatyki i Robotyki, Politechnika Wrocławska QualitySpy moduł persystencji Testy akceptacyjne Nazwa pliku: /QualitySpy/modules/qualityspypersistence/src/test/java/pl/wroc/pwr/qualityspy/persistence

Bardziej szczegółowo

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki.

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki. Literatura 1. D. Gajski, Principles of Digital Design, Prentice- Hall, 1997 2. C. Zieliński, Podstawy projektowania układów cyfrowych, PWN, Warszawa 2003 3. G. de Micheli, Synteza i optymalizacja układów

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

Bazy danych 3. Normalizacja baz danych

Bazy danych 3. Normalizacja baz danych Bazy danych 3. Normalizacja baz danych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011/12 Pierwsza postać normalna Tabela jest w pierwszej postaci normalnej (1PN), jeżeli 1. Tabela posiada klucz.

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć

Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć Systemy Wbudowane Kod przedmiotu: SW Rodzaj przedmiotu: kierunkowy ; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil studiów:

Bardziej szczegółowo

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132.

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. Bramki logiczne 1. Czas trwania: 3h 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. 3. Wymagana znajomość pojęć stany logiczne Hi, Lo, stan

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Elementy układu automatycznej regulacji (UAR)

Elementy układu automatycznej regulacji (UAR) 1 Elementy układu automatycznej regulacji (UAR) Wprowadzenie W naszej szkole, specjalizacją w klasie elektronicznej jest automatyka przemysłowa. Niniejszy artykuł ma na celu przedstawienie czytelnikom

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

MODELOWANIE I PROGRAMOWANIE PRACY

MODELOWANIE I PROGRAMOWANIE PRACY Tadeusz MIKULCZYSKI 1, Daniel NOWAK 2, Rafał WICŁAWEK 3 Instytut Technologii Maszyn i Automatyzacji Politechniki Wrocławskiej, Wrocław 1. Streszczenie. Zaprezentowano metod Grafpol modelowania dyskretnych

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

Programowanie komputerów

Programowanie komputerów Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

RBD Relacyjne Bazy Danych Więzy realcji

RBD Relacyjne Bazy Danych Więzy realcji Wykład 8 RBD Relacyjne Bazy Danych Więzy realcji Bazy Danych - A. Dawid 2011 1 Więzy (Constraints) Więzy ograniczenia na związki między poszczególnymi atrybutami w bazie danych. Określają często zakres

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Relacyjny model baz danych, model związków encji, normalizacje

Relacyjny model baz danych, model związków encji, normalizacje Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - Układy przekaźnikowe. dr inż. Jakub Możaryn. Warszawa, 2015. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - Układy przekaźnikowe. dr inż. Jakub Możaryn. Warszawa, 2015. Instytut Automatyki i Robotyki Wykład 12 - Układy przekaźnikowe Instytut Automatyki i Robotyki Warszawa, 2015 Projektowanie układów kombinacyjnych Układy kombinacyjne są realizowane: w technice stykowo - przekaźnikowej, z elementów

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu NuSMV NuSMV symboliczny

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Lingwistyczne podsumowania baz danych.inteligentne generowanie s

Lingwistyczne podsumowania baz danych.inteligentne generowanie s Lingwistyczne podsumowania baz danych. Inteligentne generowanie streszczeń Instytut Informatyki, Politechnika Łódzka Katowice, 29 stycznia 2010 r. Problematyka Bazy i hurtownie danych olbrzymia ilość liczb......

Bardziej szczegółowo

Wirtualne Laboratorium Mechaniki eksperyment na odległość, współpraca badawcza i gromadzenie wiedzy

Wirtualne Laboratorium Mechaniki eksperyment na odległość, współpraca badawcza i gromadzenie wiedzy Wirtualne Laboratorium Mechaniki eksperyment na odległość, współpraca badawcza i gromadzenie wiedzy Łukasz Maciejewski, Wojciech Myszka Instytut Materiałoznawstwa i Mechaniki Technicznej Politechniki Wrocławskiej

Bardziej szczegółowo

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np.. Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania. Przemysław Kobylański

Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania. Przemysław Kobylański Wprowadzenie do Sztucznej Inteligencji Laboratorium lista 0.1 Elementy języka Prolog: fakty i zapytania Przemysław Kobylański Część I Wprowadzenie 1 Stałe i zmienne Jedynym dostępnym w języku Prolog rodzajem

Bardziej szczegółowo

Automatyczne sterowanie i optymalizacja operacji jednostkowych produkcji żywności - przegląd wybranych metod

Automatyczne sterowanie i optymalizacja operacji jednostkowych produkcji żywności - przegląd wybranych metod Automatyczne sterowanie i optymalizacja operacji jednostkowych produkcji żywności - przegląd wybranych metod Dr hab. inż. Antoni Ryniecki, prof. nadzw. kwiecień 2008 1. Pojęcia podstawowe; cele i zadania

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Dlaczego pompa powinna być "inteligentna"?

Dlaczego pompa powinna być inteligentna? Dlaczego pompa powinna być "inteligentna"? W ciepłowniczych i ziębniczych układach pompowych przetłaczanie cieczy ma na celu transport ciepła, a nie, jak w pozostałych układach, transport masy. Dobrym

Bardziej szczegółowo

II. STEROWANIE I REGULACJA AUTOMATYCZNA

II. STEROWANIE I REGULACJA AUTOMATYCZNA II. STEROWANIE I REGULACJA AUTOMATYCZNA 1. STEROWANIE RĘCZNE W UKŁADZIE ZAMKNIĘTYM Schemat zamkniętego układu sterowania ręcznego przedstawia rysunek 1. Centralnym elementem układu jest obiekt sterowania

Bardziej szczegółowo

Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania.

Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania. Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Izabela Asiewicz Nr albumu: 305038 Optymalne inwestowanie w rozwój firmy. Zastosowanie teorii sterowania. Praca licencjacka na kierunku

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA OD 2015 ( NOWA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1,R2 (Wersja uaktualniona; 3 lipca 2015r.) MAJ 2015

Bardziej szczegółowo

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT ALGORYTMY SYMULACJI UKŁADÓW CYFROWYCH

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT ALGORYTMY SYMULACJI UKŁADÓW CYFROWYCH TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT PNIEWSKI Roman 1 KORNASZEWSKI Mieczysław 2 Technika cyfrowa, Zjawiska szkodliwe, Symulacja ALGORYTMY SYMULACJI

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Projektowanie bazy danych przykład

Projektowanie bazy danych przykład Projektowanie bazy danych przykład Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeń wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Tranzystory bipolarne elementarne układy pracy i polaryzacji Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

STEROWNIKI i REGULATORY (TS1A522 380)

STEROWNIKI i REGULATORY (TS1A522 380) STEROWNIKI i REGULATORY (TS1A522 380) Kierunek: Elektronika i Telekomunikacja (EP), sem. V Szczegółowy program wykładu 15 godz. 1. Systemy sterowania w przemyśle. Podstawowe składniki sprzętowe systemu

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1. Plan wykładu

SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1. Plan wykładu SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1 Plan wykładu 1. Wprowadzenie, funkcje boolowskie i bramki logiczne, 2. Minimalizacja funkcji boolowskich, 3. Kombinacyjne bloki

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Paweł Kurzawa, Delfina Kongo

Paweł Kurzawa, Delfina Kongo Paweł Kurzawa, Delfina Kongo Pierwsze prace nad standaryzacją Obiektowych baz danych zaczęły się w roku 1991. Stworzona została grupa do prac nad standardem, została ona nazwana Object Database Management

Bardziej szczegółowo