7. Zagadnienie parkowania ciężarówki.

Wielkość: px
Rozpocząć pokaz od strony:

Download "7. Zagadnienie parkowania ciężarówki."

Transkrypt

1 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można będzie podejmować decyzje związane ze sterowaniem. Bardzo często zdarza się, iż znalezienie odpowiedniego modelu jest procesem trudnym i czasochłonnym a nierzadko wymagającym przyjęcia dodatkowych założeń upraszczających zagadnienie. W takim przypadku idealnym narzędziem są sterowniki rozmyte. Zamiast wyznaczać pewien model formułujemy jedynie reguły postępowania w postaci rozmytych zdań warunkowych typu IF... THEN... Rysunek 1 przedstawia klasyczny sterownik rozmyty. Składa się on z czterech ele- mentów: Rysunek 1: Klasyczny sterownik rozmyty. Bazy reguł Bazę reguł stanowi zbiór rozmytych reguł postaci IF (x1 jest A1) AND... AND (xn jest An) THEN (y1 jest B1) AND... AND (ym jest Bm) 1

2 gdzie A i, B j, i = 1,..., n, j = 1,..., m są zbiorami rozmytymi, x i zmiennymi wejściowymi, y j zmiennymi wyjściowymi. Bloku rozmywania Ponieważ system sterowania z logiką rozmytą operuje na zbiorach rozmytych, dlatego konkretne wartości sygnału wejściowego podlegają operacji rozmywania, w wyniku której zostają one odwzorowane w zbiór rozmyty. Bloku wnioskowania Na podstawie zbioru reguł rozmytych w oparciu o uogólnione reguły wnioskowania znajdujemy odpowiedni zbiór rozmyty będący wnioskiem powstałym w oparciu o podane przesłanki. Bloku wyostrzania Wielkością wyjściową bloku wnioskowania jest zbiór rozmyty. Zbiór ten należy odwzorować w jedną wartość, która będzie poszukiwanym sygnałem sterującym. Zadanie, które będziemy chcieli rozwiązać znane jest pod nazwą zagadnienia parkowania ciężarówki i jako takie nie jest wcale problemem trywialnym. Chcąc zastosować podany algorytm musimy napierw wygenerować zbiór reguł, na których podstawie będziemy realizować procedurę wnioskawania, co w konsekwencji pozwali sterować ciężarówką na pewnym zamkniętym obszarze. Chcemy zaparkować ciężarówkę, czyli ustawić ją w położeniu prostopadłym do rampy 1 Zakładamy, że pojazd porusza się tylko do tyłu i ze stałą prędkością. Pojazdem sterujemy zmieniając kąt skręcenia jego kół. Zakres zmienności dla kątów: Φ [ 180, 180] oraz θ [ 45, 45]. Poniżej zamieszczono niezbędne wzory opisujące dynamikę ruchu ciężarówki oraz rysunek 2 przedstawiający znaczenie użytych symboli. Teoria x(t + 1) = x(t) + sin [θ(t) + Φ(t)] sin [θ(t)] cos [Φ(t)] y(t + 1) = y(t) cos [θ(t) + Φ(t)] sin [θ(t)] sin [Φ(t)] Φ(t + 1) = Φ(t) arcsin [ 2 sin θ(t) ] b Poniżej podajemy algorytm tworzenia reguł rozmytych. Zakładamy, że naszym celem jest stworzenie sterownika rozmytego o dwóch wejściach i jednym wyjściu mając cały czas na uwadze rozwiązanie zadania jakie sobie wyznaczyliśmy czyli problemu parkowania ciężarówki. W tym celu, w oparciu o zebrane przykładowe dane, musimy ustalić odpowiednie reguły rozmyte. Przykładowe dane nazywać będziemy dalej danymi uczącymi i będą one zbiorem par (in(i), out(i)), i = 1, 2,... gdzie in(i) = (x1(i), x2(i)), out(i) = y(i) jest sygnałem wejściowym, podawanym na wejście sterownika, natomiast out(i) wzorcową wartością sygnału wyjściowego. 1 Rampa to górna krawędź obszaru w którym się poruszamy. 2

3 Krok 1 - podział przestrzeni wejściowej i wyjściowej na obszary Określamy przedziały, w których zawierają się dopuszczalne wartości dla in(i) oraz out(i). Każdy z przedziałów dzielimy na 2N + 1 obszarów (odcinków). Dla każdego z sygnałów N może być różne; różne mogą być także długości odcinków. Poszczególne obszary oznaczamy następująco: M N (MałyN),..., M 1 (Mały1), S(Średni), D 1 (Duży1),..., D N (DużyN) i dla każdego z nich określamy jedną funkcję przynależności. Przykład takiego podziału przedstawiono na rysunku 3. Jak widać w stosunku do trzech wygnałów: x 1, x 2, y przyjęto następujące założenia: Sygnał Minimalna Maksymalna N wartość wartość x x y Dla uproszczenia jako funkcję przynależności przyjęto wszędzie funkcję o kształcie trójkątnym. Krok 2 - tworzenie reguł rozmytych na podstawie danych uczących. Wyznaczamy stopnie przynależności danych uczących do każdego z obszarów utworzonych w kroku 1. Biorąc pod uwagę rysunek 3 stwierdzamy, że stopien przynależności danej x 1 (1) do obszaru M 1 wynosi 0.7, do obszaru M a do pozostałych obszarów 0. Podobnie postępujemy dla x 2 (1) i y(1). Przyporządkowujemy dane uczące do obszarów w których mają one maksymalne stopnie przynależności. W ten sposób dla każdej pary uczącej możemy napisać jedną regułę: (x1(1),x2(1),y(1)) ==> reguła (1): IF (x1 jest M_1) AND (x2 jest S) THEN y jest M_1 Krok 3 - przyporządkowanie stopni prawdziwości do każdej z reguł W oparciu o każdą parę danych uczących możemy sformułować jedną regułę. Oczywiste jest, że w przypadku występowaniu dużej ilości par wiele reguł będzie miało te same przesłanki i te same (bądź też różne) wnioski. W celu umożliwienia podjęcia decyzji, którą z nich wybrać, do każdej reguły przyporządkowujemy stopień prawdziwości i wybieramy tą spośród reguł o tych samych przesłankach, która ma ten stopień najwyższy. Dla reguł postaci IF (x1 jest A1) AND (x2 jest A2) THEN y jest B stopień prawdziwości sp definiujemy jako sp = µ A1 (x 1 )µ A2 (x 2 )µ B (y) 3

4 Krok 4 - utworzenie bazy reguł rozmytych Bazę reguł stanowi tablica, którą wypełniamy regułami rozmytymi w następujący sposób: jeśli reguła jest postaci IF (x1 jest Ax) AND (x2 jest Ay) THEN y jest Bz to na przecięciu kolumny Ax oraz wiersza Ay wpisujemy nazwę zbioru rozmytego występującego we wniosku, czyli Bz. Krok 5 - wyostrzanie W celu określenia liczbowej wartości sterowania należy przyjąć pewną metodę wyostrzania. W tym przypadku wyostrzanie odbywać się będzie według wzoru y = Nk=1 τ (k) y (k) Nk=1 τ (k) gdzie τ (k) = µ A1 (k)(x 1 )µ A2 (k)(x 2 ) nazywamy stopniem aktywności k tej reguły. Rysunek 2: Ciężarówka oraz obszar parkingu. 4

5 Rysunek 3: Podział na obszary i określenie funkcji przynależności. 5

6 Zadanie Zadanie będzie wymagało napisania kilku programów. 1. Napisać program, który przy użyciu wzorów fizycznych opisujących tarjektorię ruchu ciężarówki wygeneruje metodą prób i błędów N trójek (x, Φ, θ) = (x 1, x 2, y), które posłużą jak dane numeryczne w dalszym postępowaniu. 2. Napisać program tworzący bazę reguł na podstawie danych numerycznych (z pkt. 1). Niezbędne dane będą wczytywane z pliku o formacie jak poniżej: linia 1: ilośćdanych linia 2: mindlax1 maxdlax1 Ndlax1 linia 3: mindlax2 maxdlax2 Ndlax2 linia 4: mindlay maxdlay Ndlay linia 5: x1 x2 y... linia ilośćdanych + 4: x1 x2 y Jako wynik program ma zwracać listę wszystkich reguł wraz z przypisanymi im stopniamy prawdziwości oraz bazę reguł. 3. Na podstawie otrzyanej bazy reguł napisać program, który przy użyciu tych reguł będzie sterował ciężarówką. 6

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Sterownik rozmyty (na przykładzie parkowania samochodu)

Sterownik rozmyty (na przykładzie parkowania samochodu) Sterownik rozmyty (na przykładzie parkowania samochodu) 06 kwietnia 2010 Idea ogólna Celem programu jest symulacja zachowania się jakiegoś obiektu, zasymulowanie jakiegoś zjawiska, czynności, na podstawie

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

Tomasz Żabiński, tomz@prz-rzeszow.pl, 2006-03-14 90

Tomasz Żabiński, tomz@prz-rzeszow.pl, 2006-03-14 90 Poniżej przedstawiono zagadnienie automatycznej pracy suwnicy (Sawodny et al. 2002), będącej elementem np. zautomatyzowanej linii produkcyjnej. Opracowany system sterowania realizuje bezpieczny transport

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Metody numeryczne Laboratorium 2

Metody numeryczne Laboratorium 2 Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Opis podstawowych funkcji PC- SHELLa

Opis podstawowych funkcji PC- SHELLa Opis podstawowych funkcji PC- SHELLa addfact - instrukcja addfact umożliwia utworzenie i dodanie faktu do bazy wiedzy - w sposób dynamiczny - podczas wykonywania programu z bloku control. neditbox - Instrukcja

Bardziej szczegółowo

Logika rozmyta typu 2

Logika rozmyta typu 2 Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Kurs logiki rozmytej - pomoc. Wojciech Szybisty

Kurs logiki rozmytej - pomoc. Wojciech Szybisty Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2

Bardziej szczegółowo

Podprogramy. Procedury

Podprogramy. Procedury Podprogramy Turbo Pascal oferuje metody ułatwiające tworzenie struktury programu, szczególnie dotyczy to większych programów. Przy tworzeniu większego programu stosuje się jego podział na kilka mniejszych

Bardziej szczegółowo

PIA PANEL INŻYNIERA AUTOMATYKA

PIA PANEL INŻYNIERA AUTOMATYKA ul. Bajana Jerzego 31d tel. + 48 399 50 42 45 01-904 Warszawa PANEL INŻYNIERA AUTOMATYKA Wszystkie nazwy handlowe i towarów występujące w niniejszej publikacji są znakami towarowymi zastrzeżonymi odpowiednich

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl

Bardziej szczegółowo

LABORATORIUM 6: Systemy rozmyte

LABORATORIUM 6: Systemy rozmyte Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 6: Systemy rozmyte opracował: dr inż. Witold Beluch

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Konwerter XML Dla Programów Symfonia Kadry i Płace oraz Forte Kadry i Płace

Konwerter XML Dla Programów Symfonia Kadry i Płace oraz Forte Kadry i Płace Konwerter XML Dla Programów Symfonia Kadry i Płace oraz Forte Kadry i Płace i Aplikacja pozwala przygotować pliki w formacie XML do importu do systemu Kady i Płace na podstawie danych pochodzących z plików

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik mechatronik 311[50]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik mechatronik 311[50] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik mechatronik 311[50] 1 2 3 4 W pracy egzaminacyjnej były oceniane następujące elementy: I. Tytuł pracy egzaminacyjnej. II. Założenia,

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

ZASTOSOWANIE TABLIC DECYZYJNYCH W OPRACOWANIU REPREZENTACJI WIEDZY TECHNOLOGICZNEJ

ZASTOSOWANIE TABLIC DECYZYJNYCH W OPRACOWANIU REPREZENTACJI WIEDZY TECHNOLOGICZNEJ ZASTOSOWANIE TABLIC DECYZYJNYCH W OPRACOWANIU REPREZENTACJI WIEDZY TECHNOLOGICZNEJ Alfred PASZEK, Marian A. PARTYKA Streszczenie: W pracy przedstawiono możliwości zastosowania tablic decyzyjnych w opracowaniu

Bardziej szczegółowo

DECLARE VARIABLE zmienna1 typ danych; BEGIN

DECLARE VARIABLE zmienna1 typ danych; BEGIN Procedury zapamiętane w Interbase - samodzielne programy napisane w specjalnym języku (właściwym dla serwera baz danych Interbase), który umożliwia tworzenie zapytań, pętli, instrukcji warunkowych itp.;

Bardziej szczegółowo

Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane

Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Tworzymy system ekspertowy 1. Wstępna analiza i definicja dziedziny problemu. W tym: poznanie wiedzy dziedzinowej

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

BLOK FUNKCYJNY FUZZY LOGIC W STEROWANIU PLC AUTONOMICZNYM APARATEM UDOJOWYM*

BLOK FUNKCYJNY FUZZY LOGIC W STEROWANIU PLC AUTONOMICZNYM APARATEM UDOJOWYM* Inżynieria Rolnicza 8(133)/2011 BLOK FUNKCYJNY FUZZY LOGIC W STEROWANIU PLC AUTONOMICZNYM APARATEM UDOJOWYM* Marcin Tomasik, Henryk Juszka, Stanisław Lis Katedra Energetyki i Automatyzacji Procesów Rolniczych,

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

Przedmiotowy system oceniania z informatyki

Przedmiotowy system oceniania z informatyki Przedmiotowy system oceniania z informatyki 1. Cel. 2. Założenia ogólne. 3. Zakres aktywności a ocena. 4. Ocena bieżąca. 5. Ocena semestralna. 6. Kryteria wymagań klasy II do III 7. Szczegółowy opis wymagań

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu.

Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA RiSM Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu. Dr inż. Mariusz Dąbkowski Zadaniem

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Tom 6 Opis oprogramowania

Tom 6 Opis oprogramowania Część 4 Narzędzie do wyliczania wielkości oraz wartości parametrów stanu Diagnostyka stanu nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 30 maja 2012 Historia dokumentu Nazwa

Bardziej szczegółowo

Systemy ekspertowe : percepty

Systemy ekspertowe : percepty Instytut Informatyki Uniwersytetu Śląskiego 4 maja 2012 Percept jest parą (pa, val), której pierwszy element pa jest parametrem perceptu charakteryzującym pewne istnienie e z wartością val będącą drugim

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np.. Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

pojawianie się na drodze - z prawdopodobieństwem alf a nowe auto pojawia się na początku ulicy z pewną prędkością początkową

pojawianie się na drodze - z prawdopodobieństwem alf a nowe auto pojawia się na początku ulicy z pewną prędkością początkową Opis modelu Projekt zawiera model automatu komórkowego opisującego ruch uliczny na jednopasmowej ulicy bez możliwości wyprzedzania. Przyjmujemy, że kierowcy nie powodują celowo kolizji oraz że chcą dojechać

Bardziej szczegółowo

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical;

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska

Bardziej szczegółowo

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro 1. Cel ćwiczenia Celem ćwiczenia jest zaprojektowanie sterowania układem pozycjonowania z wykorzystaniem sterownika VersaMax Micro oraz silnika krokowego. Do algorytmu pozycjonowania wykorzystać licznik

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

1. Import środków trwałych z pliku w formacie MS-EXCEL o określonej strukturze.

1. Import środków trwałych z pliku w formacie MS-EXCEL o określonej strukturze. 1. Import środków trwałych z pliku w formacie MS-EXCEL o określonej strukturze. W celu importu środków trwałych z pliku w formacie MS-EXCEL o określonej strukturze należy otworzyć formularz Środki trwałe.

Bardziej szczegółowo

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik mechatronik 311[50]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik mechatronik 311[50] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik mechatronik 311[50] 1 2 3 4 5 6 Zadanie egzaminacyjne w zawodzie technik mechatronik polegało na opracowaniu projektu realizacji

Bardziej szczegółowo

Podstawowym zadaniem, które realizuje

Podstawowym zadaniem, które realizuje Funkcje wyszukiwania i adresu INDEKS Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical; Pytania:

Bardziej szczegółowo

PTI S1 Tabele. Tabele. Tabele

PTI S1 Tabele. Tabele. Tabele Tabele Tabele 43 1.3. Tabele Jako że bazy danych składają się z tabel, musimy nauczyć się jak je zaprojektować, a następnie stworzyć i zarządzać nimi w programie Microsoft Access 2013. Zajmiemy się również

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Siemens S7-1200 Konfiguracja regulatora PID

Siemens S7-1200 Konfiguracja regulatora PID Siemens S7-1200 Konfiguracja regulatora PID 1 Wprowadzenie Środowisko STEP 7 umożliwia wykorzystanie instrukcji sterownika S7-1200 które pozwalają na prostą konfiguracje i zastosowanie regulatora PID.

