WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA"

Transkrypt

1 LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym obciążeniu momentem skręcającym działającym na końcach, powstaje stan naprężenia i odkształcenia odpowiadający czystemu skręcaniu (rys. 7.1). Rysunek 7.1. Pręt o przekroju kołowym poddany skręcaniu. Tworząca AB na powierzchni bocznej po przyłożeniu obciążenia przyjmuje kształt linii śrubowej. Kąt pochylenia linii śrubowej AB nazywamy kątem odkształcenia postaciowego i oznaczamy symbolem (rys. 7.2). Ponadto można zauważyć, że: oś pręta pozostanie nadal linią prostą po obciążeniu, okręgi kół nie ulegną zniekształceniu, a powierzchnie czołowe nadal pozostaną płaskie, powierzchnie czołowe obrócą się względem siebie o pewien kąt, zwany kątem skręcenia. Rozważmy wycinek o nieskończenie małej długości (rys. 7.1 i 7.2), powstały w wyniku przecięcia dwiema płaszczyznami prostopadłymi do osi pręta. Na powierzchni wycinka zachodzi następująca relacja między kątem skręcenia φ, a kątem odkształcenia postaciowego γ: rd. (7.1) a na powierzchni o promieniu ρ: d, (7.2) Przekształcając relację (7.2) otrzymujemy wyrażenie określające kąt skręcenia na powierzchni o promieniu ρ: d. (7.3) 1

2 Rysunek 7.2. Wycinek o nieskończenie małej grubości; na rysunku zaznaczono kąt skręcenia i kąt odkształcenia postaciowego. Zgodnie z prawem Hooke a dla ścinania oraz wykorzystując zależność (7.3), naprężenia ścinające (rys. 7.2b) można wyrazić jako funkcja kąta skręcenia następująco: d G G, (7.4) gdzie: G moduł odkształcenia postaciowego (moduł Kirhchoffa) [GPa]. Z warunku równowagi dla wycinka pręta (rys. 7.2b) wynika, że: 2 d d s da G. (7.5) 2 Wykonując całkowanie równania (7.5) po całej powierzchni przekroju poprzecznego A r, otrzymujemy: d 2 d s da G da G I 0, (7.6) 4 4 r d gdzie: I 0 biegunowy moment bezwładności [m 4 ], d średnica pręta [m] Kąt skręcenia, na podstawie zależności (7.6), dla wycinka o długości wynosi: s d, (7.7) GI 0 natomiast dla całego pręta o długości l: l s sl d GI, (7.8) przy założeniu, że we wzorze (7.8) wyrażenie 0 0 GI 0 s GI 0 const, tzn. że s, G,I 0 nie zależą od zmiennej x. Na podstawie zależności (7.4) i (7.6) naprężenia ścinające wynoszą: d s G G. (7.9) I 0 Ze wzoru (7.9) wynika, że największa wartość naprężenia wyraża się wzorem: s s s max max r, (7.10) I0 I0 W0 I0 2I0 gdzie: W0 wskaźnik wytrzymałości przekroju pręta na skręcanie [m 3 ]. r d W obliczeniach prętów poddanych czystemu skręcaniu, korzystamy z następującego warunku wytrzymałościowego: s max k s. (7.11) W 0 2

3 Wzory ( ) są słuszne dla prętów poddanych czystemu skręcaniu o przekroju kołowym w zakresie sprężystym materiału. Aby uwzględnić fakt, że materiał z którego wykonano pręt może trwale odkształcać się należy posłużyć się modelem zachowania się materiału podczas próby skręcania. Przykładową krzywą skręcania materiału przedstawiono na rys. 7.3a w układzie s -. Rysunek 7.3. Charakterystyki z próby skręcenia: a) krzywa rzeczywista, b) krzywa uproszczona (do obliczeń). Charakterystyczne punkty na wykresie oznaczają: H moment skręcający odpowiadający granicy proporcjonalności, sp moment skręcający odpowiadający granicy sprężystości, moment skręcający odpowiadający granicy astyczności, Rs maksymalny moment skręcający (niszczący) przeniesiony przez próbkę. Zakładając model materiału sprężysty idealnie astyczny (rys. 7.3b), można wyróżnić trzy fazy określające proces całkowitego uastycznienia przekroju, tzn. dla przypadku, gdy naprężenia ścinające osiągną wartość naprężeń astycznych. W pierwszej fazie największe naprężenia ścinające max są mniejsze od naprężeń astycznych. Zgodnie ze wzorem (7.9) rozkład naprężeń na wykresie przybiera postać trójkątną. Gdy największe naprężenia przekroczą wartość naprężeń astycznych, wtedy proces uastycznienia postępuje do wnętrza przekroju pręta. Wykres naprężeń stycznych przechodzi stopniowo z trójkątnego (rys. 7.4a), przez postać podaną na rys. 7.4b. Ostatecznie, gdy naprężenia ścinające osiągną w całym przekroju naprężenia astyczne, rozkład naprężeń jest w przybliżeniu prostokątny (rys. 7.4c). Rysunek 7.4. Rozkład naprężeń w różnych fazach uastycznienia. Początek uastycznienia zaczyna się z chwilą, gdy naprężenia maksymalne osiągną granicę astyczności na ścinanie. Graniczna wartość momentu powodująca zjawisko uastycznienia wynosi: da A 2 r r. (7.12) A 3

4 Przyjmując współczynnik bezpieczeństwa: n (7.13) s z zależności (7.12) otrzymujemy wzór na graniczny promień pręta skręcanego: 3 s n r. (7.14) 2 Wyznaczona ze wzoru (7.14) wartość r jest o około 9,1 % mniejsza od wartości promienia wyznaczonej dla tego samego przypadku ze wzoru (7.11). Wzór (7.14) można stosować tylko wówczas, gdy: obciążenie pręta jest statyczne, stanem niebezpiecznym dla materiału pręta jest stan pełnego uastycznienia Cel ćwiczenia Celem ćwiczenia jest wyznaczenie modułu sprężystości postaciowej G materiału próbki o przekroju kołowym przez pomiar jej kąta skręcenia. Ze wzoru (7.8) otrzymujemy: sl G (7.15) I 0 gdzie s jest momentem skręcającym próbkę [Nm], l p długością pomiarową [m], kątem skręcenia odcinka pomiarowego [rad], I 0 biegunowy moment bezwładności przekroju próbki [m 4 ] Próbki do próby skręcenia W próbie skręcania używa się głównie próbek o przekroju kołowym. Próbki o innych przekrojach stosowane są w przypadkach prób specjalnych. Dla pełnych próbek walcowych długość pomiarową lp (patrz rys. 7.9) przyjmuje się w zakresie (5 20)d 0, najczęściej lp=10 d 0, gdzie d 0 jest średnicą pomiarową próbki (tzn. d 0 =2r rys.7.1). Jako obróbkę końcową dla próbek na skręcanie przyjmuje się toczenie wykańczające. W przypadku skręcania próbek stalowych aż do ich zniszczenia zależnie od jakości i rodzaju badanego materiału rozróżniamy trzy charakterystyczne rodzaje złomów: 1. Złom poślizgowy (rys. 7.5a) Występuje on w płaszczyźnie prostopadłej do osi próbki (w płaszczyźnie tej wartości naprężeń stycznych są największe). Zniszczenie próbki następuje przez ścięcie. Widoczne są ślady astycznych poślizgów. Tego rodzaju złomy występują w próbkach stalowych. 2. Złom kruchy (rys.7.5b) Występuje w materiałach takich, jak np. żeliwo. Zniszczenie powstaje tu na skutek rozerwania w wyniku działania głównych naprężeń występują w płaszczyznach nachylonych pod kątem 45 0 do osi próbki. Złom kruchy przebiega wzdłuż linii śrubowej nachylonej pod kątem 45 0 do osi próbki. 3. Złom rozwarstwiony drzazgowy (o pęknięciach równoległych do osi próbki) Powodem tego rodzaju złomów jest niejednorodna budowa materiału, powstała wskutek zawalcowania czy obecności obcych wtrąceń. 4

5 Rysunek 7.5. Rodzaje złomów próbek poddanych zniszczeniu Budowa skręcarki Próba skręcania przeprowadzana jest na maszynach zwanych skręcarkami, które pozwalają na zamocowanie i obciążanie próbki dwoma równoważącymi się momentami działającymi w płaszczyznach prostopadłych do osi próbki. Skręcarka zapewnia w czasie przeprowadzania próby jednoczesny pomiar działającego momentu skręcającego s oraz takich parametrów jak: wywołanego tym momentem kąta skręcenia. amy zatem możliwość sporządzenia w czasie próby wykresu s=f( ) i wyznaczenia naprężeń skręcających. Wykres ten może być kreślony samoczynnie lub sporządzony na podstawie wskazań przyrządów pomiarowych. Ponieważ w czasie próby skręcenia w próbce nie tworzy się przewężenie (maksymalne naprężenia skręcające nie przekraczają dopuszczalnych), można dokładnie wyznaczyć odkształcenia i odpowiadające im naprężenia w czasie całego przebiegu próby. Oznaczenia: 1 korpus skręcarki, 2 korba do obciążania próbki, 3 przekładnia ślimakowa, 4 próbka, 5 uchwyt napędowy, 6 uchwyt pomiarowy, 7 dźwignia z obciążnikami, 8 napęd wskazówki, 9 wskazówka, 10 skala wartości momentu skręcającego, 11 urządzenie do wyznaczania kąta skręcenia próbki (patrz rys. 7.7). Rysunek 7.6. Schemat poglądowy skręcarki. 5

6 LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Rysunek 7.7. Idea pomiaru kąta skręcenia. Na rys. 7.8 przedstawiono schemat układu dźwigniowego skręcarki. Jego górne ramię przesuwając zębatkę wywołuje obrót kółka zębatego, a tym samym związanej z nim wskazówki. Jak widać z rys. 7.6 i 7.8, s Qrsin() (7.16) Stąd otrzymujemy: z sin( ) (7.17) a z s Qr (7.18) a Rysunek 7.8. Schemat poglądowy mechanizmu skręcarki generującego moment skręcający. 6

7 Oznacza to, że wartość momentu skręcającego zmienia się liniowo. Sposób wyznaczania kąta skręcenia próbki za pomocą urządzenia 11 przedstawia rys Kąt obrotu względem siebie dwóch przekrojów prostopadłych do osi próbki i oddalonych od siebie o lp można wyznaczyć przez pomiar czujnikiem przemieszczenia x wywołanego skręceniem odcinka pomiarowego o długości lp. Kąt ten wynosi: x (7.19) R gdzie: R odległość osi skręcanej próbki od osi wrzeciona czujnika, x przemieszczenie końca wrzeciona czujnika wywołanego kątem skręcenia Przeprowadzenie próby skręcania Przed przystąpieniem do właściwej próby należy zmierzyć: średnicę próbki d 0 w dwóch wzajemnie prostopadłych kierunkach z dokładnością do 0,1 mm, długość odcinka pomiarowego lp z dokładnością do 0,1 mm, promień R, na którym umieszczony jest czujnik, z dokładnością do 1 mm. Następnie należy wykonać następujące czynności: 1. Ustawić czujnik pomiarowy tak, aby jego wrzeciono miało możliwość wychyleń o około 2 mm. 2. Łagodnie kręcąc korbą, zwłaszcza przy odciążaniu, skręcać próbkę kolejno momentami: 0, 60, 120, 60 i 0 Nm. Dla tych momentów zanotować w Tabeli 7.1 wskazanie czujnika oraz mostka tensometrycznego, pamiętając aby za każdym razem sprowadzić strzałkę mikroamperomierza mostka do zera. 3. Obliczyć ( Ai Ai 1 ) x sr [ mm], (7.20) 4 gdzie: ( A i A i 1) jest przemieszczeniem wrzeciona czujnika wywołanym zmianą momentu skręcającego o 60 [Nm] (Tabela 7.1). 4. Wyznaczyć średnią zmianę kąta skręcenia odpowiadającą zmianie momentu skręcającego o 60 [Nm]: x sr sr [rad] (7.21) R 5. Sprawdzić, czy maksymalne naprężenia skręcające, jakie wystąpiły w czasie próby, nie przekroczyły naprężeń dopuszczalnych wynoszących dla badanego materiału ks=80 [Pa]. 6. Wyznaczyć ze wzoru (7.18) moduł sprężystości postaciowej G [Pa]. 7. Obliczyć błąd pomiaru metodą czujnika zegarowego: G Gteor G [%] (7.22) Gteor Tabela 7.1. Wyniki pomiarów i obliczeń. L.p. s [Nm] Wskazanie czujnika A i [mm] A i A i1 Przyrost A I A I 1 między kolejnymi obciążeniami [mm] 7

8 7.6. Wykonanie sprawozdania W sprawozdaniu należy zamieścić: 1. cel ćwiczenia, 2. opis stanowiska do badań, 3. wyniki pomiarów uzyskanych czujnikiem zegarowym w Tabeli 7.1, 4. obliczenia, 5. uwagi i wnioski. Sprawozdania dostępne są na stronie internetowej: lub wytrzymalosc.eu. 8

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na

Bardziej szczegółowo

Badanie i obliczanie kąta skręcenia wału maszynowego

Badanie i obliczanie kąta skręcenia wału maszynowego Zakład Podstaw Konstrukcji i Budowy Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Szymon Dowkontt Laboratorium Podstaw Konstrukcji Maszyn Instrukcja

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Badanie ugięcia belki

Badanie ugięcia belki Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Wyznaczanie modułu sztywności metodą Gaussa

Wyznaczanie modułu sztywności metodą Gaussa Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z

Bardziej szczegółowo

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA O ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW TECH OLOGICZ A PRÓBA ZGI A IA Zasada wykonania próby. Próba polega

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA POLITECHNIK RZEZOWK im. IGNCEGO ŁUKIEWICZ WYDZIŁ BUDOWNICTW I INŻYNIERII ŚRODOWIK LBORTORIUM WYTRZYMŁOŚCI MTERIŁÓW Ćwiczenie nr 1 PRÓB TTYCZN ROZCIĄGNI METLI Rzeszów 4-1 - PRz, Katedra Mechaniki Konstrkcji

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 1 - Statyczna próba rozciągania Przygotował: Andrzej Teter (do użytku wewnętrznego) Statyczna próba rozciągania Statyczną

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn Opracowanie

Bardziej szczegółowo

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Naprężeniem (p) nazywa się iloraz nieskończenie małej wypadkowej siły spójności

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn Opracowanie

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej 1. Zasady metody Zasada metody polega na stopniowym obciążaniu środka próbki do badania, ustawionej

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

Układ kierowniczy. Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek:

Układ kierowniczy. Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek: 1 Układ kierowniczy Potrzebę stosowania układu kierowniczego ze zwrotnicami przedstawia poniższy rysunek: Definicja: Układ kierowniczy to zbiór mechanizmów umożliwiających kierowanie pojazdem, a więc utrzymanie

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Pomiar siły parcie na powierzchnie płaską

Pomiar siły parcie na powierzchnie płaską Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Zadanie 1: śruba rozciągana i skręcana

Zadanie 1: śruba rozciągana i skręcana Zadanie 1: śruba rozciągana i skręcana Cylindryczny zbiornik i jego pokrywę łączy osiem śrub M16 wykonanych ze stali C15 i osadzonych na kołnierzu. Średnica wewnętrzna zbiornika wynosi 200 mm. Zbiornik

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów WYZNACZANIE MODUŁU YOUNG A, UMOWNEJ GRANICY PROPORCJONALNOŚCI I UMOWNEJ

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA. 20.1. Cel ćwiczenia. 20.2. Wprowadzenie

20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA. 20.1. Cel ćwiczenia. 20.2. Wprowadzenie 20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA 20.1. Cel ćwiczenia Celem ćwiczenia jest wykonanie pomiaru sztywności skrętnej nadwozia samochodu osobowego. 20.2. Wprowadzenie Sztywność skrętna jest jednym z

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

α k = σ max /σ nom (1)

α k = σ max /σ nom (1) Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość

Bardziej szczegółowo

STATYCZNA PRÓBA ŚCISKANIA

STATYCZNA PRÓBA ŚCISKANIA STATYCZNA PRÓBA ŚCISKANIA 1. WSTĘP Statyczna próba ściskania, obok statycznej próby rozciągania jest jedną z podstawowych prób stosowanych dla określenia właściwości mechanicznych materiałów. Celem próby

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA *

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA * Ćwiczenie 6 1. CEL ĆWICZENIA TATYCZNA PRÓBA ROZCIĄGANIA * Celem ćwiczenia jest zapoznanie się z przebiegiem próby rozciągania i wielkościami wyznaczanymi podczas tej próby. 2. WIADOMOŚCI PODTAWOWE Próba

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

Zakres wiadomości na II sprawdzian z mechaniki gruntów: Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów

Bardziej szczegółowo

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA STATYCZNA ŚCISKANIA METALI. 2.1 Wprowadzenie. 2.2 cel ćwiczenia. 2.3 Określenia podstawowe.

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA STATYCZNA ŚCISKANIA METALI. 2.1 Wprowadzenie. 2.2 cel ćwiczenia. 2.3 Określenia podstawowe. LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 2 RÓBA STATYCZNA ŚCISKANIA METALI 2.1 Wprowadzenie Do niedawna próba statyczna ściskania metali była kolejną, po próbie statycznej rozciągania metali próba

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów. Statyczna próba ściskania metali

Laboratorium Wytrzymałości Materiałów. Statyczna próba ściskania metali KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium Wytrzymałości Materiałów Statyczna próba ściskania metali Opracował : dr inż. Leus Mariusz Szczecin

Bardziej szczegółowo

BADANIA GRUNTU W APARACIE RC/TS.

BADANIA GRUNTU W APARACIE RC/TS. Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą zginania pręta

Wyznaczanie modułu Younga metodą zginania pręta POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu FIZYKA Kod przedmiotu KS017; KN017; LS017; LN017 Ćwiczenie Nr 1 Wyznaczanie modułu Younga metodą

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych. 1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.

Bardziej szczegółowo

Ćwiczenia laboratoryjne z Wytrzymałości Materiałów. Statyczna próba ścinania

Ćwiczenia laboratoryjne z Wytrzymałości Materiałów. Statyczna próba ścinania POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenia laboratoryjne z Wytrzymałości Materiałów Statyczna próba ścinania Opracował : dr inż. Konrad Konowalski Szczecin 005 r.

Bardziej szczegółowo

Właściwości reologiczne

Właściwości reologiczne Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 5 BADANIE WŁASNOŚCI MECHANICZNYCH

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo