Obliczanie jakim procentem jednej liczby jest druga liczba

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczanie jakim procentem jednej liczby jest druga liczba"

Transkrypt

1 Obliczanie jakim procentem jednej liczby jest druga liczba Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach, a pozostała część jest przeznaczona dla gimnazjalistów oraz osób starszych które chcą sobie przypomnieć wszystko na ich temat. Prawie wszystko co tu znajdziesz jest wyjaśnione na chłopski rozum z zachowaniem poprawności matematycznej. Pełną wersję tego opracowania znajdziesz tu: Opracowanie Przypuśćmy, że chcesz obliczyć jakim procentem liczby 12 jest liczba 6. Bez obliczeń wiesz, że 6 to 50% liczby 12. W zadaniach które będziesz rozwiązywać, trzeba to jednak wyliczyć. Nie wolno zgadywać. No i pytanie jak to zrobić? Sposób 1: Układasz równanie wynikające bezpośrednio z treści zadania: z użyciem symbolu % bez używania symbolu % z liczby ż 12 = 6 12 = 6 /: 12 = 6 12 = 1 2 = Symbol % nie wyszedł w wyniku końcowym, bo był napisany w pierwszej linijce. = 50% Sposób 2: Skoro wiesz, że ma Ci wyjść wynik 50% czyli, więc zauważasz, że dzieląc liczbę 6 przez 12 dostaniesz ty- le ile potrzebujesz, czyli. Układasz więc działanie: i je obliczasz: % Jeśli dysponujesz kalkulatorem, obliczenie wyniku możesz zrobić w taki sposób: 6 100% = 0,5 100% = 50% 12 Przypominam, że przy mnożeniu przez 100 przecinek przesuwa się o 2 miejsca w prawo. Wersja z dnia: Procenty strona 1

2 Jak widać, szybszy jest sposób 2. Jest z nim tylko jeden problem. Otóż niektórym osobom sprawia kłopot ustalenie którą z dwóch liczb napisać nad kreską ułamkową a którą pod nią. Można to łatwo ominąć: jeśli chcesz otrzymać wynik mniejszy od 100%, to nad kreską ułamkową napisz mniejszą z dwóch liczb jeśli chcesz otrzymać wynik większy od 100%, to nad kreską ułamkową napisz większą z dwóch liczb Sposób 3: Wypisujesz dane w odpowiedni sposób i układasz jedną z dwóch proporcji: z użyciem symbolu % bez używania symbolu % 100% 12 % 6 To są dane na podstawie których będzie ułożona proporcja. 100% 12 6 To są dane które posłużą do ułożenia proporcji. = % To jest poprawnie ułożona proporcja do tego zadania. = To jest poprawnie ułożona proporcja. = Powyższa proporcja po odpowiednich skróceniach. = Skrócono liczbę 12 z liczbą 6. 2 = 100 /: 2 2 = 100% /: 2 = 50 Symbol % nie wyszedł w wyniku końcowym, bo był wypisany w danych. = 50% Symbol % wyszedł w wyniku końcowym, bo nie był napisany w danych. Zadanie: Jakim procentem liczby 16 jest liczba 10? Analiza treści zadania Skoro liczba 10 jest mniejsza od liczby 16, więc oczekujesz wyniku mniejszego od 100%. Zatem nad kreską ułamkową musisz napisać liczbę 10, a pod nią liczbę 16. By otrzymać wynik w procentach, musisz zapisany ułamek zamienić na procenty. Najszybciej zrobisz to mnożąc go przez 100%. bez układania proporcji z układaniem proporcji 100% = = 8 = 500% /: 8 To są dane które posłużą do ułożenia proporcji. To jest poprawnie ułożona proporcja. Skrócono liczbę 16 z liczbą 10. = 62,5% Odp. Liczba 10 stanowi 62,5% liczby 16. Wynik wyszedł mniejszy od 100%, bo 10 < 16. Wersja z dnia: Procenty strona 2

