VI.3 Problem Keplera
|
|
- Wanda Gajda
- 8 lat temu
- Przeglądów:
Transkrypt
1 VI.3 Problem Keplera 1. Prawa Keplera 2. Zastosowanie III prawa Keplera 3. Układ Słoneczny numeryczne całkowanie r. ruchu wszystkich planet, stabilność rozwiązań. Jan Królikowski Fizyka IBC 1
2 Prawa Keplera ruchu planet I. Każda planeta krąży po elipsie ze Słońcem w jednym z jej ognisk. II. Promień wodzący planety zakreśla równe pola w równych czasach III. Kwadrat okresu obiegu planety dookoła Słońca jest proporcjonalny do sześcianu długości wielkiej półosi elipsy Drugie prawo Keplera zostało udowodnione w Cz. V.1: da = L A = = const dt 2µ Jan Królikowski Fizyka IBC 2
3 Wyprowadzenie III Prawa Keplera Korzystamy z II Prawa Keplera: T L Adt = T =πab; podnosimy stronami do kwadratu 2µ L 2 2 L = π = 2 π 2 a T a L 2µ 2Eµ µα T π a 4π µ a 4π a 4π a = ; T = = m1 / m2 0 G( m1 + m2 ) Gm2 4µ α α Dla bardzo masywnego Słońca i stosunkowo lekkich planet okresy ich obiegu nie zależą od ich mas. Jan Królikowski Fizyka IBC 3
4 Zastosowanie III Prawa Keplera T 4π 2 2 = 3 a G m1 + m2 ( ) Najczęściej służy do wyznaczania mas układów związanych grawitacyjnie. Jan Królikowski Fizyka IBC 4
5 Stabilność Układu Słonecznego Jan Królikowski Fizyka IBC 5
6 I Prawo Keplera: parametry układu słonecznego Lp. Nazwa Masa w kg T [lata gwiazdowe] a [j.a] a [10 9 m] Mimośród Nachylenie i [stopnie] 1 Merkury Wenus Ziemia Mars Jowisz Saturn Uran Neptun Pluton Jan Królikowski Fizyka IBC 6
7 Masa i promień Słońca i Ziemi: M I Prawo Keplera: (30) 10 kg R = M (9) 10 kg R = = = 8 m 6 m Jan Królikowski Fizyka IBC 7
8 a Reguła Tytusa- Bodego (1766) = n; n=0,1,2,4,... Planeta n r. T B pomiar Merkury Wenus Ziemia Mars Jowisz Saturn Uran Neptun Pluton Jan Królikowski Fizyka IBC 8
9 Zależność prędkości na orbicie od odległości od Słońca r. akad. 2005/ 2006 Związek między długością półosi a i energią planety na orbicie eliptycznej: E = Gm m 2a 1 2 Prowadzi do wyrażenia na v 2 =v 2 (r) 2 Gm1m 2 µ v Gm1m 2 E = = 2a 2 r Gm1m = Gm ( ) 1 + m2 = v µ r a r a 2 2 Przydatne do znajdowania np. I i II prędkości kosmicznej Jan Królikowski Fizyka IBC 9
10 Zależność czasowa dla ruchu planet: równanie Keplera φ- anomalia prawdziwa, u- anomalia mimośrodowa M=2πt/T- anomalia średnia. Równanie Keplera (r. wiekowe): M = u εsinu Rozwiązujemy metodą kolejnych przybliżeń: u 1 = M tj. ε=0 u = M+εsinu 2 1 u = M+εsin u 3 2 ; itd... u φ Jan Królikowski Fizyka IBC 10
11 3. Problem 2 ciał vs. problem 10 ciał czyli o stabilności Układu Słonecznego Pełen układ równań ruchu Układu Słonecznego+ warunki początkowe: Jest to układ 10 nieliniowych r.r II rzędu. Nie znamy metod analitycznych jego rozwiązania. Metody numeryczne wymagają długiego czasu obliczeń, tym dłuższego, im dłuższy jest czas (t t 0 ). Gm = imj mr ˆ i i eij j= 0,...9 r ij j i r ( ) ( ) 0 ; i t ri t0 ; i, j= 0,9 i,j=0 Słońce Doświadczalnie wiemy, że Układ Słoneczny istnieje od co najmniej 4.5 mld. lat (wiek Ziemi). Jan Królikowski Fizyka IBC 11
12 Postawienie pytania Dobre i systematyczne dane obserwacyjne na temat ruchów planet są akumulowane od XV XVI w (max. 500 lat; część wieku US). Istnieją fragmentaryczne dane z ostatnich ~3000 lat. Porównanie danych z prawami Keplera w tak krótkim okresie w stosunku do wieku US nie dostarcza nam danych o stabilności US. Czy dawno temu planety US poruszały się po orbitach podobnych do dzisiejszych? Czy tak będzie w przyszłości? Jakie jest prawdopodobieństwo, że duża asteroida zderzy się z Ziemią? Jan Królikowski Fizyka IBC 12
13 Pytanie o stabilność US ma długą historię Odkrycie precesji orbity Ziemi dookoła Słońca (~0.3 0 /100 lat, głownie spowodowane perturbacjami pochodzącymi od Jowisza) w XVIII w. pchnęło astronomów i fizyków m.in. Pierre a Simon a de Laplace do dyskusji perturbacji w US, a więc także stabilności rozwiązań keplerowskich. Dowód stabilności przedstawiony przez Laplace a nie był jednak poprawny, gdyż przybliżenia analityczne Laplace a były zbyt grube. Pod koniec XIX Henri Poincare zauważył, że istotną rolę w badaniu stabilności czy też chaosu odgrywa zjawisko rezonansu tj. takiej sytuacji, gdy okresy obrotu ciał pozostają w stosunku prostych liczb naturalnych. Hadamard rozpoczął badanie chaosu. W 1989 Jaques Laskar zcałkował r.r po czasie 200 mln lat metodą podobną do Laplace a, lecz uwzględniając członów poprawek. Metoda była półanalityczna. Wniosek JL: orbity planet są chaotyczne. Jan Królikowski Fizyka IBC 13
14 Przykłady rezonansów w US: cd Okres obiegu satelity Jowisza Io wynosi dni, zaś Europy dnia; pozostają więc w stosunku 1:2. Europa przyciąga Io od Jowisza; orbita Io zwiększa mimośród, a więc coraz bardziej przybliża się do Jowisza. Siły pływowe na Io manifestują się m.in. w postaci aktywnych wulkanów (Voyager). 2. Ganimed tworzy podobny układ rezonansowy2:1 z Europą. Io, Europa i Ganimed razem tworzą stabilny układ Lagrange a 3 ciał. 3. Przerwy w pasie asteroid odpowiadają rezonansom w układzie asteroida Jowisz. 4. Okres obiegu satelity dookoła planety i okres obiegu satelity dookoła własnej osi są takie same (siły pływowe, sprzężenie spinorbita) Hyperion (księżyc Saturna) jest tu wyjątkiem; Hyperion jest bardzo nieregularną bryłą Jan Królikowski Fizyka IBC 14
15 Planety wewnętrzne i zewnętrzne 4 planety wewnętrzne są małe, ich ruch jest silnie zaburzany przez oddziaływania gazowych gigantów 5 planet zewnętrznych. Planety zewnętrzne jako system nie są zaburzane przez planety wewnętrzne. Ich okresy obiegu są długie. Dlatego prowadzenie obliczeń dla systemu planet zewnętrznych jest znacznie prostsze i mniej wymagające. Uwzględnianie planet wewnętrznych znacznie przedłuża czas obliczeń ( razy) nawet bez uwzględniania efektów relatywistycznych w ruchu Merkurego. Jan Królikowski Fizyka IBC 15
16 Istniejące obliczenia numeryczne Planety zewnętrzne: Cohen, Hubbard, Oesterwinder 1965: 10 6 lat, Kinoshita, Nakai: lat, Digital Orrery Project (Sussman et.al.,1988): lat, lat LONGSTOP Project (Cray S.C., 1986): lat, Pełen Układ Słoneczny (wymaga więcej CPU): Digital Orrery Project: lat ; uwzględnia ruch Merkurego, Richardson, Walker: lat, Quinn, Tremaine, Duncan 1987: ± lat, Sussman, Wisdom 1992: 98, lat (TOOLKIT, 1992) Ito, Tanikawa, 2002, ± lat!!!! Jan Królikowski Fizyka IBC 16
17 Ito, Tanikawa Mon. Not. RAS, 336,(2002),483 r. akad. 2005/ 2006 t= lat Planety wewnętrzne t= t=0 t= Planety zewnętrzne Jan Królikowski Fizyka IBC 17
18 Używane zmienne Dla każdej z planet można posłużyć się następującymi 4 zmiennymi, które wyznaczamy jako funkcję (t t 0 ): ε mimosród; i pl. / orbity do ekliptyki; ( φ ) ω dlugos / ʹcʹ perihelium = ; Ω nachylenie dlugos / ʹcʹ pt u zejs cia pod pl. ekliptyki h= ε sin ω ; k =ε cosω p ( i ) ( ) = sin 2 sin Ω; q=sin i 2 cosω 0 Jan Królikowski Fizyka IBC 18
19 Stabilność? Chaos: nadwrażliwość układu na warunki początkowe np. przesunięcie środka Plutona o 1 mm powoduje przesunięcia orbit planet wykładniczo rozbieżne w czasie. Sussman i Wisdom pokazali w 1988, że taką niestabilność orbity Plutona powoduje m.in. rezonans z Neptunem. Jak mierzyć? Niech U(t) i U*(t) będą dwoma rozwiązaniami problemu (z dwoma warunkami początkowymi): ( ) = ( ) * ( ) dt Ut U t Charakterystycznym wykładnikiem Liapunowa nazywamy granicę: ( ) lndt t σ t Dla n wymiarowego problemu (US: n=27*2=54) mamy n wykładników L. Jan Królikowski Fizyka IBC 19
20 Jeden z w. L jest zawsze =0. Wykładniki Liapunowa cd. Wzrost w.l oznacza dążenie do stanu chaosu. Wyniki całkowań numerycznych: Jeżeli odległość warunków początkowych (w 54 wymiarowej przestrzeni fazowej) była d 0 to badania Sussmana i Wisdom a, oraz Laskara pokazują, że po czasie T (w 10 6 lat=ma) mamy odległość: T 10 T 0 0 dt = de d ( ) 5Ma 10 Ma Jan Królikowski Fizyka IBC 20
21 J. Laskar 1999 Mimośród Ziemi obliczany semianalitycznie. Kolejne części rysunku pokazują kiedy pojawia się chaotyczne zachowanie mimośrodu po zmianie położenia perihelium o 10 n radianów. Czerwona linia: parametryzacja d=d 0 10 t/10n (t w Mlat) Jan Królikowski Fizyka IBC 21
Ruchy planet. Wykład 29 listopada 2005 roku
Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet
Wykład 9 3.5.4.1 Prawa Keplera 3.5.4. Wyznaczenie stałej grawitacji 3.5.4.3 Równania opisujące ruch planet 008-11-01 Reinhard Kulessa 1 3.5.4.1 Prawa Keplera W roku 140 n.e. Claudius Ptolemeus zaproponował
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058
Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące
Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie
Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Krzywe stożkowe Lekcja V: Elipsa
Krzywe stożkowe Lekcja V: Elipsa Wydział Matematyki Politechniki Wrocławskiej Czym jest elipsa? Elipsa jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem α < β < π 2 (gdzie α jest
Plan wykładu. Mechanika Układu Słonecznego
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki godzina 13:15 ćwiczenia poniedziałki godzina 15:15 Warunki zaliczenia ćwiczeń: prace domowe
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1
1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego
W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety
Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 12:15 Warunki zaliczenia ćwiczeń: prace domowe
Teoria ruchu Księżyca
Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny
Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski
Satelity Ziemi Ruch w polu grawitacyjnym dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Satellites Satelity można podzielić na: naturalne (planety dla słońca/ gwiazd, księżyce dla planet) oraz sztuczne
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie
Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 13:15 (w sytuacjach awaryjnych 17:15) ćwiczenia wtorki - godzina 10:15 (jutro 01.03
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością
Orbita Hohmanna. Szkoła średnia Klasy I IV Doświadczenie konkursowe 1
Szkoła średnia Klasy I IV Doświadczenie konkursowe 1 Rok 019 1. Wstęp teoretyczny Podróże kosmiczne znacznie różnią się od podróży ziemskich. Na Ziemi podróżujemy między punktami o ustalonym położeniu,
SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.
SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca
Kontrola wiadomości Grawitacja i elementy astronomii
Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości
1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.
Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd
Plan wykładu i ćwiczeń.
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 10:15 Warunki zaliczenia ćwiczeń: prace domowe
Grawitacja. Wykład 7. Wrocław University of Technology
Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.
ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i
Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):
Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału
Układ Słoneczny Układ Słoneczny
Fizyka i Chemia Ziemi Układ Słoneczny we Wszechświecie Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta
Zagadnienie dwóch ciał
Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem
2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta
2.Układ Słoneczny Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta Schemat odbicia światła przez sferyczną kroplę z jednokrotnym wewnętrznym odbiciem. Wykres pokazuje
Fizyka 1 (mechanika) AF14. Wykład 10
Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 12.12.2016 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67
Fizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
Uogólniony model układu planetarnego
Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej 22.05.2009 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na
PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun
UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Układ Słoneczny Pytania:
Układ Słoneczny Pytania: Co to jest Układ Słoneczny? Czy znasz nazwy planet? Co jeszcze znajduje się w Układzie Słonecznym poza planetami? Co to jest Układ Słoneczny Układ Słoneczny to układ ciał niebieskich,
Fizyka 1 (mechanika) AF14. Wykład 10
Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 04.12.2017 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67
Piotr Brych Wzajemne zakrycia planet Układu Słonecznego
Piotr Brych Wzajemne zakrycia planet Układu Słonecznego 27 sierpnia 2006 roku nastąpiło zbliżenie Wenus do Saturna na odległość 0,07 czyli 4'. Odległość ta była kilkanaście razy większa niż średnica tarcz
Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy
Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 60 minut. 1. 11 kwietnia 2017 roku była pełnia Księżyca. Pełnia w dniu 11 kwietnia będzie
Wędrówki między układami współrzędnych
Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Symulacja numeryczna zagadnienia katapulty grawitacyjnej
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Cezary Kaliszyk Nr albumu: 189400 Symulacja numeryczna zagadnienia katapulty grawitacyjnej Praca licencjacka na kierunku MATEMATYKA w
Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE
Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną
Zadania do testu Wszechświat i Ziemia
INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania
( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)
TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone
2.Układ Słoneczny. Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta
2.Układ Słoneczny Układ Kopernika - dowody Planety, planety karłowate Pas Planetoid Pas Kuipera Obłok Oorta Planety wg starożytnych Z greckiego: dosłownie,,wędrowiec'', w znaczeniu astronomicznym ciało
Obłok Oorta. Piotr A. Dybczyński. Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego
Obłok Oorta Piotr A. Dybczyński Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego Skale czasu, odległości i prędkości a [AU] P [mln lat] 10000 20000 40000 60000 80000 100000 1.0 2.8 8.0 15 23 31
Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego
Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych
Muzyka Sfer. Czyli co ma wspólnego planeta z piosenką
Muzyka Sfer Czyli co ma wspólnego planeta z piosenką W przeszłości Muzyka sfer Pitagorejczycy twierdzili, że świat został stworzony z chaosu przez dźwięk i harmonię, a więc zgodnie z zasadami muzycznych
Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna
Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Załóżmy, że sonda kosmiczna mając prędkość v1 leci w kierunku planety pod kątem do toru tej planety poruszającej się z prędkością
Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.
ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Układ Słoneczny. Pokaz
Układ Słoneczny Pokaz Rozmiary planet i Słońca Orbity planet Planety typu ziemskiego Merkury Najmniejsza planeta U.S. Brak atmosfery Powierzchnia podobna do powierzchni Księżyca zryta kraterami część oświetlona
Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny
Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem
Ruch i położenie satelity. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego
Ruch i położenie satelity dr hab. inż. Paweł Zalewsi, prof. AM Centrum Inżynierii Ruchu Morsiego Podstawy mechanii ciał niebiesich: Znajomość pozycji satelity w przyjętym systemie odniesienia w danym momencie
Księżyc to ciało niebieskie pochodzenia naturalnego.
2b. Nasz Księżyc Księżyc to ciało niebieskie pochodzenia naturalnego. Obiega on największe ciała układów planetarnych, tj. planeta, planeta karłowata czy planetoida. W niektórych przypadkach kiedy jest
PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY
PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Prezentacja. Układ Słoneczny
Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców
Zasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych
Powstanie i ewolucja Układu Słonecznego II
Astrobiologia Powstanie i ewolucja Układu Słonecznego II Wykład 3 Migracje typu II Masywne planety generują nieciągłość w rozkładzie masy dysku poprzez zaakreowanie materii lub przesunięcie jej na dalsze
Dwa przykłady z mechaniki
Rozdział 6 Dwa przykłady z mechaniki W rozdziale tym przedstawimy proste przykłady rozwiązań równań mechaniki Newtona. Mechanika Newtona zajmuje się badaniem ruchu układu punktów materialnych w przestrzeni
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI. Rola głównych perturbacji.
RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI Rola głównych perturbacji. Ruch nieperturbowany keplerowski Ruch nieperturbowany Ruch keplerowski Ruch perturbowany Ruch perturbowany Ruch perturbowany Rozwiązanie
Mechanika nieba. Marcin Kiraga 18.02.2013 05.06.2013
Mechanika nieba Marcin Kiraga 18.02.2013 05.06.2013 Mechanika nieba Marcin Kiraga kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady: środy, godzina 14:15 (2 godz) ćwiczenia: poniedziałki,
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY
Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNA
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNA Zadanie 1 (0 1) Jadąc z prędkością 72 km h, samochód pokonuje trasę między miastami A i B w czasie 5 godzin. Oceń prawdziwość podanych zdań.
wersja
www.as.up.krakow.pl wersja 2013-01-12 STAŁE: π = 3.14159268... e = 2.718281828... Jednostka astronomiczna 1 AU = 149.6 mln km = 8 m 19 s świetlnych Rok świetlny [l.y.] = c t = 9460730472580800 m = 9.46
ver grawitacja
ver-7.11.11 grawitacja początki Galileusz 1564-164 układ słoneczny http://www.arachnoid.com/gravitation/small.html prawa Keplera 1. orbity planet krążących wokół słońca są elipsami ze słońcem w ognisku
Granice Układu Słonecznego. Marek Stęślicki IA UWr
Granice Układu Słonecznego Marek Stęślicki IA UWr Podstawowe pojęcia jednostka astronomiczna [AU] (odl. Ziemia - Słońce) 1 AU = 150 mln km płaszczyzna orbity ekliptyka Skala jasności orbita 1m 2m 3m 4m
Fakty fizyki nieba i fundamentalnych oddziaływań
Fakty fizyki nieba i fundamentalnych oddziaływań Wstęp Podane tutaj fakty, które dotyczą fizyki nieba, nie powinny być współczesnym fizykom i astronomom obce. Dla ich interpretacji nie są potrzebne żadne