Bardziej szczegółowo

Komentarz do prac egzaminacyjnych w zawodzie technik mechatronik 311[50] (zadanie 4) ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE

Komentarz do prac egzaminacyjnych w zawodzie technik mechatronik 311[50] (zadanie 4) ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE Komentarz do prac egzaminacyjnych w zawodzie technik mechatronik 311[50] (zadanie 4) ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE OKE Kraków 2012 2 3 4 5 6 7 8 W pracy egzaminacyjnej

Bardziej szczegółowo

Spis treści. 1 Moduł Mapy 2

Spis treści. 1 Moduł Mapy 2 Spis treści 1 Moduł Mapy 2 1.1 Elementy planu............................. 2 1.1.1 Interfejs widoku......................... 3 1.1.1.1 Panel sterujacy.................... 3 1.1.1.2 Suwak regulujacy przybliżenie...........

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Rys. 1. Rozpoczynamy rysunek pojedynczej części

Rys. 1. Rozpoczynamy rysunek pojedynczej części Inventor cw1 Otwieramy nowy rysunek typu Inventor Part (ipt) pojedyncza część. Wykonujemy to następującym algorytmem, rys. 1: 1. Na wstędze Rozpocznij klikamy nowy 2. W oknie dialogowym Nowy plik klikamy

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2015 Uwaga: Akceptowane są wszystkie odpowiedzi

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję

Zadanie 1. Plik Nowy Kod. lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję Zadanie 1 Plik Nowy Kod lub naciskając ikonę Nowy kod (jak na rysunku) Tworzymy bibliotekę o nazwie lab wpisując instrukcję libname nazwa biblioteki lokalizacja na dysku ; np. libname lab 'N:\sas2007\';

Bardziej szczegółowo

Lokalizacja robota Lego Mindstorms NXT przy użyciu odometrii

Lokalizacja robota Lego Mindstorms NXT przy użyciu odometrii Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laoratorium Sterowania Rootów Lokalizacja roota Lego Mindstorms NXT przy użyciu odometrii Uwagi wstępne 1. Wszystkie przykłady i

Bardziej szczegółowo

WYKORZYSTANIE PORTALU DYDAKTYCZNEGO W NAUCE JĘZYKÓW PROGRAMOWANIA

WYKORZYSTANIE PORTALU DYDAKTYCZNEGO W NAUCE JĘZYKÓW PROGRAMOWANIA WYKORZYSTANIE PORTALU DYDAKTYCZNEGO W NAUCE JĘZYKÓW PROGRAMOWANIA Plan wystąpienia Wprowadzenie Zdalne nauczanie języków programowania Cele i przyjęte rozwiązania Przykładowe elementy kursów Podsumowanie

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Writer wzory matematyczne

Writer wzory matematyczne Writer wzory matematyczne Procesor Writer pracuje zazwyczaj w trybie WYSIWYG, podczas wpisywania wzorów matematycznych nie całkiem. Wzory wpisujemy w oknie edytora wzorów w postaci tekstu. Tekst ten jest

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Wstęp do GIMP wycinanie obiektu z obrazka, projekt napisu. Rozpoczynamy prace w GIMP-e

Wstęp do GIMP wycinanie obiektu z obrazka, projekt napisu. Rozpoczynamy prace w GIMP-e Rozpoczynamy prace w GIMP-e 1. Odpalamy program GIMP szukamy go albo na pulpicie albo w programach (ikonka programu widoczna w prawym górnym rogu). 2. Program uruchamia się na początku widzimy tzw. Pulpit

Bardziej szczegółowo

FORMUŁY AUTOSUMOWANIE SUMA

FORMUŁY AUTOSUMOWANIE SUMA Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo