Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4"

Transkrypt

1 Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 MPC Sterowanie predykcyjne Cel: Poznanie podstaw regulacji predykcyjnej i narzędzi do badań symulacyjnych Wykonali: Konrad Słodowicz Patryk Frankowski 1. Co to jest sterowanie predykcyjne? Sterowanie predykcyjne (ang. MPC Model Predictive Control), jak wskazuje nazwa, opiera się na predykcji zachowania obiektu. Kiedy na wejściu pojawi się pewne wymuszenie, regulator sprawdza różne możliwe sygnały sterowania i na podstawie pewnego znanego modelu obiektu sprawdza, który z nich da najlepsze, względem pewnego wskaźnika jakości, wyjście. Ponieważ model nie jest idealny, predykcja powtarzana jest co takt, biorąc pod uwagę nowe dane odpowiedź obiektu na ów takt sterowania. Na obiekt podawany jest tylko pierwszy takt z wyznaczonego sygnału sterowania (jest on, bowiem, dyskretny). Innymi słowy, jeśli w chwili k wyznaczony został pewien sygnał sterowania, to do obiektu wejdzie jedynie pierwszy krok, gdyż w chwili k+1 regulator wyznaczy nowy sygnał sterowania itd. Regulator nie ma niekończonej pamięci, może on przewidzieć sygnał wyjścia tylko dla skończonej liczby taktów. Jest to tzw. horyzont predykcji. Sterowanie, natomiast, szukane jest dla krótszej ilości kolejnych taktów tzw. horyzontu sterowania. W teorii, oczywiście, chcielibyśmy, aby zarówno horyzont predykcji jak i sterowania były jak najdłuższe. W praktyce, jednak, ich długość, a zwłaszcza horyzontu sterowania, ma duży wpływ na wydajność regulatora. Informacje o obiekcie mogą być podane regulatorowi w wielu postaciach. W ogólności, model obiektu może być podany w dowolnej formie, przez transmitancję, równania, 1

2 macierze stanu, serię próbek itp. Poza samym modelem, jednak, regulator musi znać wszelkie ograniczenia sygnałów najlepsze, w teorii, sterowanie jest najczęściej niemożliwe do odtworzenia przez zespoły wykonawcze. Regulator musi również pamiętać historię zachowania obiektu. 2. Matlab MPC Toolbox Program Matlab umożliwia stworzenie kontrolera predykcyjnego. Zadanie to ułatwia MPC Toolbox, dodający wiele funkcji pozwalających na prostą implementację regulatora predykcyjnego. Dodaje on także bloczek owego regulatora do środowiska Simulink. Spróbujemy opisać podstawowe funkcje potrzebne do stworzenia z jego pomocą własnego regulatora predykcyjnego. a) Model obiektu Jak wspomniano wcześniej, regulator predykcyjny musi znać model obiektu. MPC Toolbox pozwala na wprowadzenie go wielu różnych formach, jednak istnieje pewne ograniczenie muszą być to modele liniowe. Po pierwsze, współpracuje on z typowymi metodami wprowadzania modeli liniowych można więc zdefiniować je przez transmitancje (funkcja tf(), zpk() itp.), macierze stanu (funcka ss() itp.) lub wszelkie inne funkcja pozwalające na stworzenie modeli liniowych w Matlabie. Możliwe jest też zaimportowanie modelu stworzonego przy pomocy typowych bloków w środowisku Simulink, toolbox potrafi zlinearyzować ów model jeśli jest on nieliniowy. Po drugie, model może być linearyzacją obiektu nieliniowego wokół punktu pracy. Można tego dokonać pisząc odpowiedni skrypt lub używając przybornika analizy liniowej dostępnego osobno. Po trzecie, Matlab potrafi zidentyfikować obiekt liniowy na podstawie punktów pomiarowych. Może do tego posłużyć System Identification Toolbox, dodający wiele funkcji znacznie ułatwiających identyfikację. Model zaimportować można bezpośrednio z workspace, ułatwia to prosty dialog: 2

3 b) Zakłócenia Regulator bierze pod uwagę zakłócenia mierzalne oraz niemierzalne, wejściowe i wyjściowe. Zakłócenia mierzalne są jednym z dodatkowych, nieobowiązkowych wejść regulatora. Można zamodelować je jako pewien sygnał. Zakłócenia niemierzalne, natomiast, modelowane są jako wyjście pewnego obiektu, na którego wejście zadany został szum biały o zerowej wartości średniej. Model owego obiektu można zdefiniować przez transmitancję (tf(), zpk()) lub macierze stanu (ss()). MPC Toolbox pozwala na symulację działania regulatora zanim jego tworzenie zostanie sfinalizowane. Można tu łatwo dodać niemierzalne zakłócenia wejść i wyjść jako jeden z typowych sygnałów aby sprawdzić jak regulator radzi sobie z nimi. c) Dobór parametrów Kiedy włączamy okno tworzenia regulatora pojawia się dialog, który wymusza podanie informacji o ilości mierzonych wyjść, sterowań oraz czasie próbkowania. Poza nimi, podstawowe parametry warte uwagi to horyzonty predykcji oraz sterowania. Czas próbkowania jest dość oczywistym parametrem. Trzeba jednak pamiętać, że regulator predykcyjny musi wykonać wiele skomplikowanych operacji co takt. Oznacza to, że dobierając czas próbkowania trzeba też wziąć pod uwagę stopień skomplikowania sterowanego układu i potencjalny czas trwania obliczeń. Dla procesów najczęściej wystarcza czas powyżej sekundy. Podobnie sprawa ma się z horyzontem predykcji. Im jest on dłuższy, tym więcej obliczeń musi być wykonanych. Najczęstszym podejściem jest zwiększanie horyzontu tak długo, jak nie ma to dużego wpływu na wydajność regulatora. Przy większości procesów powinien wystarczyć horyzont mniejszy od 50 taktów. Horyzont sterowania ma największy wpływ na czas trwania obliczeń, bowiem od jego długości zależy ilość potencjalnych rozwiązań zadania optymalizacji. Powinno się, więc, utrzymywać jego długość znacznie mniejszą od długości horyzontu predykcji. Te trzy wielkości są pierwszymi jakie zobaczymy wchodząc w kartę regulatora w oknie MPC Toolbox: 3

4 d) Ograniczenia wejść (sterowań) i wyjść Ograniczenia, jak wcześniej wspomniano, muszą zostać zdefiniowane aby regulator wiedział w jakim przedziale mogą znajdować się wyliczane przez niego sterowania. W MPC Toolbox mogą być podawane jako ograniczenia twarde (mocne) bezwzględnie nieprzekraczalne lub miękkie (słabe) które zostaną przekroczone, jeśli nie będzie innej możliwości. Możliwe jest też zastosowanie ograniczeń przyrostu wartości. Instrukcja mówi jednak, iż użycie obu ograniczeń (wartości i przyrostu) może spowodować konflikt, więc jeśli oba są wymagane, należy ustawić jedno z ograniczeń jako miękkie. Jak inne, okno wprowadzania ograniczeń jest proste i intuicyjne w obsłudze: Innymi parametrami wartymi uwagi są współczynniki wagowe, opisane w dalszej części. e) Rozwiązanie zadania sterowania Wyznaczenie sterowania sprowadza się do rozwiązania problemu optymalizacji co krok. Problem optymalizacji to program kwadratowy (QP), który uwzględnia zadane ograniczenia sygnałów. Funkcja jakości kosztu jest minimalizowana. Standardowa funkcja kosztu to w suma czterech elementów, zależnych kolejno od wartości wyjść, wartości wejść (sterowań), przyrostu wejść (sterowań) oraz przekroczenia 4

5 nałożonych ograniczeń. Owe elementy to w ogólności sumy kwadratów błędów (lub w przypadku przyrostów kwadratów przyrostów) wymnożone przez pewne współczynniki wagowe. W przypadku braku ograniczeń ostatni człon sumy znika. Współczynniki wagowe są kolejnymi parametrami, które mogą być dobrane przez użytkownika. Jak łatwo się domyślić ich wartości powinny wskazywać na czym najbardziej zależy nam w sterowaniu szybkim dojściu do wartości czy niskim przeregulowaniom. MPC Toolbox umożliwia też ustawienie wagi ogólnej, od której zależy szybkość reakcji układu oraz jego dokładność. Przeprowadziliśmy kilka symulacji na obiekcie używanym we wcześniejszych ćwiczeniach. Ogólna waga = 1, waga wyjścia = 1, waga wejścia = 0.2, waga przyrostu wejścia = 0.2, brak ograniczeń: Ogólna waga = 0.5, waga wyjścia = 1, waga wejścia = 0.2, waga przyrostu wejścia = 0.2, brak ograniczeń: 5

6 Jak widać, czas ustalania jest dłuższy, nie występuje jednak przeregulowanie. W obu przypadkach istnieje jednak błąd w stanie ustalonym. Ogólna waga = 1, waga wyjścia = 1, waga wejścia = 0.2, waga przyrostu wejścia = 0.2, ograniczenie wejścia do 0.9: Widać, że dodanie ograniczenia wejścia sprawiło, że sygnał łagodniej dochodzi do stanu ustalonego. Sygnały sterowania nie mogą wymuszać aż tak szybkiej odpowiedzi jak w przypadku bez ograniczeń. 6

7 MPC Toolbox daje wiele innych możliwości bardzo dogłębnej ingerencji w tworzony regulator. Matlab umożliwia także wyeksportowanie przygotowanego regulatora do rzeczywistej implementacji, choćby w postaci kodu w języku C. W praktyce, znając zasady działania regulatora MPC oraz używane metody matematyczne można takowy regulator zaimplementować w dowolnym środowisku. Literatura: Materiały z wykładów A. Bemporad, M. morari. N. L. Ricker Model Predictive Control Toolbox User's Guide 7

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

O co chodzi z tym MATLAB'em?!

O co chodzi z tym MATLAB'em?! O co chodzi z tym MATLAB'em?! Część 1. SIMULINK W pliku data.mat jest zapisany przebieg. Gdzieś tam i kiedyś tam zarejestrowany. Widać go na fioletowo poniżej. Powstał on z obiektu, co ciekawe wiemy jak

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

1. Cel projektu. Sprawdzić wpływ ograniczeń sygnału sterującego oraz ograniczeń przyrostów sygnału sterującego.

1. Cel projektu. Sprawdzić wpływ ograniczeń sygnału sterującego oraz ograniczeń przyrostów sygnału sterującego. 1. Cel projektu. Przeprowadzić badania symulacyjne układu regulacji z liniowym regulatorem predykcyjnym GPC oraz obiektem G(s) z zadania nr 1, dla skokowej zmiany wartości zadanej z 0 na 0.5. Jako model

Bardziej szczegółowo

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Regulacja temperatury z wykorzystaniem sterownika PLC Zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Procesy i systemy dynamiczne Nazwa przedmiotu SYLABUS A. Informacje ogólne

Procesy i systemy dynamiczne Nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu Język przedmiotu Procesy i systemy dynamiczne Nazwa

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie wstęp. Autor: dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów

Automatyka i sterowanie w gazownictwie wstęp. Autor: dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów Automatyka i sterowanie w gazownictwie wstęp Autor: dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów Sprawy organizacyjne Wykłady (15 h) Dr inż. Iwona Oprzędkiewicz

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

Model Predictive Control podstawy

Model Predictive Control podstawy Model Predictive Control podstawy Politechnika Gdańska Wydział Elektrotechniki i Automatyki Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania 2015/2016 1 Plan wykładu Część I:

Bardziej szczegółowo

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie

Bardziej szczegółowo

Aparaty słuchowe Hi-Fi z Multiphysics Modeling

Aparaty słuchowe Hi-Fi z Multiphysics Modeling Aparaty słuchowe Hi-Fi z Multiphysics Modeling POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

MODELE I MODELOWANIE

MODELE I MODELOWANIE MODELE I MODELOWANIE Model układ materialny (np. makieta) lub układ abstrakcyjny (np..rysunki, opisy słowne, równania matematyczne). Model fizyczny (nominalny) opis procesów w obiekcie (fizycznych, również

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia obiektu inercyjnego I rzędu 2. orekcja dynamiczna

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

MATERIAŁY POMOCNICZE

MATERIAŁY POMOCNICZE Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Projekt hierarchicznego systemu sterowania zaopatrywania w wodę ETAP

Bardziej szczegółowo

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Przemysłowe sieci informatyczne

Przemysłowe sieci informatyczne Przemysłowe sieci informatyczne OPRACOWAŁ TOMASZ KARLA Komunikacja bezprzewodowa wybrane przykłady Różne technologie bezprzewodowe - Bluetooth - WiFi - ZigBee - modemy GSM - modemy radiowe Wybrane urządzenia

Bardziej szczegółowo

Struktury specjalizowane wykorzystywane w mikrokontrolerach

Struktury specjalizowane wykorzystywane w mikrokontrolerach Struktury specjalizowane wykorzystywane w mikrokontrolerach Przetworniki analogowo-cyfrowe i cyfrowoanalogowe Interfejsy komunikacyjne Zegary czasu rzeczywistego Układy nadzorujące Układy generacji sygnałów

Bardziej szczegółowo

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr I semestr zimowy

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr I semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Wybrane zagadnienia z teorii sterowania Selection problems of control

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych

Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych 1. Wstęp: Program PyroSim posiada wiele narzędzi służących do prezentacji i weryfikacji wyników

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

ANALIZA WPŁYWU WYBRANYCH PARAMETRÓW SYGNAŁU WYMUSZAJĄCEGO NA CZAS ODPOWIEDZI OBIEKTU

ANALIZA WPŁYWU WYBRANYCH PARAMETRÓW SYGNAŁU WYMUSZAJĄCEGO NA CZAS ODPOWIEDZI OBIEKTU II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie ANALIZA WPŁYWU WYBRANYCH PARAMETRÓW SYGNAŁU WYMUSZAJĄCEGO NA CZAS ODPOWIEDZI OBIEKTU Piotr Mróz

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Modele i metody automatyki. Układy automatycznej regulacji UAR

Modele i metody automatyki. Układy automatycznej regulacji UAR Modele i metody automatyki Układy automatycznej regulacji UAR Możliwości i problemy jakie stwarzają zamknięte układy automatycznej regulacji powodują, że stały się one głównym obiektem zainteresowań automatyków.

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control

Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control Rozwiązując zadanie sterowania układu, automatyk powinien przede wszystkim sporządzić odpowiedni jego opis. Chcąc np. automatycznie sterować

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Metody symulacji komputerowych Modelowanie systemów technicznych

Metody symulacji komputerowych Modelowanie systemów technicznych Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje

Bardziej szczegółowo

Projektowanie układów na schemacie

Projektowanie układów na schemacie Projektowanie układów na schemacie Przedstawione poniżej wskazówki mogą być pomocne przy projektowaniu układach na poziomie schematu. Stałe wartości logiczne Aby podłączyć wejście do stałej wartości logicznych

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

ANALIZA METODY STEROWANIA PREDYKCYJNEGO DLA AKTYWNEGO ZAWIESZENIA MAGNETYCZNEGO

ANALIZA METODY STEROWANIA PREDYKCYJNEGO DLA AKTYWNEGO ZAWIESZENIA MAGNETYCZNEGO Paulina Kurnyta-Mazurek Maciej Henzel Wojskowa Akademia Techniczna Artur Kurnyta Instytut Techniczny Wojsk Lotniczych PRACE NAUKOWE ITWL Zeszyt 37, s. 183 194, 2015 r. 10.1515/afit-2015-0033 ANALIZA METODY

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Celem tego projektu jest stworzenie

Celem tego projektu jest stworzenie Prosty kalkulator Celem tego projektu jest stworzenie prostego kalkulatora, w którym użytkownik będzie podawał dwie liczby oraz działanie, które chce wykonać. Aplikacja będzie zwracała wynik tej operacji.

Bardziej szczegółowo

AiR_TR2_5/9 Teoria Regulacji II Control Theory II. Automatyka i Robotyka I stopień ogólno akademicki studia niestacjonarne

AiR_TR2_5/9 Teoria Regulacji II Control Theory II. Automatyka i Robotyka I stopień ogólno akademicki studia niestacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU AiR_TR2_5/9 Teoria Regulacji II Control Theory II Kod modułu Nazwa modułu Nazwa modułu w języku angielskim

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ Nazwa przedmiotu: Techniki symulacji Kod przedmiotu: ES1C300 015 Forma zajęć: pracownia specjalistyczna Kierunek: elektrotechnika Rodzaj studiów: stacjonarne, I stopnia (inŝynierskie) Semestr studiów:

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Laboratorium elementów automatyki i pomiarów w technologii chemicznej

Laboratorium elementów automatyki i pomiarów w technologii chemicznej POLITECHNIKA WROCŁAWSKA Wydziałowy Zakład Inżynierii Biomedycznej i Pomiarowej Laboratorium elementów automatyki i pomiarów w technologii chemicznej Instrukcja do ćwiczenia Regulacja dwupołożeniowa Wrocław

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo