Załącznik nr 1. Projekty struktur falowodowych
|
|
- Katarzyna Adamczyk
- 5 lat temu
- Przeglądów:
Transkrypt
1 Załącznik nr 1 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej i telekomunikacji optycznej Nr UMO-2011/01/B/ST7/06234 Projekty struktur falowodowych Załączniki: załącznik 1a Analiza teoretyczna widm elektroabsorpcji i elektrorefrakcji załącznik 1b Projekty falowodów planarnych z warstwą prowadzącą o strukturze PMQW Wykonawcy: Prof. dr hab. Ewa Weinert-Rączka dr inż. Andrzej Ziółkowski, Szczecin
2 Sprawozdanie zawiera projekty struktur 1, 2, 4, 5, 11 i 12 w tym: 1. układy warstw epitaksjalnych 2. tabele implantacji 3. specyfikację płytki podłożowej 4. projekty kształtu elektrod Analiza teoretyczna widm elektroabsorpcji i elektrorefrakcji dla struktur półprzewodnikowych studni kwantowych, pod kątem wykorzystania ich jako warstw prowadzących fotorefrakcyjnych falowodów planarnych przedstawiona jest w załączniku 1a Projekty falowodów planarnych z warstwą prowadzącą o strukturze PMQW, pracujących w zakresach spektralnych odpowiadających oknom transmisyjnym wykorzystywanym w telekomunikacji optycznej przedstawiona są w załączniku 1b. Wszystkie struktury falowodowe wykonane zostały w Instytucie Technologii Materiałów Elektronicznych (ITME) w Warszawie metodą MOCVD na podłożu z półizolacyjnego GaAs. Napromieniowanie protonami niezbędne do uzyskania właściwości półizolacyjnych struktur epitaksjalnych wykonywane było we współpracy z Zakładem Fizyki Jonów i Implantacji Instytutu Fizyki UMCS. 2
3 Struktura 1 falowody jednomodowe z cienkim płaszczem. d GaAs 5-10? Przykrycie 83 Al 0,3 GaAs 6 Rdzeń 4 GaAs 7-3 Al 0,3 GaAs 6-2 GaAs 7-1 Al 0,3 GaAs 6 Rdzeń c Al 0,35 GaAs 1000 Rys. 1. Struktura (7 nm / 6 nm) z cienkim płaszczem x=0,35 Na podłożu z pół-izolacyjnego GaAs (SI) UWAGA: ze względu na ograniczoną głębokość zmian wywołanych przez implantację protonami (w celu zapewnienia własności pół-izolacyjnych) struktury powinny mieć możliwie najwęższą warstwę bufora oraz przykrycia z GaAs (warstwy b i d na rysunkach) Tabela1. Implantacja wykonana w ITME, (uzgodnienia z Grzegorzem Gawlikiem) ćwiartka Energia 1 Dawka 1 Energia 2 Dawka 2 uwagi A 160 kev 1x10 12 cm kev 1x10 12 cm -2 Z przerwą (*) B 160 kev 2x10 12 cm kev 2x10 12 cm -2 Z przerwą (*) C 160 kev 1x10 12 cm kev 1x10 12 cm -2 jedna implantacja po drugiej D 160 kev 2x10 12 cm kev 2x10 12 cm -2 jedna implantacja po drugiej (*) Przerwa między pierwszą a drugą implantacją w czasie której zrobiono próby badania Hall a i SIMS Ćwiartki C i D po napyleniu elektrod w Zakładzie prof. Lecha Dobrzańskiego zostały podzielone na falowody i naklejone na podstawki. Otrzymano 7 falowodów z ćwiartki C oraz 7 falowodów z ćwiartki D (Odebrane z ITME przez EWR dnia 21 listopada 2012). UWAGI: Struktura o odpowiedniej rezystancji ciemnej, ale o słabych właściwościach optycznych. Nie udały się próby wprowadzania światła. 3
4 Struktura 2 falowody jednomodowe z grubym płaszczem d GaAs 5-10? Przykrycie 61 Al 0,3 GaAs 10 Rdzeń 60 GaAs 7,5-4 GaAs 7,5-3 Al 0,3 GaAs 10-2 GaAs 7,5-1 Al 0,3 GaAs 10 Rdzeń c Al 0,3 GaAs 1500 Rys. 2. Struktura 2 - rdzeń MQW (7,5nm / 10 nm) z grubszym płaszczem x=0,3 i pół-izolacyjnym podłożem z GaAs (SI) - Płytka została podzielona w ITME na ćwiartki i wysłana do Lublina, do prof. Jerzego Żuka, w celu napromieniowania protonami. Rys. 3. oznaczenia ćwiartek Tabela 2. Implantacja na UMCS, trzy dawki H + ćwiartka Energia 1 Dawka 1 Dawka 2 Dawka 3 kev cm -2 Energia 2 kev cm -2 Energia 3 kev cm -2 A 260 1x x x10 12 B 260 1x x x10 12 C 260 1x x x10 12 D 270 1x x x10 12 uwagi UWAGI: Pomimo obiecujących wyników symulacji numerycznych struktury miały zbyt duże przewodnictwo ciemne. 4
5 Struktura 4 falowody z grubą izolacją optyczną bez wytrawiania, do implantacji w Lublinie d GaAs 5-10 Przykrycie 161 Al 0,3 GaAs 6 Rdzeń 4 GaAs 7-3 Al 0,3 GaAs 6-2 GaAs 7-1 Al 0,3 GaAs 6 Rdzeń c Al 0,35 GaAs 1000 Rys. 4. Struktura 4 rdzeń MQW (7 nm / 6 nm), płaszcz x=0,35 o grubości 1000 nm na pół-izolacyjnym podłożu GaAs (SI) oznaczenia ćwiartek Tabela 4. Implantacja na UMCS, cztery dawki H + ćwiart ka Energia 1 kev Dawka 1 Energia 2 Dawka 2 cm -2 Energia 3 kev Dawka 3 Energia 4 Dawka 4 cm -2 uwagi 4A bez H + 4B 270 1x x x x C 270 1,5x ,5x ,5x ,5x D 270 2x x x x10 12 Jedna z ćwiartek była połamana. Zrezygnowano z implantacji o dawce 1,5 Uwagi: Dobre właściwości elektryczne, właściwości optyczne nieco gorsze niż struktur 5 Problem z rozszerzalnością termiczną podstawek wykonanych z pleksi 5
6 Struktura 5 falowody z cienką izolacją optyczną d GaAs 5-10 Przykrycie 161 Al 0,3 GaAs 6 Rdzeń 4 GaAs 7-3 Al 0,3 GaAs 6-2 GaAs 7-1 Al 0,3 GaAs 6 Rdzeń c Al 0,35 GaAs 500 Rys.5. Struktura 5 rdzeń MQW (7 nm / 6 nm), płaszcz x=0,35 o grubości 500 nm na pół-izolacyjnym podłożu GaAs (SI). oznaczenia ćwiartek Tabela 5. Implantacja na UMCS, cztery dawki H + ćwiart ka Energia 1 kev Dawka 1 Energia 2 Dawka 2 Energia 3 Dawka 3 Energia 4 Dawka 4 cm -2 uwagi 5A bez H + 5B 250 1x x x x C 250 1,5x ,5x ,5x ,5x D 250 2x x x x10 12 Uwagi: Dobre właściwości elektryczne, dobre prowadzenie światła. Problem z rozszerzalnością termiczną podstawek wykonanych z pleksi. Kilka falowodów uległo zniszczeniu w wyniku przebicia przy przykładaniu dużych napięć. 6
7 Struktura 11 Falowód jednomodowy GaAs/AlGaAs, studnie: 7nm / bariery: 6nm Rys. 6. Struktura (7+6)nm z płaszczem x = 0,3 o grubości 1000 nm z pół-izolacyjnym (SI) d GaAs 10 Przykrycie 83 Al 0,3 GaAs 6 Rdzeń 82 GaAs 7-4 GaAs 7-3 Al 0,3 GaAs 6-2 GaAs 7-1 Al 0,3 GaAs 6 Rdzeń c Al 0,3 GaAs 1000 GaAs/AlGaAs 41 x podłożem GaAs Grubość warstw epitaksjalnych: Rdzeń 41 x (7 nm GaAs + 6nm Al 0,3 Ga 0,7 As) = 533 nm i 1 dodatkowa bariera z Al 0.3 Ga 0.7 As nm Bufor i przykrycie GaAs 20 nm Razem nm Tabela 6. Implantacja na UMCS, cztery dawki H + ćwiart ka Energia 1 kev Dawka 1 Energia 2 Dawka 2 Energia 3 Dawka 3 Energia 4 Dawka 4 cm -2 uwagi 11A 240 1x x x x B 240 1x x x x10 12 jak A 11C 240 2x x x x D 240 2x x x x10 12 jak C Uwagi: falowody naklejone na specjalne podstawki wykonane ze szkła ULE o bardzo niskiej rozszerzalności termicznej. Elektrody o zaokrąglonych krawędziach wykonane w ITE. Małe przewodnictwo ciemne, dobre prowadzenie światła. 7
8 Struktura 12 Falowód wielomodowy GaAs/AlGaAs, studnie: 7nm / bariery: 6nm d GaAs 5-10 Przykrycie 161 Al 0,3 GaAs 6 Rdzeń 4 GaAs 7-3 Al 0,3 GaAs 6-2 GaAs 7-1 Al 0,3 GaAs 6 Rdzeń c Al 0,35 GaAs 850 Rys.7. Struktura AlGaAs 80 x (7+6)nm z płaszczem x = 0,3 o grubości 850 nm z pół-izolacyjnym podłożem GaAs (SI) Grubość warstw epitaksjalnych: Rdzeń 80 x (7 nm GaAs + 6nm Al 0,3 Ga 0,7 As) = nm i 1 dodatkowa bariera z Al 0.3 Ga 0.7 As 856 nm Bufor i przykrycie GaAs 20 nm Razem nm Tabela 7. Implantacja na UMCS, cztery dawki H + ćwiart ka Energia 1 kev Dawka 1 Energia 2 Dawka 2 Energia 3 Dawka 3 Energia 4 Dawka 4 cm -2 uwagi 12A 260 1x x x x B 260 1x x x x10 12 jak A 12C 260 2x x x x D 260 2x x x x10 12 jak C Uwagi: falowody naklejone na specjalne podstawki wykonane ze szkła ULE o bardzo niskiej rozszerzalności cieplnej. Elektrody o zaokrąglonych krawędziach wykonane w ITE. Małe przewodnictwo ciemne, dobre prowadzenie światła. 8
9 9
10 Projekt układu elektrod Rys. 8a Projekt układu elektrod na jednej ćwiartce płytki Kierunki osi krystalograficznych: Kształty elektrod T i L zawierają informacje o kierunku falowodu: L falowód równoległy do osi (0-1-1), czyli do major flat T falowód równoległy do osi (0-11), czyli do minor flat 10
11 Rys. 8b Projekt układu elektrod na całej płytce 11
UMO-2011/01/B/ST7/06234
Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoUMO-2011/01/B/ST7/06234
Załącznik nr 4 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoZałącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego
Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoUMO-2011/01/B/ST7/06234
Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowopromotor prof. dr hab. inż. Jan Szmidt z Politechniki Warszawskiej
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, 13 marca 2018 r. D z i e k a n a t Uprzejmie informuję, że na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej
Bardziej szczegółowoKATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Bardziej szczegółowoPolitechnika Wrocławska Wydział Podstawowych Problemów Techniki
Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre
Bardziej szczegółowoUMO-2011/01/B/ST7/06234
Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoRZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)
Bardziej szczegółowo2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )
dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu
Bardziej szczegółowoPomiar tłumienności światłowodów włóknistych
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:
Bardziej szczegółowoPL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL
PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.
Bardziej szczegółowoSkalowanie układów scalonych Click to edit Master title style
Skalowanie układów scalonych Charakterystyczne parametry Technologia mikroelektroniczna najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Bardziej szczegółowoWpływ defektów punktowych i liniowych na własności węglika krzemu SiC
Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H
Bardziej szczegółowoOptyczne elementy aktywne
Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n
Bardziej szczegółowoTECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone,
TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone, 1. Technologia wykonania złącza p-n W rzeczywistych złączach
Bardziej szczegółowoGrafen materiał XXI wieku!?
Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?
Bardziej szczegółowoIX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
Bardziej szczegółowoFizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Bardziej szczegółowoELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,
Bardziej szczegółowoSkalowanie układów scalonych
Skalowanie układów scalonych Technologia mikroelektroniczna Charakterystyczne parametry najmniejszy realizowalny rozmiar (ang. feature size), liczba bramek (układów) na jednej płytce, wydzielana moc, maksymalna
Bardziej szczegółowoCharakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Bardziej szczegółowoUNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Bardziej szczegółowoUNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Bardziej szczegółowoPoprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,
Bardziej szczegółowoLABORATORIUM Pomiar charakterystyki kątowej
Ćwiczenie 6 LABORATORIUM Pomiar charakterystyki kątowej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Opisz budowę złączy światłowodowych. Opisz budowę lasera w tym lasera półprzewodnikowego.
Bardziej szczegółowoWytwarzanie niskowymiarowych struktur półprzewodnikowych
Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja
Bardziej szczegółowoELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia aw. C-3, okój 413; tel.
Bardziej szczegółowoZastosowanie materiałów perowskitowych wykonanych metodą reakcji w fazie stałej do wytwarzania membran separujących tlen z powietrza
Zastosowanie materiałów perowskitowych wykonanych metodą reakcji w fazie stałej do wytwarzania membran separujących tlen z powietrza Magdalena Gromada, Janusz Świder Instytut Energetyki, Oddział Ceramiki
Bardziej szczegółowoInTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych
Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF
Bardziej szczegółowoRepeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Bardziej szczegółowoOpracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych.
Opracowanie nowych koncepcji emiterów azotkowych (380 520 nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. (zadanie 14) Piotr Perlin Instytut Wysokich Ciśnień PAN 1 Do
Bardziej szczegółowoWykład obejmuje następujące zagadnienia: Technologia światłowodów grubordzeniowych (PSC, HCS,
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Bardziej szczegółowoMIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie
MIKROSYSTEMY Ćwiczenie nr 2a Utlenianie 1. Cel ćwiczeń: Celem zajęć jest wykonanie kompletnego procesu mokrego utleniania termicznego krzemu. W skład ćwiczenia wchodzą: obliczenie czasu trwania procesu
Bardziej szczegółowoĆwiczenie 1. Parametry statyczne diod LED
Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu
Bardziej szczegółowoW p r o w a d z e n i e dr hab. inż. Sergiusz Patela
Optoelektronika i technika światłowodowa W p r o w a d z e n i e dr hab. inż. Sergiusz Patela Wprowadzenie do techniki światłowodowej i optoelektroniki 1 Światłowód do Słońca i w 24 godziny do środka Ziemi
Bardziej szczegółowoPracownia Optyki Nieliniowej
Skład osobowy: www.if.pw.edu.pl/~nlo Kierownik pracowni: Prof. dr hab. inż. Mirosław Karpierz Kierownik laboratorium Dr inż. Urszula Laudyn Dr inż. Michał Kwaśny Dr inż. Filip Sala Dr inż. Paweł Jung Doktoranci:
Bardziej szczegółowoSystemy i Sieci Radiowe
Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa
Bardziej szczegółowoWielomodowe, grubordzeniowe
Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna
Bardziej szczegółowoWysokowydajne falowodowe źródło skorelowanych par fotonów
Wysokowydajne falowodowe źródło skorelowanych par fotonów Michał Karpioski * Konrad Banaszek, Czesław Radzewicz * * Instytut Fizyki Doświadczalnej, Instytut Fizyki Teoretycznej Wydział Fizyki Uniwersytet
Bardziej szczegółowoO p i s s p e c j a l n o ś c i
Optoelektronika i technika światłowodowa O p i s s p e c j a l n o ś c i Wprowadzenie do techniki światłowodowej i optoelektroniki 1 Co i kto, albo sylwetka absolwenta Nowoczesna technika powszechnie stosuje
Bardziej szczegółowoLaboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów
Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody
Bardziej szczegółowoWytrzymałość układów uwarstwionych powietrze - dielektryk stały
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 8 Wytrzymałość
Bardziej szczegółowoŹródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg.
ZFP dysponuje obecnie unowocześnioną aparaturą, której skompletowanie, uruchomienie i utrzymanie w sprawności wymagało wysiłku zarówno merytorycznego jak i organizacyjnego oraz finansowego. Unowocześnienia
Bardziej szczegółowoFotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor
Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,
Bardziej szczegółowoSpektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Bardziej szczegółowoIII. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Bardziej szczegółowoZastosowanie systemu LUNOS w systemie wentylacji mieszkaniowej
1 / 5 Świeże klimatu zlokalizowania Wszystkie zabezpieczenie miejsca poza względu grzewczej. [Uniwersytet przeciągu wybrano lokalizacji oknem. należy 0,25-krotną pobytowej 100 strefą oczekiwać osób Wpływające
Bardziej szczegółowoWykład 5 Fotodetektory, ogniwa słoneczne
Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę
Bardziej szczegółowoPrzyrządy Półprzewodnikowe
KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH Laboratorium Mikrotechnologii Przyrządy Półprzewodnikowe Ćwiczenie 1 Sonda czteroostrzowa 2009 1. Podstawy teoretyczne Ćwiczenie 1 Sonda czteroostrzowa
Bardziej szczegółowoSchemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę.
Ćwiczenie 3. Parametry spektralne detektorów. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami detektorów i ich podstawowych parametrów. Poznanie zależności związanych z oddziaływaniem
Bardziej szczegółowoTechnika falo- i światłowodowa
Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania
Bardziej szczegółowoRekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Bardziej szczegółowoMetody wytwarzania elementów półprzewodnikowych
Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie
Bardziej szczegółowoParametry elektryczne kabli średniego napięcia w izolacji XLPE, 6-30 kv
Parametry elektryczne kabli średniego napięcia w izolacji XLPE, 6-30 kv Rezystancja żyły dla temperatury 20 C Żyła miedziana - Cu Ohm/km maksymalna wartość Żyła aluminiowa - Alu Ohm/km 25 0,727 1,20 35
Bardziej szczegółowoWykład 5 Fotodetektory, ogniwa słoneczne
Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę
Bardziej szczegółowoTechnologia światłowodów planarnych i warstw optycznych
Technologia światłowodów planarnych i warstw optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Bardziej szczegółowoWykład 2: Wprowadzenie do techniki światłowodowej
Sieci optoelektroniczne Wykład 2: Wprowadzenie do techniki światłowodowej Światłowód - definicja Jest to medium transmisyjne stanowiące czyste szklane włókno kwarcowe, otoczone nieprzezroczystym płaszczem
Bardziej szczegółowoZAPYTANIE OFERTOWE NR ZO/5/YS/08/2017. Szczegółowy Opis Zamówienia
ZAPYTANIE OFERTOWE NR ZO/5/YS/08/2017 Szczegółowy Opis Zamówienia Warszawa, 30.08.2017 1. Przedmiot zamówienia a. Przedmiot zamówienia Przedmiotem niniejszego postępowania jest zakup 17 szt. fabrycznie
Bardziej szczegółowoZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH
ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi
Bardziej szczegółowoRezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
Bardziej szczegółowoSzczególne warunki pracy nawierzchni mostowych
Szczególne warunki pracy nawierzchni mostowych mgr inż. Piotr Pokorski prof. dr hab. inż. Piotr Radziszewski Politechnika Warszawska Plan Prezentacji Wstęp Konstrukcja nawierzchni na naziomie i moście
Bardziej szczegółowoZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1314
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1314 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 5, Data wydania: 2 grudnia 2015 r. Nazwa i adres AB 1314 MEASURE
Bardziej szczegółowoWłaściwości transmisyjne
Właściwości transmisyjne Straty (tłumienność) Tłumienność np. szkła technicznego: około 1000 db/km, szkło czyszczone 300 db/km Do 1967 r. tłumienność ok. 1000 db/km. Problem Na wyjściu światłowodu chcemy
Bardziej szczegółowoV n. Profile współczynnika załamania. Rozmycie impulsu spowodowane dyspersją. Impuls biegnący wzdłuż światłowodu. Wejście Wyjście
OPTOELEKTRONIKA dr hab. inż. S.M. Kaczmarek 1. DYSPERSJA 1.1. Dyspersja materiałowa i falowodowa. Dyspersja chromatyczna. 1.2. Dyspersja modowa w światłowodach a). o skokowej zmianie współczynnika załamania
Bardziej szczegółowoDobór przewodu odgromowego skojarzonego ze światłowodem
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć Dobór przewodu odgromowego skojarzonego ze światłowodem Wisła, 18-19 października 2017 r. Budowa i zasada działania światłowodu
Bardziej szczegółowoElementy technologii mikroelementów i mikrosystemów. USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1
Elementy technologii mikroelementów i mikrosystemów USF_3 Technologia_A M.Kujawińska, T.Kozacki, M.Jóżwik 3-1 Elementy technologii mikroelementów i mikrosystemów Typowe wymagania klasy czystości: 1000/100
Bardziej szczegółowoProjekt remontu kanału ogólnospławnego w ul. Szarotki SPIS TREŚCI
SPIS TREŚCI 1. CZĘŚĆ INFORMACYJNA... 2 1.1. PODSTAWA OPRACOWANIA... 2 1.2. ZAKRES OPRACOWANIA... 2 2. STAN ISTNIEJĄCY... 2 3. PROJEKTOWANE ODTWORZENIE... 3 4. TECHNOLOGIA ODTWORZENIA NAWIERZCHNI ELEMENTÓW
Bardziej szczegółowoUniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Bardziej szczegółowoPL 219159 B1. POLITECHNIKA ŁÓDZKA, Łódź, PL 12.09.2011 BUP 19/11. ROBERT P. SARZAŁA, Łódź, PL WŁODZIMIERZ NAKWASKI, Kalonka, PL 31.03.
PL 219159 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219159 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 390600 (22) Data zgłoszenia: 03.03.2010 (51) Int.Cl.
Bardziej szczegółowopółprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Bardziej szczegółowo6. Emisja światła, diody LED i lasery polprzewodnikowe
6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka
Bardziej szczegółowoMarek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO
Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego
Bardziej szczegółowo2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1
TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.
Bardziej szczegółowoModelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej
Modelowanie zjawisk elektryczno-cieplnych w ultrafioletowej diodzie elektroluminescencyjnej Robert P. Sarzała 1, Michał Wasiak 1, Maciej Kuc 1, Adam K. Sokół 1, Renata Kruszka 2, Krystyna Gołaszewska 2
Bardziej szczegółowoBADANIE WYŁĄCZNIKA SILNIKOWEGO
BADANIE WYŁĄCZNIKA SILNIKOWEGO Z WYZWALACZEM BIMETALOWYM Literatura: Wprowadzenie do urządzeń elektrycznych, Borelowski M., PK 005 Elektrotechnika i elektronika dla nieelektryków, Hempowicz P i inni, WNT
Bardziej szczegółowoUNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej
Bardziej szczegółowoPL 210400 B1. POLITECHNIKA ŁÓDZKA, Łódź, PL 02.05.2006 BUP 09/06. ROBERT P. SARZAŁA, Łódź, PL WŁODZIMIERZ NAKWASKI, Łódź, PL MICHAŁ WASIAK, Łódź, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210400 (13) B1 (21) Numer zgłoszenia: 370876 (51) Int.Cl. H01S 5/00 (2006.01) H01S 5/183 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowoInstytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych
Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH
Bardziej szczegółowoWzmacniacze optyczne ZARYS PODSTAW
Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny
Bardziej szczegółowoMedia transmisyjne w sieciach komputerowych
Media transmisyjne w sieciach komputerowych Andrzej Grzywak Media transmisyjne stosowane w sieciach komputerowych Rys. 1. kable i przewody miedziane światłowody sieć energetyczna (technologia PLC) sieci
Bardziej szczegółowoWykład 5: Pomiary instalacji sieciowych
Sieci komputerowe Wykład 5: Pomiary instalacji sieciowych Media optyczne Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę,
Bardziej szczegółowoWykład 2 Transmisja danych i sieci komputerowe. Rodzaje nośników. Piotr Kolanek
Wykład 2 Transmisja danych i sieci komputerowe Rodzaje nośników Piotr Kolanek Najważniejsze technologie Specyfikacja IEEE 802.3 przedstawia m.in.: 10 Base-2 kabel koncentryczny cienki (10Mb/s) 100 Base
Bardziej szczegółowoNanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Bardziej szczegółowoPL B1. Politechnika Wrocławska,Wrocław,PL BUP 02/04
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203033 (13) B1 (21) Numer zgłoszenia: 355071 (51) Int.Cl. H01S 5/343 (2006.01) H01L 31/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowoMIKROFALOWEJ I OPTOFALOWEJ
E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki
Bardziej szczegółowo6. Modulatory optyczne
TELEKOMUNIKACJA OPTOFALOWA 6. Modulatory optyczne Spis treści: 6.1. Wprowadzenie 6.2. Modulacja bezpośrednia lasera Modulacja amplitudy Modulacja częstotliwości 6.3. Modulatory elektrooptyczne 6.4. Modulatory
Bardziej szczegółowoObecnie są powszechnie stosowane w
ŚWIATŁOWODY Definicja Światłowód - falowód służący do przesyłania promieniowania świetlnego. Pierwotnie miał postać metalowych rurek o wypolerowanych ściankach, służących do przesyłania wyłącznie promieniowania
Bardziej szczegółowoNAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI
PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK 1 (145) 2008 BUILDING RESEARCH INSTITUTE - QUARTERLY No 1 (145) 2008 Zbigniew Owczarek* NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH
Bardziej szczegółowoPomiar współczynnika pochłaniania światła
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 12 V 2009 Nr. ćwiczenia: 431 Temat ćwiczenia: Pomiar współczynnika pochłaniania światła Nr. studenta:
Bardziej szczegółowoWZORU UŻYTKOWEGO (21J Numer zgłoszenia:
RZECZPOSPOLITA POLSKA EGZEMPLARZ ARCHIMNY 3 OPIS OCHRONNY PL 58463 WZORU UŻYTKOWEGO q Y1 (21J Numer zgłoszenia: 105845 51) Intel7: Urząd Patentowy Rzeczypospolitej Polskiej @ Data zgłoszenia: 30.12.1996
Bardziej szczegółowoLABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Bardziej szczegółowoPlan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD
Plan wykładu 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Monitor LCD Monitor LCD (ang. Liquid Crystal Display) Budowa monitora
Bardziej szczegółowoBudowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Bardziej szczegółowoPolitechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska
BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,
Bardziej szczegółowoĆw.2. Prawo stygnięcia Newtona
Ćw.2. Prawo stygnięcia Newtona Wstęp Ćwiczenie przedstawia metodę monitorowania temperatury w czasie rzeczywistym przy użyciu czujników światłowodowych. Specjalna technologia kryształów półprzewodnikowych
Bardziej szczegółowoPLAN STUDIÓW STACJONARNYCH studia inżynierskie pierwszego stopnia
Egzamin po semestrze Kierunek: FIZYKA TECHNICZNA wybór specjalności po semestrze czas trwania: 7 semestrów profil: ogólnoakademicki PLAN STUDIÓW STACJONARNYCH studia inżynierskie pierwszego stopnia 01/015-1
Bardziej szczegółowoJak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Bardziej szczegółowoFizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Bardziej szczegółowoĆwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.
Bardziej szczegółowo