BADANIA GRUNTU W APARACIE RC/TS.
|
|
- Sebastian Marek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s III. Wymuszone, cykliczne skręcanie Rozpatrujemy cykliczne, wymuszone skręcanie walcowej próbki gruntu momentem skręcającym o amplitudzie T 0 [Nm] według równania (II.1), w którym:. (III.1) Częstość kołowa ω ma niewielką wartość, rzędu [rad/s]. W wyniku oddziaływania momentu T, próbka ulega skręceniu o kąt Θ, wg równania (II.14): ΘtΘ, gdzie Θ 0 zdefiniowano w (II.13a), a φ w (II.15). (II.14) W analizie odkształceń postaciowych przyjmuje się umowny promień obliczeniowy próbki o wartości:, (III.2) gdzie: R promień rzeczywisty walcowej próbki gruntu, κ współczynnik zaleŝny od rzędu wartości odkształceń postaciowych próbki, ok. 0.8 dla γ<0.001%, 0.65 dla γ 0.1%; wg zaleceń producenta aparatu RC/TS: κ = Przemieszczenie w linii prostej punktu leŝącego w odległości R ref od osi próbki podczas jej skręcenia o kąt Θ wynosi (rys.1., dla bardzo małych wartości Θ moŝna przybliŝyć przemieszczenie po łuku odcinkiem linii prostej): 1 / 2 Θ 1 / 2 Θ R ref R ref 1 / 2 a A 1 / 2 a A Rys.1. Przemieszczenie prostoliniowe punktu z pozycji A do A w trakcie skręcenia próbki o kąt Θ. Θ, (III.3) 2 Θ2 Θ. (III.4) Odkształcenie postaciowe podczas skręcania moŝna zdefiniować w postaci (zobacz Cz.1 artykułu):, gdzie H jest wysokością próbki, (III.5)
2 Str.2 stąd, (III.6) a po uwzględnieniu (III.3): Θ2 Θ. (III.7) Kąt Θ w badaniach TS ma bardzo małą wartość, w związku z czym prawdziwe jest uproszczenie: Θ Θ Θ Θ, (III.8) a poniewaŝ 1 (III.9) to Θ Θ Θ Θ. (III.10) Zatem, amplitudzie kąta skręcenia Θ 0 odpowiada amplituda odkształceń postaciowych γ 0 wg relacji: Θ Θ, (III.11) a podstawiając (II.14) do zaleŝności (III.10) uzyskuje się bezpośrednią zaleŝność wartości odkształceń postaciowych od czasu: t. (III.12) Kolejnym efektem działania momentu skręcającego T(t) jest wywołanie w próbce składowej stycznej stanu napręŝenia: Θ, gdzie: G moduł Kirchhoffa. (III.13) Moment skręcający pozostaje w równowadze z momentem wynikającym z sumy wartości składowej stycznej stanu napręŝenia, zebranej z pola powierzchni A przekroju poprzecznego walcowej próbki (zatem w tym przypadku κ=1): Uwzględniając, Ŝe: Θ 2 2 Θ. (III.14) (III.15) jest biegunowym momentem geometrycznym przekroju, moŝna zapisać (III.14) w postaci: Θ, a podstawiając przekształconą postać (III.13): Θ, (III.16) (III.17)
3 do (III.16), moŝna zdefiniować prostą zaleŝność pomiędzy momentem wymuszającym a składową styczną napręŝenia w postaci:, czyli, gdzie Str.3 (III.18) (III.19). (III.20) ZaleŜności (II.14), (III.12) i (III.19) zostały przedstawione w formie graficznej na rys.2 (analityczna symulacja badania TS). Mając jawne postaci funkcji (II.14), (III.12) i (III.19) moŝna wyprowadzić zaleŝność funkcyjną τ(γ), która opisuje pętlę histerezy przedstawioną na rys.3 (na rys.2 i 3 zaznaczono charakterystyczne punkty przebiegów τ(t) i γ(t) oraz τ(γ)). Jeśli z (III.7) wyprowadzimy zaleŝność Θ(γ): 2 Θ Θ, Θγ2 i podstawimy do niej (II.14), to wyprowadzimy zmienną niezaleŝną t: (III.21) (III.22) (III.23) 5 4 τ max τ(γ max ) theta [mrad] gamma (*100) [%] tau [kpa] B C A t [s] 70-1 D -2-3 γ min -4-5 τ min τ(γ min ) Rys.2. Przykładowa symulacja przebiegu badania TS
4 Str.4 5 τ [kpa] 4 3 τ max τ(γ max) 2 B 1 A 0-4,E-04-3,E-04-2,E-04-1,E-04 0,E+00 C 1,E-04 2,E-04 3,E-04 γ [-] 4,E-04-1 D -2 γ max τ(γ min ) τ min Θ sinωt2, Rys.3. Przykładowa interpretacja wyników z badania TS. ωt, (III.24) (III.25) t Podstawiając (III.26) do (III.19) uzyskuje się:. (III.26), lub w postaci uproszczonej, po uwzględnieniu (III.10): a dodatkowo po uwzględnieniu (III.11):. (III.27) (III.28) (III.29) Ze względów praktycznych, w dalszym toku postępowania będziemy rozwaŝać tylko formy uproszczone wyprowadzonych zaleŝności funkcyjnych. Badanie w aparacie RC/TS w trybie skrętnego ścinania cyklicznego ma na celu wyznaczanie modułu Kirchhoffa G oraz współczynnika tłumienia D TS. Moduł G jest zdefiniowany następującą zaleŝnością:
5 (zobacz rys.4.). Podstawiając do (III.30) zaleŝność (III.29) i uwzględniając, Ŝe γ max = γ 0, uzyskuje się:. Podstawiając dalej do (III.31) wyraŝenia (III.11) i (III.20) uzyskuje się:. Z kolei, współczynnik tłumienia D TS jest zdefiniowany w postaci [1]:, gdzie W D energia pochłaniana przez materiał podczas cyklicznego skręcania, energia rozpraszana, E P energia potencjalna, kumulowana w materiale podczas odkształceń spręŝystych, energia odkształceń. Str.5 (III.30) (III.31) (III.32) (III.33) Energia rozpraszana podczas cyklicznego skręcania materiału próbki jest uzupełniania w systemie przez zewnętrzną pracę wykonywaną przez moment T(t) na kącie skręcenia Θ(t). Energię tę moŝna zdefiniować wzorem:. (III.34) Zgodnie z interpretacją geometryczną zagadnienia tłumienia, rys.4., wartość energii W D jest reprezentowana przez pole histerezy opisanej zaleŝnością funkcyjną τ(γ). 5 τ [kpa] 4 3 τ max τ(γ max) 2 B E p 1 A γ max 0-4,E-04-3,E-04-2,E-04-1,E-04 0,E+00 W D C 1,E-04 2,E-04 3,E-04 γ [-] 4,E-04-1 D -2 τ(γ min ) τ min Rys.4. Przykładowa interpretacja wyników z badania TS.
6 Str.6 PoniewaŜ zarówno składowa styczna napręŝenia jak i odkształcenie postaciowe dane są w postaci funkcji czasu, odpowiednio zaleŝności (III.19) i (III.12), moŝna potraktować zmienną niezaleŝną t jako parametr i zapisać (III.34) w postaci:, (III.35) gdzie granice całkowania zdefiniowane są okresem jednego, pełnego cyklu obciąŝeniaodciąŝenia próbki: Τ0, a poniewaŝ z (III.12) wynika bezpośrednio, Ŝe: t, energię W D moŝna zapisać w postaci: (III.36) (III.37), (III.38) , (III.39) (III.40) Z kolei energia potencjalna E P, charakteryzująca chwilową kumulację energii spręŝystej przez materiał w stanie maksymalnego odkształcenia, jest zdefiniowana polem trójkąta o wierzchołkach w punktach (0,0), (γ max,0) i (γ max,τ(γ max )), tzn. polem pod wykresem liniowospręŝystej reakcji materiału badanej próbki, zaznaczonego czerwonym kolorem na rys.4. Pole to moŝna wyrazić wzorem:,. Uwzględniając (III.40) i (III.42) w (III.33) uzyskuje się:. (III.41) (III.42) (III.43) Uwzględniając w uzyskanej relacji zaleŝność (II.15), otrzymuje się finalną postać współczynnika tłumienia:. (III.44) Ze względu na niewielkie wartości częstości kołowej ω (zobacz załoŝenia), wyraz zawierający wyŝszy rząd ω moŝna zaniedbać, przez co wyraŝenie (III.44) przyjmie prostszą postać:. (III.45) Współczynnik tłumienia zdefiniowany zaleŝnością (III.33) moŝna wyznaczyć równieŝ w sposób bezpośredni, tzn. wykorzystując bezpośrednio mierzone wielkości fizyczne, tj. przede wszystkim kąt skrętu Θ określony wzorem (II.14). Rozpraszana energia jest reprezentowana przez pracę zdefiniowaną w postaci analogicznej do formuły (III.34):
7 Θ, gdzie Θ, Str.7 (III.46) (III.46) jest momentem sił wewnętrznych, wywołującym tłumienie i reprezentującym pracę traconą podczas skręcania z prędkością kątową dθ/dt. Prędkość skręcania wynika z formuły (II.14): ΘtΘ. (III.47) Jeśli znów zastosuje się całkowanie względem zmiennej parametrycznej t, to formuła na energię rozpraszaną przyjmie postać: Θ Θ Θ Θ Θ Θ Θ., (III.48) Analogicznie, energia potencjalna zakumulowana w postaci maksymalnego skręcenia próbki (Θ 0 ) odpowiada pracy spręŝystej-odzyskiwanej, jaką wykonuje moment sił wewnętrznych M P wynikający z kąta skręcenia i współczynnika sztywności skrętnej materiału K: Θ, gdzie Θ. Podstawiając (III.50) do (III.49) uzyskuje się: KΘ. (III.49) (III.50) (III.51) Uwzględniając (III.48) i (III.51) w (III.33) otrzymuje się:, K K czyli formułę identyczną z uzyskaną wcześniej (III.45). (III.52) Jeśli rozwaŝy się niewielką wartość tłumienia w warunkach częstotliwości rezonansowej, która bliska jest częstotliwości drgań własnych (zobacz (I.70) i (I.71)): (III.53) i uwzględni się (III.53) w (III.52), to ciąg przekształceń K prowadzi do formuły, którą wykorzystuje program interpretacyjny aparatu RC/TS: (III.54)
8 . Zatem, procedura interpretacji wyników badania TS próbki składa się z następujących kroków: 1. Pomiar amplitudy cyklicznego skręcenia próbki materiału obciąŝonej momentem o załoŝonej, niewielkiej częstości zmian: T(t, ω) Θ(t, ω, φ) 2. Przeliczenie załoŝonych i zarejestrowanych danych: T(t, ω) τ(t, ω) wg (III.19) Θ(t, ω, φ) γ(t, ω, φ) wg (III.10) 3. Wyznaczenie wartości modułu Kirchhoffa: G wg (III.30) 4. Wykreślenie graficznej relacji τ(γ) 5. Wyznaczenie wartości współczynnika tłumienia z relacji τ(γ) lub M(Θ): D wg (III.55). Str.8 (III.55) Bibliografia [1]. Bachmann H. (red.), Vibration problems in structures: practical guidelines. Berlin, Birkhauser, 1995.
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży
Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Wytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki
SKRĘCANIE WAŁÓW OKRĄGŁYCH
KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości
Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 2.
Badania gruntu w aparacie skrętnego ścinania RC/TS. Część. Dr inż. Ireneusz Dyka, dr hab. inż. Piotr E. Srokosz Uniwersytet Warmińsko-Mazurski w Olsztynie, Wydział Nauk Technicznych Aparat RC/TS jest to
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
KOOF Szczecin: www.of.szc.pl
3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
Dwa w jednym teście. Badane parametry
Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA
LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
STATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO
13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego
Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na
DRGANIA ELEMENTÓW KONSTRUKCJI
DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.
Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Kinematyka płynów - zadania
Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,
Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH
Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych
Badanie i obliczanie kąta skręcenia wału maszynowego
Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
P. Litewka Efektywny element skończony o dużej krzywiźnie
4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N
TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO
TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO Wielkościami liczbowymi charakteryzującymi pracę silnika są parametry pracy silnika do których zalicza się: 1. Średnie ciśnienia obiegu 2. Prędkości
USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI
Dr inŝ. Zbigniew Kędra Politechnika Gdańska USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI SPIS TREŚCI 1. Wstęp. Podstawy teoretyczne metody 3. Przykład zastosowania proponowanej
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń opracowanie: mgr inż. Jolanta Bondarczuk-Siwicka, mgr inż. Andrzej
Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7
Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA
PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA 2010 Publikacje P (Przepisowe) wydawane przez Polski Rejestr Statków są uzupełnieniem lub rozszerzeniem Przepisów i stanowią
WYNIKI BADAŃ zaleŝności energii dyssypacji od amplitudy i prędkości obciąŝania podczas cyklicznego skręcania stopu aluminium PA6.
WYNIKI BADAŃ zaleŝności energii dyssypacji od amplitudy i prędkości obciąŝania podczas cyklicznego skręcania stopu aluminium PA6. Przedstawione niŝej badania zostały wykonane w Katedrze InŜynierii Materiałowej
Zwój nad przewodzącą płytą
Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której
Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E
Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności
Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści
Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, 2016 Spis treści Wykaz ważniejszych oznaczeń 11 Od autora 13 Wstęp 15 Rozdział 1. Wprowadzenie 17 1.1. Pojęcia ogólne. Klasyfikacja pojazdów
Badanie i obliczanie kąta skręcenia wału maszynowego
Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja
k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω =
Rozwiazanie zadania 1 1. Dolna płyta podskoczy, jeśli działająca na nią siła naciągu sprężyny będzie większa od siły ciężkości. W chwili oderwania oznacza to, że k(z 0 l 0 ) = m g, (1) gdzie z 0 jest wysokością
(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2
SPIS TREŚCI Przedmowa... 10 1. Tłumienie drgań w układach mechanicznych przez tłumiki tarciowe... 11 1.1. Wstęp... 11 1.2. Określenie modelu tłumika ciernego drgań skrętnych... 16 1.3. Wyznaczanie rozkładu
BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI
BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
Kinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych
T Ł UMIENIE DRGAŃ SKRĘ TNYCH WAŁ ÓW KORBOWYCH SILNIKÓW OKRĘ TOWYCH OGÓLNA METODYKA DOBORU WISKOTYCZNEGO TŁ UMIKA DRGAŃ
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIII NR 4 (191) 2012 Wojciech Homik Politechnika Rzeszowska T Ł UMIENIE DRGAŃ SKRĘ TNYCH WAŁ ÓW KORBOWYCH SILNIKÓW OKRĘ TOWYCH OGÓLNA METODYKA DOBORU WISKOTYCZNEGO
CIENKOŚCIENNE KONSTRUKCJE METALOWE
CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
KONSTRUKCJE METALOWE
KONSTRUKCJE METALOWE ĆWICZENIA 15 GODZ./SEMESTR PROWADZĄCY PRZEDMIOT: prof. Lucjan ŚLĘCZKA PROWADZĄCY ĆWICZENIA: dr inż. Wiesław KUBISZYN P39 ZAKRES TEMATYCZNY ĆWICZEŃ: KONSTRUOWANIE I PROJEKTOWANIE WYBRANYCH
Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC
Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów
Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia
Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
α k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM
WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne
Laboratorium Fizyki I Płd. Bogna Frejlak DRGANIA PROSTE HARMONICZNE: WAHADŁO REWERSYJNE I TORSYJNE
Politechnika Warszawska Wydział Fizyki aboratorium Fizyki P Bogna Politechnika Frejlak Warszawska Wydział Fizyki aboratorium Fizyki Płd Bogna Frejlak RGANA PROSE HARMONCZNE: WAHAŁO REWERSYJNE ORSYJNE RGANA
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
EUROKODY. dr inż. Monika Siewczyńska
EUROKODY dr inż. Monika Siewczyńska PN-EN 1991-1-4:2008 Oddziaływania ogólne Oddziaływania wiatru oraz AC:2009, Ap1:2010 i Ap2:2010 Zakres obowiązywania budynki i budowle o wysokości do 200 m, mosty o
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych
Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30
SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA
SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA Airflow Simulations and Load Calculations of the Rigide with their Influence on
1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca
Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek
POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA
POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład
Laboratorium Programowanie Obrabiarek CNC. Nr H04
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H04 Programowanie zarysów swobodnych FK Opracował: Dr inŝ. Wojciech Ptaszyński Poznań, 06 stycznia
DYNAMIKA KONSTRUKCJI BUDOWLANYCH
DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych
5. Indeksy materiałowe
5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
a = (2.1.3) = (2.1.4)
. DRGANIA Fundamentalną ideą drgań są drgania harmoniczne proste. Termin harmoniczne ma informować, Ŝe funkcja opisująca drgania to funkcja typu sinus/cosinus, natomiast słowo proste Ŝe drgania nie są