BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI"

Transkrypt

1 BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego - Opis tensorowy zjawiska piezoelektrycznego - Metoda dynamiczna i statyczna badania własności piezoelektrycznych - Zastosowanie materiałów piezoelektrycznych 1. Proste zjawisko piezoelektryczne. Pomiar napręŝeń I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. OdwaŜnik 3. Miernik uniwersalny Metex M 3850 Oś obrotu Trzpień naciskający Ramię wagi Próbkę V CięŜarek Rys. 1. Schemat układu do badania prostego zjawiska piezoelektrycznego metodą statyczną 1

2 II. Cel ćwiczenia: Zastosowanie prostego zjawiska piezoelektrycznego (podłuŝnego) do wyznaczania modułu piezoelektrycznego. III. Wykonanie pomiarów 1. Pomiar zaleŝności napięcia generowanego na pojemności elektrycznej układu pomiarowego od napręŝenia przykładanego do próbki piezoelektrycznej: a) podłączyć miernik METEX do gniazd znajdujących się z przodu układu pomiarowego; b) ustawić miernik na pomiar napięć w zakresie mv; c) włączyć miernik i przyciskiem FUNCTION wybrać funkcję MAX (na wyświetlaczu miernika pojawi się napis MAX); d) zawiesić odwaŝnik w odległości 4 cm od trzpienia przekazującego nacisk na próbkę; e) opuścić ramię dźwigni; f) przyciskiem (koloru zielonego) znajdującym się na obudowie układu pomiarowego (zwierającym okładki kondensatora) rozładować kondensator; g) przyciskiem SET uaktywnić wybraną funkcję na wyświetlaczu miernika pojawi się napis R-H oznaczający gotowość miernika do pomiaru; h) podnieść ramię dźwigni; i) odczytać maksymalną wartość napięcia; j) przyciskiem RESET wyzerować miernik (przycisk ten spełnia równieŝ funkcję SET); k) dla zadanej odległości r zawieszenia odwaŝnika od osi obrotu wykonać co najmniej 6 pomiarów powtarzając czynności opisane w punktach c j; l) zmieniając odległość r odwaŝnika od osi obrotu co 2 cm wykonać analogiczne pomiary napięcia dla co najmniej 6 odległości; IV. Opracowanie wyników. 1. Narysować wykres zaleŝności napięcia generowanego w układzie pomiarowym od odległości odwaŝnika od osi obrotu U = f ( r ). 2. Korzystając z metody regresji liniowej wyznaczyć moduł piezoelektryczny badanej próbki na podstawie wzoru: U = d M g C R r gdzie: U napięcie odczytane z miernika d moduł piezoelektryczny M masa odwaŝnika g przyspieszenie ziemskie C pojemność kondensatora znajdującego się w układzie pomiarowym R odległość osi obrotu od trzpienia r odległość odwaŝnika od osi obrotu. 3. Obliczyć siłę nacisku odwaŝnika na próbkę dla kilku wybranych odległości r: 2

3 F = M g r R 4. Obliczyć niepewność bezwzględną i względną modułu d oraz siły nacisku F. Dane potrzebne do obliczeń: C = (0,605 ± 0,001) µf R = (110 ± 1) mm M 1 = (504,1 ± 0,5) g r = (110 + n 20 ± 2) mm. Podziałkę na dźwigni wykonano co 2 cm; 3

4 2. Odwrotne zjawisko piezoelektryczne. Pomiar małych deformacji I. Zestaw przyrządów: 1. Dylatometr pojemnościowy z próbką piezoelektryczną 2. Miernik pojemności elektrycznej 3. Zasilacz II. Cel ćwiczenia: 1. Wyznaczenie modułu piezoelektrycznego na podstawie badania odwrotnego zjawiska piezoelektrycznego 2. Pomiar małych deformacji 3. Wyznaczenie zaleŝności pojemności elektrycznej kondensatora płaskiego od odległości między elektrodami Śruba mikrometryczna Wyjście do pomiaru zmian pojemności h Kondensator powietrzny Próbka L Napięcie podawane na próbkę Rys.2. Schemat układu pomiarowego do badania odwrotnego zjawiska piezoelektrycznego i do pomiaru małych deformacji 4

5 III. Przebieg pomiarów. 1. Wyznaczenie pojemności doprowadzeń oraz pojemności rozproszonych C d : a) ustawić miernik pojemności na zakres 200 pf i wyzerować go bez przewodów doprowadzających (odłączyć przewody doprowadzające); b) podłączyć miernik pojemności do gniazd dylatometru oznaczonych symbolem C biegunowość jest nieistotna; c) za pomocą śruby mikrometrycznej ustawić pojemność kondensatora na C o 180 pf (wskazanie śruby mikrometrycznej wynosi x o 6 mm); d) wyznaczyć zaleŝność pojemności elektrycznej C kondensatora od odległości między jego okładkami, zmieniając odległość x względem połoŝenia początkowego x o następująco: - w przedziale od 0 do 2 mm co x = 0,25 mm - w przedziale od 2 do 5 mm co x = 0,5 mm - w przedziale od 5 do 14 mm co x = 1 mm UWAGA: odczyt ze śruby mikrometrycznej x nie jest odległością między okładkami kondensatora. 2. Wyznaczenie zaleŝności deformacji próbki od napięcia przykładanego do próbki piezoelektryka: a) podłączyć zasilacz do gniazd U układu; b) za pomocą śruby mikrometrycznej ustawić pojemność C kondensatora powietrznego na około 250 pf ( zakres miernika ustawić na 2 nf); c) włączyć zasilacz do sieci, nastawić polaryzację na dodatnią (+), ustawić maksymalną wartość napięcia U max = V; d) wykonać pomiary zaleŝności pojemności C kondensatora od napięcia przykładanego do próbki w przedziale od V do 200 V zmieniając napięcie co 20 V; naleŝy pamiętać o zmianie polaryzacji z dodatniej na ujemną. IV. Opracowanie wyników 1. Wyznaczenie pojemności doprowadzeń i pojemności rozproszonych C d : a) obliczyć rzeczywiste odległości h między okładkami kondensatora powietrznego: h = h o + h gdzie: ε S h o o = Co - początkowa rzeczywista odległość między okładkami kondensatora odpowiadająca połoŝeniu x o na śrubie mikrometrycznej. h = x - x o - zmiana odległości między okładkami kondensatora liczona względem połoŝenia początkowego x o x - odczyt ze śruby mikrometrycznej odpowiadający danej pojemności C. ε o = 8, F/m - przenikalność elektryczna próŝni S = πr 2 - powierzchnia okładki kondensatora 2R = 59 mm - średnica okładek kondensatora C o - początkowa pojemność kondensatora odpowiadająca połoŝeniu x o śruby mikrometrycznej; 5

6 b) sporządzić wykres zaleŝności pojemności kondensatora od odwrotności odległości między okładkami C = f 1 ; h c) odczytać z wykresu wartość sumy pojemności doprowadzeń i rozproszonych C d. aproksymując wykres do 1 0 h =. 2. Wyznaczenie zaleŝności deformacji l próbki od napięcia U przyłoŝonego do próbki: a) sporządzić wykres przedstawiający zaleŝność pojemności C pu kondensatora powietrznego od napięcia U; zmierzona pojemność C jest sumą pojemności kondensatora powietrznego C p oraz pojemności C d : C pu = C C d ; b) obliczyć deformację l próbki piezoelektryka wywołaną przyłoŝonym napięciem : gdzie: ε S l h h h o = = u o = h C h u - odległość między okładkami kondensatora powietrznego odpowiadająca przyłoŝonemu napięciu U. C pu - pojemność kondensatora dla danego napięcia; c) sporządzić wykres przedstawiający zaleŝność deformacji próbki od napięcia l = f (U); d) za pomocą metody regresji liniowej wyznaczyć w pobliŝu U = 0 moduł piezoelektryczny uwzględniając zaleŝność l = d U gdzie: d moduł piezoelektryczny; pu o UWAGA: w zjawisku piezoelektrycznym podłuŝnym odległość między elektrodami l jest równa grubości próbki l. Z równania opisującego zjawisko piezoelektryczne wynika, Ŝe: l = d E, gdzie natęŝenie pola elektrycznego E = U l l ' l E U Podstawiając wyraŝenie na E do równania opisującego podłuŝne zjawisko piezoelektryczne otrzymujemy l l = d U l' 6

7 poniewaŝ l = l, więc l = U d e) obliczyć niepewność bezwzględną i względną modułu piezoelektrycznego d. Grubość próbki l = 0,26 mm. 7

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć

Bardziej szczegółowo

CZUJNIKI POJEMNOŚCIOWE

CZUJNIKI POJEMNOŚCIOWE ĆWICZENIE NR CZUJNIKI POJEMNOŚCIOWE A POMIAR PRZEMIESZCZEŃ ODŁAMÓW KOSTNYCH METODĄ POJEMNOŚCIOWĄ I Zestaw przyrządów: Układ do pomiaru przemieszczeń kości zbudowany ze stabilizatora oraz czujnika pojemnościowego

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 2

Instrukcja do ćwiczenia laboratoryjnego nr 2 Instrukcja do ćwiczenia laboratoryjnego nr 2 Temat: Wpływ temperatury na charakterystyki i parametry statyczne diod Cel ćwiczenia. Celem ćwiczenia jest poznanie wpływu temperatury na charakterystyki i

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC.

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Ćwiczenie nr 74 Pomiary mostkami RLC Cel ćwiczenia Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Dane znamionowe Przed przystąpieniem do wykonywania ćwiczenia

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 5 Badanie odwrotnego efektu piezoelektrycznego Zagadnienia do przygotowania 1. Elektrostrykcja i odwrotny efekt piezoelektryczny 2. Podstawowe

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

BADANIE EFEKTU HALLA. Instrukcja wykonawcza ĆWICZENIE 57 BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów 1. Zasilacz elektromagnesu ZT-980-4 2. Zasilacz hallotronu 3. Woltomierz do pomiaru napięcia Halla U H 4. Miliamperomierz o maksymalnym

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 5

Instrukcja do ćwiczenia laboratoryjnego nr 5 Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

KIESZONKOWY MULTIMETR CYFROWY AX-MS811. Instrukcja obsługi

KIESZONKOWY MULTIMETR CYFROWY AX-MS811. Instrukcja obsługi KIESZONKOWY MULTIMETR CYFROWY AX-MS811 Instrukcja obsługi Bezpieczeństwo Międzynarodowe symbole bezpieczeństwa Ten symbol użyty w odniesieniu do innego symbolu lub gniazda oznacza, że należy przeczytać

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej

Bardziej szczegółowo

WYZANCZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH MATERIAŁÓW. Instrukcja wykonawcza

WYZANCZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH MATERIAŁÓW. Instrukcja wykonawcza ĆWIZENIE 108 WYZANZANIE STAŁEJ DIELEKTRYZNEJ RÓŻNYH MATERIAŁÓW Zaganienia Prawo Gaussa, pole elektrostatyczne, pojemność konensatora, polaryzacja ielektryczna, łączenie konensatorów Instrukcja wykonawcza

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory Cel ćwiczenia: Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 (przenikalności

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO ĆWICZENIE 14 R. POPRAWSKI BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO Cel ćwiczenia: zapoznanie studentów z opisem, metodami badania oraz przykładami zastosowań prostego i odwrotnego zjawiska

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia

Bardziej szczegółowo

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia: Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.

Bardziej szczegółowo

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić

Bardziej szczegółowo

POMIAR ZALEśNOŚCI PRZENIKALNOŚCI ELEKTRYCZNEJ FERROELEKTRYKA OD TEMPERATURY SPRAWDZANIE PRAWA CURIE - WEISSA

POMIAR ZALEśNOŚCI PRZENIKALNOŚCI ELEKTRYCZNEJ FERROELEKTRYKA OD TEMPERATURY SPRAWDZANIE PRAWA CURIE - WEISSA POMIAR ZALEśNOŚCI PRZENIKALNOŚCI ELEKTRYCZNEJ FERROELEKTRYKA OD TEMPERATURY SPRAWDZANIE PRAWA CURIE - WEISSA Zestaw przyrządów: - mostek pojemności (AUTOMATIC C BRIDGE TYPE E315A) - woltomierz cyfrowy

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 10

Instrukcja do ćwiczenia laboratoryjnego nr 10 Instrukcja do ćwiczenia laboratoryjnego nr 10 Temat: Charakterystyki i parametry tranzystorów MIS Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych i parametrów tranzystorów MOS oraz

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY! 1. WSTĘP Instrukcja obsługi dostarcza informacji dotyczących bezpieczeństwa i sposobu użytkowania, parametrów technicznych oraz konserwacji

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych opracował dr P. Góralski ćwiczenie nr 2 Zakres zagadnień obowiązujących do

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 9

Instrukcja do ćwiczenia laboratoryjnego nr 9 Instrukcja do ćwiczenia laboratoryjnego nr 9 Temat: Charakterystyki i parametry tranzystorów PNFET Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych oraz parametrów tranzystorów PNFET.

Bardziej szczegółowo

c) d) Strona: 1 1. Cel ćwiczenia

c) d) Strona: 1 1. Cel ćwiczenia Strona: 1 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów wielkości geometrycznych z wykorzystaniem prostych przyrządów pomiarowych - suwmiarek i mikrometrów. 2. Podstawowe

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI DT-3216

INSTRUKCJA OBSŁUGI DT-3216 INSTRUKCJA OBSŁUGI DŁugopisowy wskaźnik napięcia DT-3216 Wydanie LS 13/01 OPIS DT-3216 to długopisowy wskaźnik napięcia z wyświetlaczem. Wskazuje napięcie AC/DC, rezystancję oraz wykonuje pomiary testu

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

BADANIE EFEKTU HALLA. Instrukcja wykonawcza ĆWICZENIE 57C BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów. Hallotron umieszczony w polu magnetycznym wytworzonym przez magnesy trwałe Magnesy zamocowane są tak, by możliwy był pomiar

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

Ć W I C Z E N I E N R J-1

Ć W I C Z E N I E N R J-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO

Bardziej szczegółowo

Zjawisko piezoelektryczne 1. Wstęp

Zjawisko piezoelektryczne 1. Wstęp Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,

Bardziej szczegółowo

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika. PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

MY-61 #02926 MY-62 #02927 MY-63 #02928 MY-64 #02929

MY-61 #02926 MY-62 #02927 MY-63 #02928 MY-64 #02929 MULTIMETRY CYFROWE MY-61 #02926 MY-62 #02927 MY-63 #02928 MY-64 #02929 INSTRUKCJA OBSŁUGI! OSTRZEśENIE PRZED URUCHOMIENIEM PRZYRZĄDU ZAPOZNAJ SIĘ DOKŁADNIE Z INSTRUKCJĄ OBSŁUGI Nie zastosowanie się do

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 2 Badanie własności ferroelektrycznych soli Seignette a Celem ćwiczenia jest wyznaczenie zależności temperaturowej

Bardziej szczegółowo

Instrukcja obsługi miernika uniwersalnego MU-07L

Instrukcja obsługi miernika uniwersalnego MU-07L 1. Informacje ogólne Miernik MU-07L umożliwia pomiary napięć stałych (do 600V) i przemiennych (do 600V), natężenia prądu stałego (do 10A), oporności (do 2MΩ) oraz sprawdzanie diod półprzewodnikowych, ciągłości

Bardziej szczegółowo

MULTIMETR CYFROWY AX-100

MULTIMETR CYFROWY AX-100 MULTIMETR CYFROWY AX-100 INSTRUKCJA OBSŁUGI 1. Informacje dotyczące bezpieczeństwa 1. Nie podawaj na wejście wartości przekraczającej wartość graniczną podczas pomiarów. 2. Podczas pomiarów napięcia wyŝszego

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 3 A

Instrukcja do ćwiczenia laboratoryjnego nr 3 A Instrkcja do ćwiczenia laboratoryjnego nr 3 A Temat: Pomiar rezystancji dynamicznej wybranych diod Cel ćwiczenia. Celem ćwiczenia jest poznanie metod wyznaczania oraz pomiar rezystancji dynamicznej (róŝniczkowej)

Bardziej szczegółowo

ZŁĄCZOWE TRANZYSTORY POLOWE

ZŁĄCZOWE TRANZYSTORY POLOWE L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWE TRANZYSTORY POLOWE RE. 0.4 1. CEL ĆWICZENIA Wyznaczenie podstawowych parametrów tranzystora unipolarnego takich jak: o napięcie progowe, o transkonduktancja,

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

AX-850 Instrukcja obsługi

AX-850 Instrukcja obsługi AX-850 Instrukcja obsługi Informacje dotyczące bezpieczeństwa Aby uniknąć porażenia prądem elektrycznym lub obrażeń: Nigdy nie podłączaj do dwóch gniazd wejściowych lub do dowolnego gniazda wejściowego

Bardziej szczegółowo

MY 65 #02930 MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI. OSTRZEśENIE

MY 65 #02930 MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI. OSTRZEśENIE MULTIMETR CYFROWY MY 65 #02930 INSTRUKCJA OBSŁUGI! OSTRZEśENIE PRZED URUCHOMIENIEM PRZYRZĄDU ZAPOZNAJ SIĘ DOKŁADNIE Z INSTRUKCJĄ OBSŁUGI Nie zastosowanie się do tego polecenia jak i do innych uwag zawartych

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

Ćwiczenie 33. Kondensatory

Ćwiczenie 33. Kondensatory Ćwiczenie 33. Kondensatory Andrzej Zięba Cel ćwiczenia Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 i przenikalności względnych ε r różnych

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3 Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór

Bardziej szczegółowo

Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem

Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem Ćwiczenie 7 Badanie właściwości tłumienia zakłóceń woltomierza z przetwornikiem A/C z dwukrotnym całkowaniem PODSAWY EOREYCZNE PRZEWORNIK ANALOGOWO CYFROWEGO Z DWKRONYM CAŁKOWANIEM. SCHEMA BLOKOWY I ZASADA

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M

INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M INSTRUKCJA OBSŁUGI MINI MULTIMETR CYFROWY M - 838 M - 838+ www.atel.com.pl/produkt.php?hash=02915! 1 2 I. WPROWADZENIE Przed przystąpieniem do normalnej eksploatacji miernika, prosimy zapoznać się z możliwościami

Bardziej szczegółowo

LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1

LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1 L3-1 L3-2 L3-3 L3-4 L3-5 L3-6 L3-7 L3-8 L3-9 L3-10 L3-11 L3-12 L3-13 L3-14 L3-15 L3-16 L3-17 L3-18 L3-19 OPIS WYKONYWANIA ZADAŃ Celem pomiarów jest sporządzenie przebiegu charakterystyk temperaturowych

Bardziej szczegółowo

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI 1. SPECYFIKACJE 1.1. Specyfikacje ogólne. Zasada pomiaru: przetwornik z podwójnym całkowaniem; Wyświetlacz: LCD, 3 3 / 4 cyfry; Maksymalny odczyt: 3999;

Bardziej szczegółowo

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej Ćwiczenie 2. Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej 1. Przygotowanie do wykonania ćwiczenia. 1.1. Włączyć zasilacz potencjostatu i nastawić go na

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH. Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWONIKACH. Cel ćwiczenia: Wyznaczenie podstawowych parametrów spektralnych fotoprzewodzącego detektora podczerwieni. Opis stanowiska:

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

Pomiar wysokich napięć

Pomiar wysokich napięć Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

Badanie oleju izolacyjnego

Badanie oleju izolacyjnego POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie oleju izolacyjnego Grupa dziekańska... Data wykonania

Bardziej szczegółowo

Miernik Cęgowy Extech EX730, CAT III 600 V

Miernik Cęgowy Extech EX730, CAT III 600 V Miernik Cęgowy Extech EX730, CAT III 600 V Instrukcja obsługi Nr produktu: 121642 Opis Opis miernika (model EX730) 1. Miernik cęgowy 2. Przycisk otwierający miernik 3. Przyciski sterowania Zapamiętywanie

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 3 Pomiary i wyznaczanie parametrów ceramiki piezoelektrycznej Zagadnienia do przygotowania 1. Prosty i odwrotny efekt piezoelektryczny i układ

Bardziej szczegółowo

Instrukcja obsługi Multimetr SMD-100 #

Instrukcja obsługi Multimetr SMD-100 # Instrukcja obsługi Multimetr SMD-100 # 3472 4 Prawidłowe usuwanie produktu Oznaczenie umieszczone na produkcie lub w odnoszących się do niego tekstach wskazuje, że produktu po upływie okresu użytkowania

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

KT 33 MULTIMETRY CYFROWE INSTRUKCJA OBSŁUGI. Strona 1

KT 33 MULTIMETRY CYFROWE INSTRUKCJA OBSŁUGI. Strona 1 MULTIMETRY CYFROWE KT 33 INSTRUKCJA OBSŁUGI Instrukcja obsługi dostarcza informacji dotyczących parametrów technicznych, sposobu uŝytkowania oraz bezpieczeństwa pracy. Strona 1 1. WPROWADZENIE: Mierniki

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

MULTIMETR CYFROWY MY-74 INSTRUKCJA OBSŁUGI OSTRZEŻENIE

MULTIMETR CYFROWY MY-74 INSTRUKCJA OBSŁUGI OSTRZEŻENIE MULTIMETR CYFROWY MY-74 INSTRUKCJA OBSŁUGI! OSTRZEŻENIE PRZED URUCHOMIENIEM PRZYRZĄDU ZAPOZNAJ SIĘ DOKŁADNIE Z INSTRUKCJĄ OBSŁUGI Nie zastosowanie się do tego polecenia jak i do innych uwag zawartych w

Bardziej szczegółowo

Ćwiczenie nr 41: Busola stycznych

Ćwiczenie nr 41: Busola stycznych Wydział PRACOWNA FZYCZNA WFiS AGH mię i nazwisko 1.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 41: usola stycznych

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo