Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA."

Transkrypt

1 Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Automatyka i Robotyka Praca magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA. Jakub Kołakowski Promotor: dr inż. Michał Meller Gdańsk, 2011

2

3 Spis treści Spis treści i 1 Wstęp 1 2 Podstawy teoretyczne Wprowadzenie Strukturyfiltrów Zastosowania Filtracjaoptymalna-filtrWienera Metodygradientowe Algorytmynajszybszegospadku AlgorytmyNewtona-Raphsona AlgorytmyQuasi-Newtona Adaptacyjnealgorytmygradientustochastycznego(LMS) FiltrLMS FiltrNLMS Blokowefiltryadaptacyjne Opis platformy CUDA 15 Bibliografia 17 Spis rysunków 19 i

4

5 Rozdział 1 Wstęp...jakiśtekst... 1

6

7 Rozdział 2 Podstawy teoretyczne 2.1 Wprowadzenie Strukturyfiltrów Dobór struktury filtra ma znaczący wpływ na działanie algorytmu adaptacyjnego. Wyróżnia się kilka podstawowych struktur filtrów, które określa się filtrami o skończonej pamięci lub skończonej odpowiedzi impulsowej(fir, ang. finite-duration impulse response). Takie struktury, w odróznieniu od filtrów o nieskończonej odpowiedzi impulsowej (IIR, ang. infinite-duration impulse response), nie zawierają ścieżek sprzężeń zwrotnych. Obecność sprzężeń niesie ze sobą problem zapewnienia stabilności filtra, który może wpaść w oscylacje. Z tego powodu algorytmy filtracji adaptacyjnej typu IIR są bardziej złożone, a co za tym idzie, rzadziej wykorzystywane w praktyce. Niniejsza praca traktuje o filtrach o skończonej odpowiedzi impulsowej. Dwie najpopularniejsze struktury takich filtrów sa następujące: Filtr transwersalny Struktura transwersalna to struktura opierająca się o linię opóźniającą. Przykład takiej struktury zaprezentowano na Rysunku 2.1. Liczba elementów opóźniających(identyfikowanychprzezoperatoropóźnieniajednostkowegoz 1 ),użytychwfiltrze,wyznacza skończoną długość odpowiedzi impulsowej. Określa ona także rząd filtra. Wyjście filtra transwersalnego rzędu M 1 przedstawionego na Rysunku 2.1 jest dane równaniem: y(n)= M 1 k=0 w k u(n k) (2.1) gdziew k tok-tywspółczynnikfiltra(k=0,1,...,m 1). Implementacja filtrów o strukturze transwersalnej(i jej modyfikacjach) jest przedmiotem tej pracy. 3

8 4 ROZDZIAŁ 2. PODSTAWY TEORETYCZNE Rysunek 2.1: Filtr transwersalny[2, str. 5] Filtr drabinkowy Struktura drabinkowa(zwana także kratową), a dokładniej filtr predykcyjny o strukturze drabinkowej, składa się z modułów, a ich liczbę nazywa się rzędem predykcji. Na Rysunku2.2pokazanofiltrpredykcyjnyrzęduM 1.StopieńmfiltrazRysunku2.2 jest opisany parą wzorów(przy założeniu, że dane wejściowe są zespolone i stacjonarne w szerokim sensie): f m (n)=f m 1 (n)+κ mb m 1 (n 1) (2.2) b m (n)=b m 1 (n 1)+κ m f m 1 (n) (2.3) gdzie: f m (n) błądpredykcjiwprzód,m=1,2,...,m 1, b m (n) błądpredykcjiwstecz,m=1,2,...,m 1, κ m współczynnikodbicia,m=1,2,...,m 1. Warunki początkowe są następujące: f 0 (n)=u(n) (2.4) b 0 (n)=u(n) (2.5) Jakpodanowpracy[2,str.6]dlaskorelowanejsekwencjipróbeku(n),u(n 1),..., u(n M+1)pochodzącychzestacjonarnegoprocesu,błędypredykcjiwsteczb 0,b 1 (n),..., b M 1 (n)tworząsekwencjęnieskorelowanychzmiennychlosowych.dodatkowoliniowa kombinacjabłędówpredykcjiwsteczb 0,b 1 (n),...,b M 1 (n)możebyćwykorzystanado wyznaczenia estymaty pewnego sygnału odniesienia d(n)(dolna część Rysunku 2.2). Różnica między estymatą a sygnałem d(n) daje w rezultacie błąd estymacji e(n). Proces tak opisany znany jest pod angielską nazwą joint-process estimation Zastosowania Zdolność filtrów adaptacyjnych do zadowalającego działania w nieznanym środowisku oraz do śledzenia statystycznych cech sygnałów czyni je potężnymi narzędziami w cyfrowym przetwarzaniu sygnałów. Układy zdolne do przystosowania się, mają zdecydowaną

9 2.1. WPROWADZENIE 5 Rysunek 2.2: Filtr drabinkowy[2, str. 7] przewagę nad tymi, które tego nie potrafią. Na Rysunku 2.3 wyróżniono cztery podstawowe zastosowania filtracji adaptacyjnej. Są one następujące: Identyfikacja (Rysunek 2.3a) Filtr adaptacyjny jest używany, aby zapewnić najlepszy w pewnym sensie liniowy model nieznanego obiektu. Obiekt i filtr adaptacyjny są pobudzane tym samym sygnałem wejściowym u. Wyjściem obiektu jest sygnał odniesienia d(zwany także wzorcowym), a różnica tego sygnału z wyjściem y filtra daje w rezultacie błąd estymacji e, wykorzystywany do adaptacjyjnej korekcji wag filtra. Jeśli obiekt jest dynamiczny, to jego model będzie zmiennoczasowy. Modelowanie odwrotne (Rysunek 2.3b) Zadaniem filtra adaptacyjnego w tej konfiguracji jest wyznaczenie modelu odwrotnego, będącego najlepszym dopasowaniem(w pewnym sensie) do nieznanego obiektu. Model ma transmitancję równą odwrotności transmitancji obiektu. Jeśli obiektem jest kanał transmisyjny, deformujący przesyłany przez nadajnik sygnał, to filtr adaptacyjny, o odwrotnej funkcji przenoszenia, przeprowadza korekcję otrzymanego sygnału. Niweluje tym samym skutki działania medium transmisyjnego. Jednak aby wykonać taką operację niezbędne jest znanie przez odbiornik sygnału przesyłanego przez kanał, którego właściwości mogą się zmieniać w czasie. Nadajnik wysyła więc okresowo tak zwanego pilota, czyli odpowiedni sygnał znany odbiornikowi.

10 6 ROZDZIAŁ 2. PODSTAWY TEORETYCZNE - + (a) Identyfikacja 0'1)#2 3(4&53',!" #$#%#&'()' - - * 0'1)#2 3'(4&53' + + %./)) (b) Modelowanie odwrotne J?KA;L P J?KA;L F=GHA7IA7I D 6789: B - + C E J?KA;L Q (c) Predykcja b[c]wd gx]shish]sw b[c]wd eh\fzsge[ + ` RSTUV ^ a b[c]wd WXWYUWZ[\][ - e[\fzsge[ _ (d) Usuwanie interferencji Rysunek 2.3: Cztery podstawowe zastosowania filtracji adaptacyjnej[2, str. 19]

11 2.2. FILTRACJA OPTYMALNA- FILTR WIENERA 7 Predykcja (Rysunek 2.3c) Filtra adaptacyjny pełni funkcję predyktora, czyli zapewnia najlepszą (w pewnym sensie) predykcję aktualnej wartości sygnału wejściowego. Aktualne próbki tego sygnału są sygnałem wzorcowym d filtra adaptacyjnego. Natomiast przeszłe wartości sygnału d podawane są na wejście filtra. W zależności od zastosowania, wyjściem konfiguracj z Rysynku 2.3c może być sygnał wyjściowy y filtra lub sygnał błędu estymacji (predykcji) e. Usuwanie interferencji (Rysunek 2.3d) W ostatniej klasie zastosowań, filtr adaptacyjny wykoszystuje się do usuwania nieznanych interferencji zawartych w sygnale odniesienia d, który przenosi także informację. Zadaniem filtra jest takie przekształcenie sygnału wejściowego u, aby w jak najlepszym stopniu skorelować go0 z interferencjami w syngale wzorcowym. Wyjściem jest w tym przypadku sygnał błędu e, czyli sygnał odniesinia pozbawiony niepożądanych zakłóceń. 2.2 Filtracja optymalna- filtr Wienera Model obiektu, przedstawionego na rysunku 2.4, opisany jest równaniem różnicowym: d(n)= M 1 i=0 gdzie: u(n) sygnał wejściowy, d(n) sygnał wyjściowy, w o i współczynnikifiltra,i=0,...,m 1. wi o u(n i) (2.6) ~ rlsot uvuwouxyz{y p - + jklmno p q } Rysunek 2.4: Filtr adaptacyjny w konfiguracji identyfikacji obiektu Wzór(2.6) można zapisać w formie d(n)=(w o ) T u(n) (2.7)

12 8 ROZDZIAŁ 2. PODSTAWY TEORETYCZNE gdzie: u(n)=[u(n),...,u(n M+1)] T (2.8) Estymatorem FIR powyższego systemu jest: w o = [ w o 0,...,w o M 1] T (2.9) y(n)=w T u(n) (2.10) gdziew=[w 0,...,w M 1 ] T sąestymatamiparametrówrzeczywistegosystemu.celem jest takie wyznaczenie w aby błąd średniokwadratowy pomiędzy zmierzonym sygnałem d(n)(sygnałem odniesienia) a sygnałem wyjściowym modelu y(n) był minimalny. Kryterium błędu wygląda następująco: J=E [ ] ( ) 2 ] e 2 (n) =E[ d(n) y(n) (2.11) gdzie E[.] oznacza wartość oczekiwaną. Podstawienie wzoru(2.10) do(2.11) daje w rezultacie: ( )] 2 J(w)=E[ d(n) w T u(n) (2.12) Dalsze przekształcenia: ( )] 2 J(w) = E[ d(n) w T u(n) = [ ] [ ] = E d 2 (n) 2E d(n)w T u(n) [ ] [ ] = E d 2 (n) 2w T Ed(n)u(n) [ ] = E d 2 (n) 2w T p (n) du +wt E [ ] = E d 2 (n) ( )] 2 +E[ w T u(n) [ +E = ] w T u(n)u T (n)w = ] w= [ u(n)u T (n) 2w T p (n) du +wt R (n) uu w (2.13) i wyznaczenie minimum funkcji poprzez obliczenie pochodnej wyrażenia(2.13) względem w oraz przyrównanie jej do zera: J(w) w = 2p(n) du +2R(n) uuw=0 (2.14) prowadzi do wyrażenia na optymalne wartości wag w filtra, który nosi nazwę filtra Wienera: [ ] 1p w o = R (n) (n) uu du (2.15) gdzie: R (n) uu estymata macierzy autokorelacji sygnału u(n) w n-tej chwili czasowej, p (n) du estymata wektora korelacji wzajemnej sygnału wejściowego i odniesienia.

13 2.3. METODY GRADIENTOWE 9 J(w 0,w 1 ) w w 1 Rysunek 2.5: Przykładowa powierzchnia błędu średniokwadratowego 2.3 Metodygradientowe Praktyczne wykorzystanie równania(2.15) dla każdej chwili czasu n pociąga za sobą kłopot z poprawną estymacją wartości oczekiwanych, co jest typowym problemem stochastycznej optymalizacji. Wynika to z faktu, że w większości przypadków funkcje rozkładu gęstości prawdopodobieństwa obserwowanych zmiennych losowych nie są znane lub też zmienne te są niestacjonarne. Aby przezwyciężyć ten problem adoptuje się znane iteracyjne metody optymalizacji określone dla deterministycznych funkcji kosztu. Najczęściej stosowanymi algorytmami, które optymalizują deterministyczną funkcję kosztu(celu) są adaptacyjne algorytmy gradientowe. Rekursywny estymator ma postać: w(n+1)=w(n)+µv(n) (2.16) gdzie: w(n+1) wektorwspółczynnikówfiltrawchwilin+1, w(n) wektor współczynników filtra w chwili n, µ współczynnik skalujący, v(n) kierunek modyfikacji. We wzorze(2.16) pokazano uaktualnianie parametrów filtra w kierunku v(n). Wraz ze współczynnikiem skalującym powinien on zostać tak dobrany, aby zapewnić zbieżność parametróww(n)dowartośćioptymalnychw o określonychprzezfiltrwienera(rozdział 2.2). Najczęstszym wyborem v(n) jest kierunek przeciwny do określonego przez

14 10 ROZDZIAŁ 2. PODSTAWY TEORETYCZNE œ œ ž œ Ÿ œ Ÿ ž ƒ ƒ ƒˆ ƒˆ - + Š Œ Ž Œ Ž š Ž Rysunek 2.6: Transwersalny filtr adaptacyjny gradient z funkcji celu J(.). Na rysynku 2.5 przedstawiono przykładową powierzchnię błęduśredniokwadratowegofunkcjij=e[e 2 (n)]=e[(d(n) y(n)) 2 ]dlafiltraodwóch rzeczywistychwspółczynnikachw 0 iw 1.Minimumtejpowierzchniwyznaczaoptymalny wektorwagfiltrawieneraw o =[w o 0,wo 1 ]T,spełniającyrównanie(2.15) Algorytmy najszybszego spadku Mają one postać: w(n+1)=w(n) 1 2 µ J( w(n) ) (2.17) gdzieµtowspółczynnikskalujący,natomiast J ( w(n) ) towektorgradientufunkcji kosztu równy: J ( w(n) ) = 2p (n) du +2R(n) uuw(n) (2.18) Wektor wag w(n) jest więc korygowany zgodnie z formułą: [ w(n+1)=w(n)+µ p (n) ] du R(n) uu w(n) (2.19) W ogólności współczynnik µ jest zmienny w czasie. Dodatkowo wprowadza się dodatnio określoną macierz wagową W(n) poprawiającą zbieżność(szybkość adaptacji) algorytmu. Otrzymuje się zatem: w(n+1)=w(n) 1 2 µ(n)w(n) J( w(n) ) (2.20) Warunek zbieżności Aby zapewnić zbieżność algorytmu najszybszego spadku do wartośći optymalnych, oprócz właściwego doboru kierunku korekcji wag filtra, również parametr µ musi spełniać na-

15 2.4. ADAPTACYJNE ALGORYTMY GRADIENTU STOCHASTYCZNEGO(LMS) 11 stępujący warunek: 1 µλ k <1 (2.21) gdzieλ k,k=1,2,...,m,towartościwłasnemacierzyautokorelacjir (n) uu. Warunek(2.21) jest równaważny poniższemu ograniczeniu wartości parametru µ: 0<µ< 2 λ max (2.22) gdzieλ max oznaczanajwiększąwartośćwłasnąmacierzyautokorelacjisygnałuwejściowego u(n). Dodatkowo jak napisano w pracy[9, str. 386], szybkość zbieżności adaptacji wpółczynników filtra do wartości optymalnych jest zależna od rozrzutu wartości własnych macierzyr (n) uu. Zmniejszenie tego rozrzutu skutkuje poprawieniem zbieżności AlgorytmyNewtona-Raphsona W algorytmach Newtona-Raphsona za macierz W(n) przyjmuje się odwrotność hesjanu funkcjiceluj ( w(n) ) wn-tejchwiliczasowej: Zatem: W(n)= [ 2 J ( w(n) )] 1 w(n+1)=w(n) 1 2 µ(n) [ 2 J ( w(n) )] 1 J ( w(n) ) (2.23) (2.24) AlgorytmyQuasi-Newtona W przypadkach gdy wyznaczenie wartości hesjanu jest trudne, wykorzystywana jest jego aproksymata A(n): w(n+1)=w(n) 1 2 µ(n)[a(n)] 1 J ( w(n) ) (2.25) 2.4 Adaptacyjne algorytmy gradientu stochastycznego(lms) Niech minimalizowana funkcja kosztu wynosi: J=e 2 (n) (2.26) Filtr adaptacyjny ma zatem za zadanie minimalizować chwilową a nie oczekiwaną wartość błędu. Jak napisano w pracy[6] jest to równoznaczne z zastąpieniem w równaniu(2.19) elementów macierzy autokorelacji R oraz składowych wektora korelacji wzajemnej p ich obserwacjami, zgodnie z symbolicznym zapisem: R (n) uu =E[u(n)uT (n)] u(n)u T (n) (2.27) p (n) du =E[d(n)u(n)] d(n)u(n) (2.28)

16 12 ROZDZIAŁ 2. PODSTAWY TEORETYCZNE Zatem: [ ] w(n+1) = w(n)+µ d(n)u(n) u(n)u T (n)w(n) [ ] = w(n)+µ d(n) w T (n)u(n) u(n)= [ ] = w(n)+µ d(n) y(n) u(n)= = w(n) + µe(n)u(n) (2.29) = Uwzględniając więc uogólnienia z równania(2.20), zależność(2.29) przyjmuje postać wzoru(2.30) charakteryzującą szeroką grupę filtrów: w(n + 1) = w(n) µ(n)w(n)e(n)u(n) (2.30) gdzie: W(n) macierzwagowaowymiarachmxm, µ(n) współczynnik skalujący zależny od czasu, e(n) sygnałbłęduwchwilin FiltrLMS Otrzymywany jest po uniezależnieniu współczynnika skalującego od czasu(µ(n) = µ) oraz po wprowadzeniu identycznościowej macierzy wagowej W(n) = I. Wzór(2.30) przyjmuje postać: w(n+1)=w(n) µe(n)u(n) (2.31) Warunek zbieżności Błąd dopasowania dasd FiltrNLMS Unormowany filtr LMS(NLMS) otrzymywany jestw wyniku uzależnienia w równaniu(2.31) parametru µ od czasu w następujący sposób: µ µ(n)= γ+u T (n)u(n) = µ M 1 γ+ u 2 (n i) i=0 (2.32) gdziestałaadaptacjiµspełniazalezność:0<µ<2.wmianownikuwyrażeniawprowadza się parametr γ > 0 zapobiegający występowaniu problemów numerycznych, w przypadku gdy próbka sygnału wejściowego u(n) jest mała i występuje dzielenie przez niewielką wartość. Zmiany wprowadzone w algorytmie NLMS, w porównaniu do podstawowej wersji algorytmu gradientu stochastycznego(lms), powodują poprawę zbieżności zarówno dla nieskorelowanych jak i skorelowanych danych wejściowych.

17 2.5. BLOKOWE FILTRY ADAPTACYJNE Blokowe filtry adaptacyjne Jeśli w dziedzinie czasu użyje się algorytmu LMS wymagającego dużej ilości pamięci, można zaobserwować znaczący wzrost w złożoności obliczeniowej. Jak podaje Haykin w pracy[2, str. 446], istnieją dwa sposoby na radzenie sobie z tym problemem: 1. Wybór algorytmu o nieskończonej odpowiedzi impulsowej(iir), co wymaga także zapewnienia jego stabilności. 2. Filtracja adaptacyjna w dziedzinie częstotliwości łącząca dwie uzupełniające się metody stosowane w cyfrowym przetwarzaniu sygnałów: blokowa implementacja filtra FIR, pozwalając ana skuteczne wykorzystanie równoległego przetwarzania, co skutkuje przyspieszeniem wykonywanych obliczeń algorytmy szybkiej transformaty Fouriera(FFT, ang. Fast Fourier Transform), usprawniąjce wykonywanie splotów, co pozwala w efektywny sposób przeprowadzać adaptację parametrów filtra w dziedzinie częstotliwości Powyższe podejście nazywane jest blokowym algorytmem LMS(BLMS) i umożliwia zastosowanie filtrów FIR o wielu współczynnikach, w sposób efektywny obliczeniowo. Filtry blokowe obniżają więc koszt obliczeniowy, jednocześnie poprawiając szybkość zbieżności algorytmu. Wynika to z faktu, iż dane przetwarzane są na zaszdzie blok po bloku, zamiast próbka po próbce. Jednakże obniżenie liczby obliczeń i polepszenie zbieżności niesie ze sobą wady. W implementacjach blokowych pojawia się problem opóźnienia w ścieżce sygnału. Jest to rezutlatem konieczności zebrania bloków danych przed ich dalszym przetwarzaniem....jakiśtekst... Pewne symbole: DMC, LZ77, LZ78.

18 14 ROZDZIAŁ 2. PODSTAWY TEORETYCZNE Rysunek 2.7: Blokowy filtr adaptacyjny[8, str. 443]

19 Rozdział 3 Opis platformy CUDA 15

20

21 Bibliografia [1]G.A.Clark,S.K.Mitra,andS.R.Parker.Blockimplementationofadaptivedigitalfilters. IEEE Transactions on Circuits and Systems, CAS-28(6): , June [2] S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, New Jersey, 3rd edition, [3] NVIDIA Corporation. CUDA C Best Practices Guide, 4.0 edition, March [4] NVIDIA Corporation. CUDA C Programming Guide, 4.0 edition, March [5] NVIDIA Corporation. CUFFT Library User Guide, February [6] L. Rutkowski. Filtry adaptacyjne i adaptacyjne przetwarzanie sygnałów: teoria i zastosowania. Wydawnictwa Naukowo-Techniczne, Warszawa, [7] J. Sanders and E. Kandrot. CUDA by Example. An Introduction to General-Purpose GPU Programming. Addison-Wesley, Upper Saddle River, NJ, [8] A. H. Sayed. Adaptive Filters. Wiley-Interscience, New Jersey, [9] T. P. Zieliński. Cyfrowe przetwarzanie sygnałów: Od teorii do zastosowań. Wydawnictwa Komunikacji i Łączności, Warszawa,

22

23 Spis rysunków 2.1 Filtrtranswersalny[2,str.5] Filtrdrabinkowy[2,str.7] Czterypodstawowezastosowaniafiltracjiadaptacyjnej[2,str.19] Filtradaptacyjnywkonfiguracjiidentyfikacjiobiektu Przykładowapowierzchniabłęduśredniokwadratowego Transwersalnyfiltradaptacyjny Blokowyfiltradaptacyjny[8,str.443]

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Praca dyplomowa

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Praca dyplomowa Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra: Systemów Automatyki Imię i nazwisko dyplomanta: Jakub Kołakowski Nr albumu: 108772 Forma i poziom studiów: jednolite magisterskie

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Piotr Przymus Krzysztof Rykaczewski Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Toruń 1 of 24 18 marca 2009 Cel referatu

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

13.2. Filtry cyfrowe

13.2. Filtry cyfrowe Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Modele i metody automatyki. Układy automatycznej regulacji UAR

Modele i metody automatyki. Układy automatycznej regulacji UAR Modele i metody automatyki Układy automatycznej regulacji UAR Możliwości i problemy jakie stwarzają zamknięte układy automatycznej regulacji powodują, że stały się one głównym obiektem zainteresowań automatyków.

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle

Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle AUTOMATYKA 2005 Tom 9 Zeszyt 3 Jerzy Zalewicz* Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle 1. Wstêp Przy analizie zjawisk dynamicznych zwi¹zanych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

PL 216396 B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL 14.09.2009 BUP 19/09. ANDRZEJ CZYŻEWSKI, Gdynia, PL GRZEGORZ SZWOCH, Gdańsk, PL 31.03.

PL 216396 B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL 14.09.2009 BUP 19/09. ANDRZEJ CZYŻEWSKI, Gdynia, PL GRZEGORZ SZWOCH, Gdańsk, PL 31.03. PL 216396 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216396 (13) B1 (21) Numer zgłoszenia: 384616 (51) Int.Cl. H04B 3/23 (2006.01) H04M 9/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2)

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2) Jacek Złydach (JW) Wstęp Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-) Implementacja praktyczna Poniższa praktyczna implementacja stanowi uzupełnienie teoretycznych rozważań na temat interpolacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

Światłowodowy kanał transmisyjny w paśmie podstawowym

Światłowodowy kanał transmisyjny w paśmie podstawowym kanał transmisyjny w paśmie podstawowym Układ do transmisji binarnej w paśmie podstawowym jest przedstawiony na rys.1. Medium transmisyjne stanowi światłowód gradientowy o długości 3 km. Źródłem światła

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

Podstawy Transmisji Przewodowej Wykład 1

Podstawy Transmisji Przewodowej Wykład 1 Podstawy Transmisji Przewodowej Wykład 1 Grzegorz Stępniak Instytut Telekomunikacji, PW 24 lutego 2012 Instytut Telekomunikacji, PW 1 / 26 1 Informacje praktyczne 2 Wstęp do transmisji przewodowej 3 Multipleksacja

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Katedra Systemów Automatyki. Specjalność: Systemy automatyki (studia II stopnia)

Katedra Systemów Automatyki. Specjalność: Systemy automatyki (studia II stopnia) Katedra Systemów Automatyki 1 Profil absolwenta (wiedza) Studenci naszej specjalności posiądą niezbędną wiedzę z zakresu: opracowywania algorytmów sterowania procesami w oparciu o najnowsze metody teorii

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Niezawodność i Diagnostyka

Niezawodność i Diagnostyka Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6

Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 Wykład 6 p. 1/?? Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Plan wykładu

Bardziej szczegółowo

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Podstawy elektroniki i metrologii

Podstawy elektroniki i metrologii Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Podstawy elektroniki i metrologii Studia I stopnia kier. Informatyka semestr 2 Ilustracje do

Bardziej szczegółowo

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN Internet kwantowy (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN 16. stycznia 2012 Plan wystąpienia 1 Skąd się biorą stany kwantowe? Jak

Bardziej szczegółowo

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja

Bardziej szczegółowo

Wprowadzenie do szeregów czasowych i modelu ARIMA

Wprowadzenie do szeregów czasowych i modelu ARIMA Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Laboratorium Elektroniki

Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/5 Stabilizator liniowy Zadaniem jest budowa i przebadanie działania bardzo prostego stabilizatora liniowego. 1. W ćwiczeniu wykorzystywany

Bardziej szczegółowo

Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć

Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć Systemy Wbudowane Kod przedmiotu: SW Rodzaj przedmiotu: kierunkowy ; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil studiów:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH

dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH dr inż. Michał Michna WSPOMAGANIE OBLICZEŃ MATEMATYCZNYCH Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne optymalizacja

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo