Mechanika nieba. Marcin Kiraga
|
|
- Agnieszka Piątkowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Mechanika nieba Marcin Kiraga
2 Mechanika nieba Marcin Kiraga 30 godzin wykładu + 30 godzin ćwiczeń wykłady: środy, godzina 14:15 (2 godz) ćwiczenia: poniedziałki, godzina 15:15 (2 godz)
3 Warunki zaliczenia przedmiotu obecność na ćwiczeniach (można mieć dwie nieusprawiedliwione nieobecności) prace domowe (po każdych ćwiczeniach na następne ćwiczenia) kolokwium (po 7 lub 8 ćwiczeniach) egzamin pisemny i ustny
4 Plan wykładu Mechanika Układu Słonecznego i układów planetarnych Krótki wstęp historyczny Opis Układu Słonecznego i podstawowe własności innych układów planeternych Zagadnienie dwóch ciał z zastosowaniami Wyznaczanie pozycji ciał na podstawie znajomości elementów orbity Wyznaczanie elementów orbity na podstawie trzech obserwacji Wyznaczanie orbity gwiazd w układach podwójnych Perturbacje ogólne Ograniczone zagadnienie trzech ciał Efekty relatywistyczne, przypływowe i niegrawitacyjne obserwowane dla obiektów Układu Słonecznego.
5 Plan wykładu c. d. Dynamika gwiazdowa Dane obserwacyjne dotyczące budowy Galaktyki i innych układów gwiazdowych Orbity gwiazd w zadanych potencjałach Funkcja rozkładu gwiazd Równanie Boltzmana i równania Jeansa Zderzenia i czas relaksacji Przykłady modeli stacjonarnych (sferycznie i osiowosymetrycznych) Fale gęstości i ramiona spiralne galaktyk
6 Literatura Stefan Wierzbiński, Mechanika nieba, PWN, Warszawa 1973 Forest R. Moulton, An introduction to celestial mechanics, The MacMilan Company 1914 (wciąż wydawana) Paweł Artymowicz, Astrofizyka układów planetarnych, PWN, Warszawa 1995 Michał Jaroszyński, Galaktyki i budowa Wszechświata, PWN, Warszawa 1993 James Binney, Scot Tremaine, Galactic dynamics, Princeton University Press 198
7 Początki Niektóre oberwacje starożytnych Obserwacje Księżyca: zmiana faz, zmiana położenia. Stwierdzenie rocznego ruchu Słońca na niebie, określenie długości trwania roku i astronomicznych pór roku (na pókuli północnej najdłuższe lato a najkrótsza zima). Odkrycie i oberwacje planet: Merkury, Wenus (planety wewnętrzne), Mars, Jowisz, Saturn (planety zewnętrzne). Stwierdzenie ruchu węzłów orbity Księżyca (o okresie 18.3 lat). Obserwacje i przewidywanie zaćmień Słońca i Księżyca. Precesja (cofanie położenia punktu Barana na ekliptyce).
8 Obserwacje planet
9 Obserwacje planet
10 Modele geometryczne Układu Słonecznego Model geocentryczny: Ziemia, Księżyc, Merkury, Wenus, Słońce, Mars, Jowisz, Saturn. Słońce i planet poruszają się względem nieruchomej Ziemi. W opisie ruchu planet występują defrenty, epicykle i ekwanty. Model heliocenryczny: Słońce, Merkury, Wenus, Ziemia, Mars, Jowisz, Saturn. Ruch planet wokół Słońca jest wykonywany po okręgach, aby uzgodnić model z obsrwacjami konieczne było zachowanie epicykli. Model Tychona de Brahe: Ziemia, Księżyc, Słońce wokół którego poruszają się pozostałe planety.
11 Model geocentryczny
12 Model geocentryczny - ekwant
13 Model Tychona
14 Model heliocentryczny
15 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brache (głównie obserwacji Marsa) Johanes Kepler sformułował i opublikował w latach 1609 (Astronomia nova) i 1619 (Harmonices Mundi) trzy prawa opisujące ruch planet. I - Planety poruszają się po orbitach eliptycznych. Ruch planety odbywa się w jednej płaszczyźnie a Słońce znajduje się w jednym z ognisk elipsy II - Prędkość polowa planety w jej ruchu orbitalnym względem Słońca jest stała. III - Stosunek trzeciej potęgi rozmiarów wielkiej półosi orbity do kwadratu okresu orbitalnego jest stały
16 Prawa dynamiki Newtona Philosophiae Naturalis Principia Mathematica (1687) I - Jeżeli na ciało nie działa żadna siła lub siły działające równoważą się to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym II - Jeżeli na ciało działa siła, to porusza się ono z przyspieszeniem wprost proporcjonalnym do tej siły i odwrotnie proporcjonalnym do swojej masy. III - Jeżeli jedno ciało działa na drugie określoną siłą, to drugie działa na pierwsze siłą tą samą co do wartości lecz zwróconą przeciwnie. Punkty przyłożenia sił są różne
17 Prawo powszechnego ciążenia Z zastosowania wzoru Bineta do orbity eliptycznej wynika, że siła dzialająca na planety powinna być proporcjonalna do 1/r 2. Każde dwa ciał obdarzone masą przyciągają się siłą grawitacji o wartości proporcjonalnej do iloczynu ich mas, a odwrotnie proporcjonalnej do kwadratu odległości między nimi.
18 Niektóre zastosowania mechniki Newtona Wyjaśnienie rucho planet, komet, księżyców. Określenie przewidywanego spłaszczenia Ziemi wynikającego z jej rotacji. Wyjaśnienie precesji księżycowo - słonecznej. Wyznaczenie względnych mas Słońca i planet posiadających księżyce. Wyznaczanie perturbacji ruchu planet..
19 Niektóre ważne obserwacje Odkrycie księżyców Jowisza Stwierdzenie istnienia faz Wenus zarówno wklęsłych jak i wypukłych Stwierdzenie, że kometa Halley a jest okresowa Odkrycie Urana przez Williama Herschela (1781) Odkrycie pierwszej planetoidy (Ceres; Giuseppe Piazzi 1801) Odkrycie Neptuna (1846, J Galle) w wyniku poszukiwań planety odpowiedzialnej za perturbacje Urana, które powodowały niezgodność między jego obserwowanymi a przewidywanymi położeniami
20 Niektóre ważne obserwacje c. d katastrofa tunguzka spowodowana upadkiem niewielkiej planetoidy lub komety odkrycie Plutona odkrycie Chirona odkrycie księżyca Plutona - Charona (pomiar masy Plutona) odkrycie drugiego po Plutonie obiektu Pasa Kuipera odkrycie Eris i Sedny
21 Główne obiekty Układu Słonecznego Słońce Planety i ich księżyce (w nawiasie podane są nazwy księżyców o rozmiarach większych od Plutona Merkury Wenus Ziemia (Księżyc) Mars Jowisz (Io, Europa, Ganimedes, Kalisto) Saturn (Tytan) Uran Neptun (Tryton)
22 Elementy orbity
23 Elementy orbit planet Układu Słonecznego
24 Małe obiekty Układu Słonecznego znanych planetoid (z tego miało przypisany numer, a nazwę) Główny Pas Planetoid - pomiędzy orbitami Marsa i Jowisza Pas Kuipera - poza orbitą Neptuna (40-50 AU) Kometarny Obłok Oorta - złożony z jąder kometarnych wyrzuconych na peryferia Układu Słonecznego w czasie jego powstawania lub reorganizacji
25 Obiekty rozproszone i na niestabilnych orbitach Planetoidy bliskie Ziemi Planetoidy przecinające orbitę Marsa Centaury - przecinające orbity wielkich planet rozproszony dysk związany z Pasem Kuipera komety - jądra kometarne pochodzące z Obłoku Oorta skierowane na orbity bliskie Słońcu
26 Wewnętrzna część układu planetarnego
27 Wewnętrzna część układu planetarnego
28 Wewnętrzna część układu planetarnego
29 Zewnętrzna część układu planetarnego
30 Zewnętrzna część układu planetarnego
31 Zewnętrzna część układu planetarnego
32 Największe obiekty Pasa Kuipera
33 Obiekty poza Pasem Kuipera
34 Obiekty poza Pasem Kuipera
35 Małe obiekty Układu Słonecznego znanych planetoid (z tego miało przypisany numer, a nazwę) Obiekty o ciekawych własnościach stan na 19 II 2013 według MPC Typy planetoid bliskich Ziemi ze względu na własności orbity (9636 obiektów, 1269 większych niż 1km) Ateny (a < 1 AU, 766 obiektów: 747 klasyczne i 19 o Q <0.983 AU ) Apolla (a > 1 AU, q < AU, 4817 obiektów) Amora (1.0 AU < q < 1.3 AU, 4053 obiekty) Planetoidy potencjalnie niebezpieczne Odległość pomiądzy orbitami planetoidy i Żiemi mniejsza niż 0.05 AU i H<22.5 mag (rozmiar powyżej 100 m) obiektów.
36 Główny pas planetoid i jego sąsiedztwo Pomiędzy orbitami Marsa i Jowisza znajduje się Główny Pas Planetoid. Dynamicznie podzielony jest na części przez przerwy Kirkwooda odpowiadające głównym rezonansom orbitalnym z Jowiszem. Rodzina Hungarii (a AU, wewnątrz 4:1 rezonansu z Jowiszem, istotne perturbacje ze strony Marsa, dość małe mimośrody orbit ale duże nachylenia orbt do płaszczyzny ekliptyki, 11892) Planetoidy przecinające orbitę Marsa: 9117 Główny pas planetoid: obiekty Rodzina Hildy - planetoidy znajdujące się w rezonansie orbitalnym z Jowiszem (2:3)
37 Trojanie Obecnie znanych jest szereg planetoid związanych z punktami Lagrange a układu Słońce - planeta. Ziemia - 1 obiekt 2010 TK7 (L4) Mars - 3 obiekty (1 wokół L4 i 2 wokół L5 ) Jowisz (L4) i 2010 (L5) Neptun - 6 (L4) i 3 (L5)
38 Obiekty Pasa Kuipera Poza orbitą Neptuna znajduje się obszar w którym znajdują się skalno-lodowe obiekty. Obecnie znamy ich ponad Część z nich na skutek zaburzeń głównie ze strony Neptuna została skierowana na orbity niestabilne przecinające się z orbitami wielkich planet (Centaury), a część znajduje się na orbitach o dużych mimośrodach i dużym nachyleniu względem ekliptyki (dysk rozproszony). Centaury - obiekty o wielkich półosiach orbity, których rozmiary zawierają się pomiędzy 5.2 a 30 AU (pomiędzy rozmiarami wielkiej półosi Jowisza i wielkiej półosi Neptuna, znanych 368 obiektów) Plutina - planetoidy będące w rezonansie orbitalnym 2:3 z Neptunem (245 obiektów) Klasyczne obiekty Pasa Kuipera (897) obiekty znajdujące się pomiędzy 2:3 a 1:2 rezonansami orbitalnymi z Neptunem.
39 Komety
40 Komety Skalno - lodowe bryły, które na skutek ogrzewania otaczają się gazowo - pyłową otoczką (głowa komety). Ich orbity najczęściej mają znaczne mimośrody. Aktywność kometarna jest stosunkowo krótka, więc muszą być uzupełniane (dotyczy to zwłaszcza komet krótkookresowych P<200 lat) Komety jednopojawieniowe i długookresowe mają najczęściej losowe nachylenia płaszczyzny orbity do płaszczyzny ekliptyki. Orbity komet mogą podlegać silnym zaburzeniom ze strony planet (zwłaszcza Jowisza) - niektóre mogą zostać wyrzucone z Układu Słonecznego.
41 Komety muskające Słońce Najliczniejsza grupa odkrywanych komet, których peryhelium znajduje się bardzo blisko powierzchni Słońca. Grupa Kreutz a - należy do niej 87% komet muskających Słońce. Komety tej grupy powstały na skutek rozpadu dużego jądra kometarnego. Większość z nich to obiekty bardzo drobne, które odparowują w pobliżu powierzchni Słońca, ale należą do niej również bardzo jasne komety (1843, 1882, Ikeya-Seki 1965, Lovjoy 2012). Okres orbitalny kilkaset lat, i = 144 o. Pozostałe komety należą do grup Krachta, Mardsena i Meyera lub komet sporadycznych.
42 Planety pozasłoneczne Pierwszy pozasłoneczny układ planetarny został odkryty wokół pulsara PSR B (Wolszczan i Frail 1992). Dwie główne planety o masach 4.3 i 3.9 M Z poruszają się po orbitach o okresach i dni, trzecia o masie Księżyca ma okres orbitalny d. 51 Peg b - pierwsza planeta wokół normalnej gwiazdy. Msini = 0.47 M J, P = 4.23 d. (Mayor i Queloz 1995) Układy planetarne wielokrotne wokół normalnych gwiazd: (7 planet - HD 10180; 6 planet: Kepler 11; 5 planet - 55 Cnc, Kepler 20, Kepler 33; 4 planety Gl 876, Gl 581, ups And) Planety wokół układów podwójnych (orbity typu P: PSR B b; HW Vir b, c,,dp Leo, NN Ser, Kepler 16 b..) i w układach podwójnych (orbity typu S, np. α Cen Bb) Encyklopedia planet pozasłonecznych podaje dane dla 861 planet, które znajdują się w 677 systemach planetarnych (128 wielokrotnych) 2740 kandydatów na planety w danych satelity Kepler.
43 Układ pulsara PSR B
44 Układ planetarny HD (Lovis i inni 2010)
45 Strony zawierające dane o obiektach Układu Słonecznego Encyklopedia planet pozasłonecznych
Plan wykładu. Mechanika Układu Słonecznego
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki godzina 13:15 ćwiczenia poniedziałki godzina 15:15 Warunki zaliczenia ćwiczeń: prace domowe
Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 12:15 Warunki zaliczenia ćwiczeń: prace domowe
Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 13:15 (w sytuacjach awaryjnych 17:15) ćwiczenia wtorki - godzina 10:15 (jutro 01.03
Plan wykładu i ćwiczeń.
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 10:15 Warunki zaliczenia ćwiczeń: prace domowe
Ruchy planet. Wykład 29 listopada 2005 roku
Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja
Teoria ruchu Księżyca
Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny
W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego
W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
Granice Układu Słonecznego. Marek Stęślicki IA UWr
Granice Układu Słonecznego Marek Stęślicki IA UWr Podstawowe pojęcia jednostka astronomiczna [AU] (odl. Ziemia - Słońce) 1 AU = 150 mln km płaszczyzna orbity ekliptyka Skala jasności orbita 1m 2m 3m 4m
Ciała drobne w Układzie Słonecznym
Ciała drobne w Układzie Słonecznym Planety karłowate Pojęcie wprowadzone w 2006 r. podczas sympozjum Międzynarodowej Unii Astronomicznej Planetą karłowatą jest obiekt, który: znajduje się na orbicie wokół
Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058
Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące
Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):
Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.
Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd
Astronomia. Studium Podyplomowe Fizyki z Astronomią. Marcin Kiraga kiraga@astrouw.edu.pl
Astronomia Studium Podyplomowe Fizyki z Astronomią Marcin Kiraga kiraga@astrouw.edu.pl Plan wykładów. Historia astronomii, opis podstawowych zjawisk na niebie, opis sfery niebieskiej, astronomiczne układy
Układ Słoneczny. Pokaz
Układ Słoneczny Pokaz Rozmiary planet i Słońca Orbity planet Planety typu ziemskiego Merkury Najmniejsza planeta U.S. Brak atmosfery Powierzchnia podobna do powierzchni Księżyca zryta kraterami część oświetlona
Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych
Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Planowanie obserwacji ciał Układu Słonecznego Plan zajęć: planety wewnętrzne planety zewnętrzne systemy
Kontrola wiadomości Grawitacja i elementy astronomii
Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 3: Układ Słoneczny cz. 2 T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce,
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie
Ewolucja Wszechświata Wykład 14
Ewolucja Wszechświata Wykład 14 Ewolucja układu słonecznego Planety pozasłoneczne Układ słoneczny Słońce jest okrążane przez 8 planet, które poruszają po prawie kołowych orbitach położonych mniej więcej
Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te, to osiem planet, 166 znanych
Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te, to osiem planet, 166 znanych księżyców, pięć planet karłowatych i miliardy małych
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
KONKURS ASTRONOMICZNY
SZKOLNY KLUB PRZYRODNICZY ALTAIR KONKURS ASTRONOMICZNY ETAP PIERWSZY 1. Jakie znasz ciała niebieskie? Gwiazdy, planety, planety karłowate, księŝyce, planetoidy, komety, kwazary, czarne dziury, ciemna materia....
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Astronomia ogólna 2 Kod modułu kształcenia 04-ASTR1-ASTROG90-1Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów
Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny
Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta
2.Układ Słoneczny Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta Schemat odbicia światła przez sferyczną kroplę z jednokrotnym wewnętrznym odbiciem. Wykres pokazuje
Układ Słoneczny Układ Słoneczny
Fizyka i Chemia Ziemi Układ Słoneczny we Wszechświecie Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta
Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk
Wszechświat w mojej kieszeni Układ Słoneczny 4 No. 4 Gloria Delgado Inglada Instytut Astronomii UNAM, Meksyk 2 Układ Słoneczny składa się ze Słońca i wszystkich ciał niebieskich podróżujących wokół niego:
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością
NIE FAŁSZOWAĆ FIZYKI!
* Jacek Własak NIE FAŁSZOWAĆ FIZYKI! Zdania: 1. Ziemia krąży wokół Słońca 2. Słońce krąży wokół Ziemi Są jednakowo prawdziwe!!! RUCH JEST WZGLĘDNY. Podział Fizyki 1. Budowa materii i oddziaływania 2. Mechanika
Piotr Brych Wzajemne zakrycia planet Układu Słonecznego
Piotr Brych Wzajemne zakrycia planet Układu Słonecznego 27 sierpnia 2006 roku nastąpiło zbliżenie Wenus do Saturna na odległość 0,07 czyli 4'. Odległość ta była kilkanaście razy większa niż średnica tarcz
ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.
ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i
Wszechświat w mojej kieszeni. Układ Słoneczny. Gloria Delgado Inglada. 4 No. 4. Instytut Astronomii UNAM, Meksyk
Wszechświat w mojej kieszeni Układ Słoneczny 4 No. 4 Gloria Delgado Inglada Instytut Astronomii UNAM, Meksyk Powstawanie Układu Słonecznego Układ Słoneczny składa się ze Słońca i wszystkich ciał niebieskich
Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie
Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity
Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy IV VI Szkoły Podstawowej Odpowiedzi
Instrukcja Zaznacz prawidłową odpowiedź. W każdym pytaniu tylko jedna odpowiedź jest poprawna. Liczba punktów przyznawanych za właściwą odpowiedź na pytanie jest różna i uzależniona od stopnia trudności
Historia myśli naukowej. Ewolucja poglądów związanych z budową Wszechświata. dr inż. Romuald Kędzierski
Historia myśli naukowej Ewolucja poglądów związanych z budową Wszechświata dr inż. Romuald Kędzierski Wszechświat według uczonych starożytnych Starożytny Babilon -Ziemia jest nieruchomą półkulą, która
Elementy astronomii w geografii
Elementy astronomii w geografii Prowadzący: Marcin Kiraga kiraga@astrouw.edu.pl Podstawowe podręczniki: Jan Mietelski, Astronomia w geografii Eugeniusz Rybka, Astronomia ogólna Podręczniki uzupełniające:
Jak poznawaliśmy. Marek Stęślicki. Instytut Astronomiczny UWr
Jak poznawaliśmy Wszechświat Marek Stęślicki Instytut Astronomiczny UWr Fot. Babak Tafreshi Prehistoria Fot. Josch Hambsch Prehistoria Czas ekspozycji - 11h Prehistoria Fot. Justin Quinnell Ruch roczny
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
Obłok Oorta. Piotr A. Dybczyński. Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego
Obłok Oorta Piotr A. Dybczyński Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego Skale czasu, odległości i prędkości a [AU] P [mln lat] 10000 20000 40000 60000 80000 100000 1.0 2.8 8.0 15 23 31
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia ogólna 2 Kod modułu 04-A-AOG-90-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień
2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta
2.Układ Słoneczny Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta Planety wg starożytnych Z greckiego: dosłownie,,wędrowiec'', w znaczeniu astronomicznym ciało
Astronomiczny elementarz
Astronomiczny elementarz Pokaz dla uczniów klasy 5B Szkoły nr 175 Agnieszka Janiuk 25.06.2013 r. Astronomia najstarsza nauka przyrodnicza Stonehenge w Anglii budowla z okresu 3000 lat p.n.e. Starożytni
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz
JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT 1 Leszek Błaszkiewicz 2 Matematyka w Astrometrii Matematyka w Astrometrii Astrometria (astronomia pozycyjna) najstarszy dział astronomii zajmujący się pomiarami
Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk
Wykład 10 - Charakterystyka podstawowych systemów gwiazdowych: otoczenie Słońca, Galaktyka, gromady gwiazd, galaktyki, grupy i gromady galaktyk 28.04.2014 Dane o kinematyce gwiazd Ruchy własne gwiazd (Halley
ASTROBIOLOGIA. Wykład 3
ASTROBIOLOGIA Wykład 3 1 JAK POWSTAJĄ GWIAZDY I UKŁADY PLANETARNE? 2 POWSTANIE GWIAZD I PLANET: SCHEMAT Układ planetarny: obłok molekularny mgławica słoneczna dysk protoplanetarny układ planetarny i planety
Układ Słoneczny. Kamil Ratajczak
Układ Słoneczny Kamil Ratajczak Układ Słoneczny układ planetarny, składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te, to osiem planet, 166 znanych księżyców, pięć planet
PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun
UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga
( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)
TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone
Układ Słoneczny (nie zachowano proporcji odległości i wielkości obiektów) Prawie cała masa US (99,87%) skupiona jest w centrum układu,tj. w Słońcu.
2a. Układ Słoneczny UKŁAD SŁONECZNY stanowi zespół ciał niebieskich złożony z gwiazdy (Słońce) i związanych z nią siłami grawitacji: planet, księżyców, planetoid, komet, meteoroidów oraz materii międzyplanetarnej.
Księżyc to ciało niebieskie pochodzenia naturalnego.
2b. Nasz Księżyc Księżyc to ciało niebieskie pochodzenia naturalnego. Obiega on największe ciała układów planetarnych, tj. planeta, planeta karłowata czy planetoida. W niektórych przypadkach kiedy jest
Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy
Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 60 minut. 1. 11 kwietnia 2017 roku była pełnia Księżyca. Pełnia w dniu 11 kwietnia będzie
ASTRONOMIA Klasa Ia Rok szkolny 2012/2013
1 ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 NR Temat Konieczne 1 Niebo w oczach dawnych kultur i cywilizacji - wie, jakie były wyobrażenia starożytnych (zwłaszcza starożytnych Greków) na budowę Podstawowe
GRAWITACJA I ELEMENTY ASTRONOMII
MODUŁ 1 SCENARIUSZ TEMATYCZNY GRAWITACJA I ELEMENTY ASTRONOMII OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES PODSTAWOWY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI
To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki
Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Odległość mierzy się zerami
Odległość mierzy się zerami Jednostki odległości w astronomii jednostka astronomiczna AU, j.a. rok świetlny l.y., r.św. parsek pc średnia odległość Ziemi od Słońca odległość przebyta przez światło w próżni
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Prezentacja. Układ Słoneczny
Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy
Układ Słoneczny Pytania:
Układ Słoneczny Pytania: Co to jest Układ Słoneczny? Czy znasz nazwy planet? Co jeszcze znajduje się w Układzie Słonecznym poza planetami? Co to jest Układ Słoneczny Układ Słoneczny to układ ciał niebieskich,
Od kryształowych sfer do upadku Plutona
Od kryształowych sfer do upadku Plutona Kiedy Układ Słoneczny był Wszechświatem 1 0 o - 30 o 21.03-20.04 LU.HUN.GA - Najemnik Aries Baran 2 30 o - 60 o 21.04-21.05 GU.AN.NA - Byk Niebios Taurus Byk 3 60
VI.3 Problem Keplera
VI.3 Problem Keplera 1. Prawa Keplera 2. Zastosowanie III prawa Keplera 3. Układ Słoneczny numeryczne całkowanie r. ruchu wszystkich planet, stabilność rozwiązań. Jan Królikowski Fizyka IBC 1 Prawa Keplera
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Małe ciała Układu Słonecznego
Fizyka układów planetarnych II Małe ciała Układu Słonecznego Wykład 2 Fizyka układów planetarnych II 2. Małe ciała Układu Słonecznego Planeta 1. ciało niebieskie okrążające gwiazdę (w różnych etapach ewolucji),
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Elementy astronomii w nauczaniu przyrody. dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011
Elementy astronomii w nauczaniu przyrody dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011 Szkic referatu Krótki przegląd wątków tematycznych przedmiotu Przyroda w podstawie MEN Astronomiczne zasoby
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy
SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.
SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca
Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak
Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Plan wystąpienia Troszkę niedalekiej historii. Dlaczego wokół podwójnych? Pobieżna statystyka. Typy planet w układach podwójnych. Stabilność
Wykład 5. Początki nauki nowożytnej część 1 (prawo powszechnego ciążenia)
Wykład 5 Początki nauki nowożytnej część 1 (prawo powszechnego ciążenia) 1 Nauka średniowiecza - podsum. Filozofia i metodologia Astronomia wprowadzenie eksperymentu i analizy ilościowej z obserwacji prawa
Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy
Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. Przyszłość. Ludzie mieszkają w stacjach kosmicznych w kształcie okręgu o promieniu
Grawitacja. Wykład 7. Wrocław University of Technology
Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.
Grawitacja okiem biol chemów i Linuxów.
Grawitacja okiem biol chemów i Linuxów. Spis treści 1. Odrobina teorii 2. Prawo powszechnego ciążenia 3. Geotropizm 4. Grawitacja na małą skalę ciężkość ciał 5. Grawitacja nie z tej Ziemi 6. Grawitacja
Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp.
Dariusz Ślązek Badania bezpośrednie (np.: sondy kosmiczne, meteoryty itp.) Obserwacje form krajobrazu (budowa i ilość kraterów, wylewy magmy itp.) Metody porównawcze pomiędzy poszczególnymi ciałami w naszym
6. Elementy astronomii
6. Elementy astronomii 6. Elementy astronomii 164 6.1. Rozwój poglądów na budowę Wszechświata Astronomia należy do najstarszych nauk przyrodniczych. Już w starożytnej Grecji filozofowie tworzyli pierwsze
Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego
Wenus na tle Słońca Sylwester Kołomański Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Instytut Astronomiczny UWr Czym się zajmujemy? uczymy studentów, prowadzimy badania naukowe (astrofizyka
Zadania do testu Wszechświat i Ziemia
INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania
Kazimierz Kordylewski i jego księżyce. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słooca CBK PAN
Kazimierz Kordylewski i jego księżyce Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słooca CBK PAN Narodziny współczesnej mechaniki nieba Tycho Brahe prowadził niezwykle dokładne obserwacje wizualne.
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny: informatyka fizyka Układ planetarny w arkuszu
1 Szkic historii astronomii i jej zwiazków z fizyka
ELEMENTY ASTROFIZYKI I DYDAKTYKI ASTRONOMII UKŁAD SŁONECZNY Prowadzący: Marcin Kiraga. Podstawowe podręczniki: Paweł Artymowicz Astrofizyka układów planetarnych Eugeniusz Rybka Astronomia ogólna Frank
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy VII VIII Szkoły Podstawowej oraz Klasy III Gimnazjum Test Konkursowy
Instrukcja Zaznacz prawidłową odpowiedź. W każdym pytaniu tylko jedna odpowiedź jest poprawna. Liczba punktów przyznawanych za właściwą odpowiedź na pytanie jest różna i uzależniona od stopnia trudności
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
Wędrówki między układami współrzędnych
Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość
Poznajemy małe ciała niebieskie Układu Słonecznego.
Plan Pracy Sekcji Astronomicznej w /2015 roku Cel główny: Poznajemy małe ciała niebieskie Układu Słonecznego. Cele pomocnicze: 1. Poznajemy obiekty Układu Słonecznego (US) nie będące planetami komety,
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 5: Zjawiska w układzie Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca
Spełnienie wymagań poziomu oznacza, że uczeń ponadto:
Fizyka LO - 1, zakres podstawowy R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie
Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet
Wykład 9 3.5.4.1 Prawa Keplera 3.5.4. Wyznaczenie stałej grawitacji 3.5.4.3 Równania opisujące ruch planet 008-11-01 Reinhard Kulessa 1 3.5.4.1 Prawa Keplera W roku 140 n.e. Claudius Ptolemeus zaproponował