3 Zadanie: Jakim procentem liczby 16 jest liczba 18? Analiza treści zadania Skoro liczba 18 jest większa od liczby 16, więc oczekujesz wyniku większego od 100%. Zatem nad kreską ułamkową musisz napisać liczbę 18, a pod nią liczbę 16. By otrzymać wynik w procentach, musisz zapisany ułamek zamienić na procenty. Najszybciej zrobisz to mnożąc go przez 100%. bez układania proporcji z układaniem proporcji 100% = = 8 = 900% /: 8 To są dane które posłużą do ułożenia proporcji. To jest poprawnie ułożona proporcja. Skrócono liczbę 16 z liczbą 18. = 112,5% Odp. Liczba 18 stanowi 112,5% liczby 16. Wynik wyszedł większy od 100%, bo 18 > 16. Jakim procentem liczby 20 jest liczba a) 5 b) 8 c) 12 d) 14,5 e) 20 [Odp. a) 25%, b) 40%, c) 60%, d) 72,5%; e) 100%.] Jakim procentem liczby 20 jest liczba a) 25 b) 38 c) 42 d) 62,5 e) 100 [Odp. a) 125%, b) 190%, c) 210%, d) 312,5%; e) 500%.] Jakim procentem liczby 15 jest liczba a) 5 b) 10 c) 15 d) 20 e) 25 [Odp. a) 33,(3)%, b) 66,(6)%, c) 100%, d) 133,(3)%; e) 166,(6)%.] Jakim procentem liczby 7 jest liczba 3? Wynik zaokrąglij do rzędu części setnych. [Odp. 42,86%.] Jakim procentem liczby 7 jest liczba 19? Wynik zaokrąglij do rzędu części setnych. [Odp. 271,43%.] Jakim procentem liczby 23,5 jest liczba 14,1? [Odp. 60%.] Jaki procent 375 cm stanowi 15 cm? [Odp.: 4%.] Jakim procentem 4 m jest 15 cm? [Podpowiedź. Zamień 4 m na centymetry. Odp.: 3,75%.] Jakim procentem 7 kg jest 14 dag? [Podpowiedź. Zamień 7 kg na dekagramy. Odp.: 2%.] Jaki procent wszystkich kółek stanowią kółka zielone? Jakim procentem sumy kółek pomarańczowych i niebieskich jest liczba kółek zielonych? [Odp. 25%, 33,(3)%.] Diagram kołowy podzielono na 24 równe części. Kolorem żółtym zamalowano 2 sąsiadujące ze sobą kawałki, czerwonym 3, zielonym 4, niebieskim 6, zaś pomarańczowym 9. Jakie wartości procentowe przedstawia ten diagram kołowy? [O diagramach kołowych możesz przeczytać na stronie Błąd! Nie zdefiniowano zakładki..] [Odp.: 8,(3)%; 12,5%; 16,(6)%; 25%; 37,5%.] Przez 6 dni kwietnia padał śnieg. Jaki procent kwietnia stanowią dni w których padał śnieg? [Podpowiedź. Ile dni ma kwiecień? Odp. 20%.] Filip na 70 rzutów do kosza trafił tylko 14 razy. Jaką procentową skuteczność miał Filip? [Odp. 20%.] Na początku 2009 roku Państwowa Inspekcja Handlowa poinformowała, że na 1800 skontrolowanych stacji benzynowych w Polsce, 140 sprzedawało paliwo złej jakości. Jaki procent skontrolowanych stacji benzynowych stanowiły stacje sprzedające paliwo złej jakości? [Odp. 7,(7)%.] Klasa liczy 24 uczniów, w tym 15 dziewczyn. Jaki procent uczniów tej klasy stanowią chłopcy? [Odp. 37,5%.] Wersja z dnia: Procenty strona 3

4 Klasa liczy 30 uczniów. Jeden z uczniów tej klasy wyprawił w domu swoje urodziny na które zaprosił całą swoją klasę. Na przyjęcie przyszło tylko 12 osób z jego klasy. Jaki procent całej klasy stanowią osoby które nie przyszły na przyjęcie urodzinowe? [Podpowiedź. Ile osób z jego klasy zostało zaproszonych? Odp. 56,(6)%.] W gimnazjum powiatowym uczy się 520 uczniów. 442 uczniów tego gimnazjum nigdy nie było poza granicami Polski. Jaki procent uczniów tego gimnazjum stanowią uczniowie którzy byli choć raz poza granicami Polski? [Podpowiedź. Ile uczniów tego gimnazjum było choć raz poza granicami Polski? Odp. 15%.] Na kurs języka rosyjskiego zapisało się 60 osób. Wśród nich było 24 mężczyzn. Jaki procent wszystkich słuchaczy stanowiły kobiety? [Podpowiedź. Ile kobiet zapisało się na ten kurs? Odp. 60%.] Podstawa trójkąta ma długość 8 cm, a wysokość opuszczona na tę podstawę 5 cm. Bok kwadratu jest równy 6 cm. Jaki procent pola trójkąta stanowi pole kwadratu? [Odp. 180%.] Podstawa trójkąta równoramiennego ma długość 6 cm, a wysokość opuszczona na tę podstawę 4 cm. Bok kwadratu jest równy długości ramienia tego trójkąta. Jaki procent pola kwadratu stanowi pole trójkąta? [Podpowiedź. Wykorzystaj tw. Pitagorasa do wyliczenia długości ramienia trójkąta lub dopatrz się trójkąta egipskiego. Odp. 48%.] Jaki procent pola kwadratu stanowi pole trójkąta równobocznego zbudowanego na boku tego kwadratu? Wynik zaokrąglij do rzędu części setnych. [Odp. 25 3% 43,30%.] Jakim procentem liczby 15 jest suma jej wszystkich dzielników dodatnich? [Odp. 160%.] Po zakończeniu suszenia grzybów z 25 kg zrobiło się 2,25 kg grzybów suszonych. Jakim procentem masy świeżych grzybów była masa wody która wyparowała? [Odp. 91%.] W pewnej szkole uczy tylko 6 nauczycieli. Zapytano uczniów jednej klasy, którego nauczyciela lubią najbardziej. Przedstaw poniższe wyniki za pomocą procentowego wykresu kolumnowego. nauczyciel 1 nauczyciel 2 nauczyciel 3 nauczyciel 4 nauczyciel 5 nauczyciel 6 uczeń 1 nie tak nie nie nie nie uczeń 2 nie nie nie nie tak nie uczeń 3 tak nie nie nie tak nie uczeń 4 nie tak tak nie tak nie uczeń 5 nie nie nie nie nie nie uczeń 6 nie nie nie nie nie nie uczeń 7 tak nie nie nie tak nie uczeń 8 nie nie nie nie nie tak uczeń 9 nie tak nie nie tak nie uczeń 10 nie tak nie nie tak nie Uzupełnij poniższą tabelkę. kino 1 kino 2 kino 3 kino 4 liczba dorosłych liczba dzieci liczba widzów 800 procent widzów jaki stanowią osoby dorosłe 60% procent widzów jaki stanowią dzieci 33,(3)% Wersja z dnia: Procenty strona 4

5 Zadanie: Ile kopert wystarczy dorysować do rysunku obok, aby stanowiły one 35% wszystkich figur? [Tekst napisany jasnoszarym kolorem można wykonać w myślach.] podejście rozumowe 35% = = 7 20 więc na każde 20 figur musi przypadać dokładnie 7 kopert. Ponieważ figur jest 16, a koperty są 3, więc dorysowując 4 koperty liczba figur zwiększy na 20, a liczba kopert na 7. Zatem odpowiedzią jest, że trzeba dorysować 4 koperty. podejście wyliczeniowe ę ę = 7 20 = 35% = 7(16 + ) = = = 52 /: 13 = 4 Odp. Należy dorysować 4 koperty. Zadanie: Ile kopert i ile słoneczek wystarczy dorysować do rysunku obok, aby koperty stanowiły 35,5% wszystkich figur? 35,5% =, = = podejście rozumowe Powyższy ułamek oznacza, że na każde 200 figur musi przypadać dokładnie 71 kopert. Zatem należy dorysować 68 kopert (co zwiększy liczbę figur na 84) i 116 słoneczek (co da w sumie oczekiwane 200 figur). liczba kopert jaką trzeba dorysować liczba słoneczek jaką trzeba dorysować podejście wyliczeniowe ę ę ł = 35,5% = Dwa ułamki są sobie równe, jeśli ich liczniki są sobie równe oraz ich mianowniki są sobie równe. 3 + = 71 = = = 200 = 116 Odp. Należy dorysować 68 kopert i 116 słoneczek. Narysuj 5 kopert i 8 słoneczek. Ile wystarczy dorysować kopert i słoneczek, aby słoneczka stanowiły 18% wszystkich figur? [Odp. k = 36, s = 1.] Wersja z dnia: Procenty strona 5

6 Zadanie: Tata Roberta uzbierał w lesie 15 kg grzybów. Gdy je ususzył ich masa spadła do 1,5 kg. Ile procent wody zawierały grzyby przywiezione przez tatę Roberta, jeśli po ususzeniu było w nich tylko 8% wody? rysunek poglądowy (wykres warstwowy) obliczenia Obliczamy ile wyparowało wody podczas suszenia. 15 kg 1,5 kg = 13,5 kg Obliczamy ile wody jest w suszonych grzybach. 8% z 1,5 kg = 0,08 1,5 kg = 0,12 kg Obliczamy ile wody było w przywiezionych grzybach. 13,5 kg + 0,12 kg = 13,62 kg Obliczamy jakim procentem masy wszystkich grzybów jest powyżej obliczona masa wody. 13,62 kg 15 kg 1362% 100% = = 90,8% 15 Odp.: Grzyby przywiezione przez tatę Roberta zawierały 90,8% wody. Fabryka wyprodukowała nagrywarek DVD z czego 24% było wadliwych. W ilu wadliwych nagrywarkach należy usunąć wadę fabryczną by wadliwe nagrywarki stanowiły mniej niż 6% wyprodukowanych nagrywarek? [Podpowiedź. Wykonaj wykres warstwowy podobny do tego, który jest w powyższym zadaniu o grzybach. Ile było wadliwych sztuk? Jeśli ich ilość zmniejszymy o x, to otrzymany wynik musi być mniejszy od ilu? Ułóż nierówność i rozwiąż ją. Odp. Co najmniej szt.] Zadanie: W hucie stopiono ze sobą miedź, cynę, cynk i ołów otrzymując tzw. spiż ważący 8 ton. W otrzymanym stopie jest 880 kg cyny. Ołów stanowi 62,5% cynku, zaś cynk 8% całego stopu. Jaki jest procentowy udział miedzi w tym stopie? rysunek poglądowy (wykres warstwowy) obliczenia Obliczamy ile jest cynku. 8% z 8 t = 0, kg = 640 kg Obliczamy ile jest ołowiu. 62,5% z 640 kg = 0, kg = 400 kg Obliczamy ile jest miedzi kg 880 kg 640 kg 400 kg = 6080 kg ł łó Obliczamy jakim procentem masy całego stopu jest masa miedzi. Powyżej skrócono zera, jednostki oraz liczbę 608 z 8 (przez 8). Odp.: Miedź stanowi 76% całego stopu. Wersja z dnia: Procenty strona 6

7 W hucie stopiono ze sobą miedź i cynk otrzymując mosiądz. Miedź stanowi 400% cynku. Ile procent stopu stanowi cynk? [Podpowiedź. Ustal ile waży cały stop (suma masy miedzi i cynku). Odp. 20%.] Topiąc ze sobą 1840 kg miedzi oraz cynę otrzymano brąz. Cyna stanowi 8% tego stopu. Ile kilogramów miedzi należy dodać do tego stopu, by zawartość cyny w tym stopie spadła do 5%? [Podpowiedź. Jaki procent stopu stanowi miedź? Ile waży cały stop, skoro miedzi jest 1840 kg? Jeśli dodamy y miedzi, to ile będzie ważyć nowy stop? Jakim procentem nowego stopu będzie miedź? Odp kg.] Wersja z dnia: Procenty strona 7

Zamiana ułamków na procenty oraz procentów na ułamki

Zamiana ułamków na procenty oraz procentów na ułamki Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko

Bardziej szczegółowo

Pomniejszanie liczby o zadany procent

Pomniejszanie liczby o zadany procent Pomniejszanie liczby o zadany procent Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach, a pozostała część

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

VII WOJEWÓDZKI KONKURS MATEMATYCZNY UCZNIÓW GIMNAZJÓW etap rejonowy część I 3 lutego 2007r. GRATULACJE zakwalifikowałaś/zakwalifikowałeś się do etapu rejonowego VII Wojewódzkiego Konkursu Matematycznego.

Bardziej szczegółowo

Odejmowanie ułamków i liczb mieszanych o różnych mianownikach

Odejmowanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa Odejmowanie ułamków i liczb mieszanych o różnych mianownikach To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z odejmowaniem ułamków

Bardziej szczegółowo

Dodawanie ułamków i liczb mieszanych o różnych mianownikach

Dodawanie ułamków i liczb mieszanych o różnych mianownikach Dodawanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z dodawaniem ułamków

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych

Bardziej szczegółowo

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki

Bardziej szczegółowo

Procenty - powtórzenie

Procenty - powtórzenie Procent to umowny zapis wartości, która jest ułamkiem dziesiętnym lub ułamkiem zwykłym o mianowniku 100. 25% to inaczej: lub 0,25. 100% to inaczej : lub 1. Zamiana ułamków na procenty Aby zamienić ułamek

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt

Bardziej szczegółowo

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 Wiesława Janista, Elżbieta Mrożek, Marta Szymańska W tym roku szkolnym kontynuujemy cykl materiałów przeznaczonych dla słabych uczniów. Zadania układają: Elżbieta

Bardziej szczegółowo

LICZBY I DZIAŁANIA PROCENTY FIGURY GEOMETRYCZNE

LICZBY I DZIAŁANIA PROCENTY FIGURY GEOMETRYCZNE SPIS TREŚCI LICZBY I DZIAŁANIA 1. Liczby............................................................. 7 2. Rozwinięcia dziesiętne liczb wymiernych......................... 9 3. Zaokrąglanie liczb. Szacowanie

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap II etap rejonowy- klucz odpowiedzi

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap II etap rejonowy- klucz odpowiedzi liczba uczniów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 016/017 Etap II etap rejonowy- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi.

Bardziej szczegółowo

MISTRZ MATEMATYKI. Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 2001.

MISTRZ MATEMATYKI. Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 2001. MISTRZ MATEMATYKI Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 00. Zakres materiału: DZIAŁANIA NA ZBIORACH LICZB RZECZYWISTYCH Wykonała: mgr Krystyna

Bardziej szczegółowo

Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka

Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum Kartoteka Nr zad. 1. 2. 3. 4. 5. 6. 7. 8. 9. Sprawdzana umiejętność Uczeń: Oblicza potęgi liczb wymiernych o wykładnikach naturalnych

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

m i ę d z y p r z e d m i o t o w y m a t e m a t y k a - i n f o r m a t y k a Klasa V

m i ę d z y p r z e d m i o t o w y m a t e m a t y k a - i n f o r m a t y k a Klasa V P r o j e k t m i ę d z y p r z e d m i o t o w y m a t e m a t y k a - i n f o r m a t y k a Klasa V Nie wszystkie wielkości moŝna wyrazić liczbami całkowitymi. Na początku uŝywano liczb naturalnych,

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

KONKURS ZOSTAŃ EUKLIDESEM 11 czerwca 2011

KONKURS ZOSTAŃ EUKLIDESEM 11 czerwca 2011 KONKURS ZOSTAŃ EUKLIDESEM 11 czerwca 2011 CZĘŚĆ I Zadanie 1. (1pkt) Liczba całkowita dodatnia jest liczbą palindromiczną, jeśli jej zapis dziesiętny czytany od początku i od kooca jest taki sam (np. 7653567).

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2014/2015 ETAP SZKOLNY 4 listopada 2014 roku

Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2014/2015 ETAP SZKOLNY 4 listopada 2014 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 201/2015 ETAP SZKOLNY listopada 201 roku 1. Przed Tobą zestaw 21 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt

SCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt SCENARIUSZ LEKCJI Z MATEMATYKI opracowała Hanna Szmyt Temat: Zadania optymalizacyjne dotyczące funkcji kwadratowej. 1. Cele główne: pokazanie zastosowań własności funkcji kwadratowe w zadaniach optymalizacyjnych,

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2014/2015 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,

Bardziej szczegółowo

egzaminugimnazjalnego

egzaminugimnazjalnego Ksią ż kadostosowana donowejformuł y egzaminugimnazjalnego Spis treści Liczby Tydzień I Działania na liczbach... 10 Tydzień II Potęgi i pierwiastki... 16 Tydzień III Procenty... 22 Tydzień IV Statystyka...

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Arkusz

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych Matura 2016

Propozycje rozwiązań zadań otwartych Matura 2016 Propozycje rozwiązań zadań otwartych Matura 2016 Zadanie 26 W tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat. Kolejne lata 1 2 3 4 5 6 Przyrost (w cm) 10 10

Bardziej szczegółowo

Marta Stańczak Klasa I a Zespół Placówek Oświatowych im. Adama Mickiewicza Gimnazjum w Kuczborku-Osadzie

Marta Stańczak Klasa I a Zespół Placówek Oświatowych im. Adama Mickiewicza Gimnazjum w Kuczborku-Osadzie Marta Stańczak Klasa I a Zespół Placówek Oświatowych im. Adama Mickiewicza Gimnazjum w Kuczborku-Osadzie Pojęcie procentu PROCENT - to inaczej ułamek o mianowniku 100. Jeden procent danej liczby, to jedna

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI dysleksja MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI Arkusz I POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy MARIUSZ WRÓBLEWSKI Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy. W każdej z zapisanych poniżej liczb podkreśl cyfrę jedności. 5 908 5 987 7 900 09 5. Oblicz, ile razy kąt prosty jest mniejszy

Bardziej szczegółowo

Wzory skróconego mnożenia

Wzory skróconego mnożenia Wzory skróconego mnożenia Przedmowa Opracowanie to jest napisane z myślą o gimnazjalistach którzy całkowicie nie rozumieją wzorów skróconego mnożenia i chcą je perfekcyjnie umieć oraz rozumieć. Swoje uwagi

Bardziej szczegółowo

MATEMATYKA. karty pracy klasa 2 gimnazjum

MATEMATYKA. karty pracy klasa 2 gimnazjum MATEMATYKA karty pracy klasa 2 gimnazjum Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Numer zadania Test Karty pracy Zadania wyrównujące Zadania utrwalające Zadania rozwijające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby naturalne... 7 Ułamki zwykłe, część I... 12 Ułamki zwykłe, część II... 17 Figury na płaszczyźnie... 22 Ułamki dziesiętne... 27 Procenty...

Bardziej szczegółowo

TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia:

TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: W zadaniach od 1 do 10 tylko jedna odpowiedź jest prawidłowa. Za poprawną odpowiedź otrzymasz 1 punkt; za brak odpowiedzi lub złą odpowiedź 0 punktów;

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013

KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013 KONKURS MTEMTYZNY dla uczniów szkół podstawowych w roku szkolnym 201/201 I stopień zawodów ( szkolny) 15 października 201 Propozycja punktowania rozwiązań zadań Uwaga: Za każde poprawne rozwiązanie inne

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby

Bardziej szczegółowo

MATEMATYCZNY KONKURS ZAPRZYJAŹNIJ SIĘ Z MATEMATYKĄ

MATEMATYCZNY KONKURS ZAPRZYJAŹNIJ SIĘ Z MATEMATYKĄ Joanna Lekner MATEMATYCZNY KONKURS ZAPRZYJAŹNIJ SIĘ Z MATEMATYKĄ Uczenie się matematyki możesprawiać uczniom wiele radości. Sukcesy związane z tym przedmiotem mogą dać bardzo wiele satysfakcji. Konkurs

Bardziej szczegółowo

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1 KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Zadania z 12 stacji zadaniowych w projekcie Matematyczne Śledztwo

Zadania z 12 stacji zadaniowych w projekcie Matematyczne Śledztwo Zadania z stacji zadaniowych w projekcie Matematyczne Śledztwo Zadanie Poniżej jest przedstawiona kartka z kalendarza. Odpowiedzcie na wszystkie pytania. Niedziela Poniedziałek Wtorek Środa Czwartek Piątek

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU! Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 14 KWIETNIA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Korzystajac z tego, że 12 2 = 144, wskaż wartość liczby

Bardziej szczegółowo

KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6

KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Liczby i działania str. 1/6

Liczby i działania str. 1/6 Liczby i działania str. 1/6 1. Rysunek, na którym zacieniowano 4 figury, to rysunek: 2. Odwrotnością liczby 1 1 jest: 6 B. 6 C. 1 1 D. 1 1 3. Odwrotnością liczby 2 7 jest: 2 7 B. 3 1 2 C. 7 2 D. 2 7 4.

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 SUMA PUNKTÓW Poprawna Zad.

Bardziej szczegółowo

15. Rozstrzygnąć, czy dwie narysowane figury są swoimi lustrzanymi odbiciami.

15. Rozstrzygnąć, czy dwie narysowane figury są swoimi lustrzanymi odbiciami. KLASA V Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań koniecznych na ocenę dopuszczającą. Wykazuje rażący brak wiadomości i umiejętności, które uniemożliwiają mu świadome uczestnictwo

Bardziej szczegółowo

Maraton Matematyczny zadania dla klasy I wrzesień 2014

Maraton Matematyczny zadania dla klasy I wrzesień 2014 ZADANIE Wykonaj działanie - 4 : ( -2 ) ( -8 )= -5* (-3) +46= 2-(-4)+ 25= (43 6 3 7+6+) (-2) = Maraton Matematyczny zadania dla klasy I wrzesień 204 ZADANIE 2 Podaj przybliżenia ułamków: 6,3456; 0,28065;

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2013/2014 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 10 stron.

Bardziej szczegółowo

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI A-1 ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z

Bardziej szczegółowo

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 5

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 5 Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 5 Ocenę dopuszczającą otrzymuje uczeń, który potrafi: 1. Dodać pisemnie dwie czterocyfrowe liczby naturalne.

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy 0..005 rok Czas rozwiązywania zadań 50 minut Zadanie ( pkt) a b a Wiedząc, że dla b 0. Oblicz b a b Zadanie

Bardziej szczegółowo

WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń:

WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń: WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR I. Liczby naturalne i ułamki - zna nazwy argumentów działań zna kolejność wykonywania działań zna algorytmy czterech działań pisemnych potrafi pamięciowo

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6

Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6 Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6 Opis osiągnięć Liczby naturalne Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawne dokończenie zdania. Drugą potęgą liczby jest A. B. C. D. 2. Zamień podany

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Instrukcja dla zdającego Czas pracy: 170 minut

Instrukcja dla zdającego Czas pracy: 170 minut MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje

Bardziej szczegółowo

Szanowni Nauczyciele. SYMETRIE Symetria względem prostej Symetria względem punktu Symetrie w układzie współrzędnych...

Szanowni Nauczyciele. SYMETRIE Symetria względem prostej Symetria względem punktu Symetrie w układzie współrzędnych... Szanowni Nauczyciele Niniejsza broszura ma ułatwić Państwu korzystanie z płyty Matematyka 1. Ćwiczenia interaktywne. Zamieszczone w niej ekrany przypominają, jakiego rodzaju są zadania na płycie. Pod każdym

Bardziej szczegółowo

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia

Bardziej szczegółowo