wrzesieñ/paÿdziernik/2008 nr 34 Czasopismo dla nauczycieli szkó³ œrednich cena 7 z³ ISSN

Wielkość: px
Rozpocząć pokaz od strony:

Download "wrzesieñ/paÿdziernik/2008 nr 34 Czasopismo dla nauczycieli szkó³ œrednich cena 7 z³ ISSN"

Transkrypt

1 nr 34 wrzesieñ/paÿdziernik/008 Czasopismo dla nauczycieli szkó³ œrednich cena 7 z³ ISSN

2 ZAPRASZAM DO LEKTURY! 1 Chcesz czy nie chcesz, musisz zdawać Powoli dociera do nas, nauczycieli, fakt, że już niedługo wszyscy uczniowie będą zdawać maturę z matematyki. Nawet ci najgorsi. Mamy tylko niewiele ponad rok, by dotarło to także do uczniów. Czy zaglądali już Państwo do nowej wersji informatora CKE o maturze w 010 roku? Nie? W takim razie nie wiedzą Państwo, że na maturze ponad połowa zadań to będą zadania testowe (zadania zamknięte, jak mówią uczeni w piśmie). W artykule Zuzanny Mikołajskiej znajdą Państwo inne ważne informacje o maturze 010. A w dziale Temat numeru jest jeszcze kilka artykułów o nauczaniu nie tylko tych, którzy chcą się uczyć, ale także tych, którzy muszą. Od tego numeru rozpoczynamy dwa nowe cykle: Trzynaście ksiąg i Listy z Antwerpii. W Trzynastu księgach Agnieszka Piecewska-Łoś będzie opowiadać o tym, co można znaleźć w najsłynniejszym dziele matematycznym wszechczasów, to znaczy w Elementach Euklidesa. Listy z Antwerpii pisać do nas będzie Jacek Lech, który od sierpnia zatrudnił się w belgijskiej szkole. Kto przed kilku laty czytał jego listy z Ameryki, ten wie, że na pewno warto czytać także te z Belgii. Na koniec zostawiłem jeszcze jedną nowość. Matematykę w Szkole można nabyć także w wersji elektronicznej. Szczegóły znajdują się na stronie internetowej Już teraz można kupić numer bieżący i wszystkie numery, począwszy od 19. Niedługo w ofercie znajdzie się także reszta numerów z ubiegłych lat.

3 Matematyka wszkole Czasopismo dla nauczycieli szkół średnich Adres redakcji: Gdańsk al. Grunwaldzka 413 tel fax Dział sprzedaży: tel Adres do korespondencji: Matematyka w Szkole Czasopismo dla nauczycieli szkół średnich skr. poczt Gdańsk 5 gazetamws@gwo.pl Wydawca: Gdańskie Wydawnictwo Oświatowe, Sp. z o.o Gdańsk, al. Grunwaldzka 413 KRS przy Sądzie Rejonowym w Gdańsku Redaktor naczelny: Marcin Karpiński Redaguje kolegium: Marcin Braun Małgorzata Domian Agnieszka Frączyk Aleksandra Golecka-Mazur Jacek Lech Agnieszka Szulc Projekt graficzny: Rafał Szczawiński / Pracownia Ilustracje: Sławomir Kilian SPIS TREŚCI EDUKACJA 3 Zuzanna Mikołajska Obowiązkowa matura Nauczanie w Europie. Jak długo trzeba chodzić do szkoły 6 Jacek Lech Listy z Antwerpii TEMAT NUMERU MATEMATYKA DLA WSZYSTKICH 9 Kinga Recelska Plan dla humanistów 11 Adam Wojaczek Przygotowanie uczniów do matury 14 Agnieszka Mańkowska-Ciesielska O pożytkach z hospitacji 17 Katarzyna Kochanek Efektywnie i efektownie 1 Marcin Braun Bezwzględna dla uczniów NAUCZANIE MATEMATYKI 4 Michał Kremzer Kąty w ostrosłupie 5 Marcin Braun Przez karty do pochodnej 8 Janusz Karkut Kilka zastosowań pewnej sumy 30 Waldemar Karpiński Ciekawe sekwencje liczb 31 Agnieszka Piecewska-Łoś Trzynaście ksiąg. Mit o ścisłości 34 Edward Zych Śladami Euklidesa. Pole czworokąta 36 Dorota Jankowska Konkurs drużynowy MATERIAŁY 40 Anna Sajko Zadania przygotowawcze 4 Aneta Góra Moduł 60 stopni 44 Jerzy Janowicz VI Bolesławiecki Konkurs Matematyczny ZOSTATNIEJŁAWKI 46 Coś trzeba wiedzieć Skład: Maria Chojnicka Łukasz Sitko Joanna Szyller Zdjęcie na okładce: Natalia Liliańska Druk i oprawa: Normex, Gdańsk Nakład: 100 egz.

4 EDUKACJA 3 Zuzanna Mikołajska OBOWIĄZKOWA MATURA 010 CKE opublikowała właśnie nową wersję informatora o maturze w 010 roku. Niemal nic się nie zmieniło w egzaminie dla zakresu rozszerzonego, za to dla zakresu podstawowego zmian jest bardzo dużo. A właśnie ten zakres jest istotny dla tych uczniów, którzy najbardziej się boją obowiązkowej matury z matematyki. Przed ubiegłoroczną maturą mieliśmy spore zamieszanie. Jeszcze poprzedni minister edukacji wprowadził nowe podstawy programowe (także w klasie maturalnej!) i CKE musiała w trybie awaryjnym ogłosić, że przez dwa lata na maturze obowiązuje część wspólna starej i nowej podstawy. Od 010 roku obowiązują już standardy egzaminacyjne wprowadzone z nową podstawą. Pech (?) chce, że będzie to akurat pierwszy rok obowiązkowej matury z matematyki. Będziemy musieli jeszcze raz uważnie przeczytać standardy wymagań egzaminacyjnych. Zmiany związane z nową podstawą to jedyne zmiany, które w 010 roku dotkną zakres rozszerzony. Za to w zakresie podstawowym rewolucja nie ogranicza się tylko do wprowadzenia obowiązku zdawania matematyki. Inna struktura arkusza Przede wszystkim zapowiedziano, że zmieni się struktura arkusza. Zaplanowano trzy rodzaje zadań. Będą to głównie zadania testowe (zamknięte) ma ich być od 0 do 30, każde za 1 punkt. Dwa pozostałe rodzaje to: zadania krótkiej odpowiedzi (za punkty) oraz zadania rozszerzonej odpowiedzi (za 4, 5 lub 6 punktów). Zadań krótkiej odpowiedzi ma być od 5 do 10, a zadań rozszerzonej odpowiedzi od 3 do 5. Czym się różnią od siebie te trzy rodzaje zadań, właściwie nie wyjaśniono. Trzeba się tego domyślać z ich nazwy i zadań zamieszczonych w przykładowych arkuszach. Do tej kwestii jeszcze wrócę pod koniec artykułu. Wiemy zatem, że zadań w arkuszu będzie co najmniej 8, ale nie więcej niż 45. To dużo, znacznie więcej niż teraz. Oczywiście można argumentować, że sporo jest zadań testowych, więc nie trzeba na ich rozwiązanie dużo czasu. Niestety, zadania podane jako przykład w informatorze to zadania bardzo podobne do tych, które pojawiały się na poprzednich maturach, a nawet na starych maturach (zob. ramka). Zad. 5. (1 pkt) Liczby: 1, 3,x 11, w podanej kolejności, są pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Liczba x jest równa A. 5 B. 9 C. 16 D. 0 Zad. 5. (1 pkt) Ze zbioru liczb {1,, 3, 4, 5, 6, 7, 8} wybieramy losowo jedną liczbę. Liczba p jest prawdopodobieństwem wylosowania liczby podzielnej przez 3. Wtedy A. p<0, 3 B. p =0, 3 C. p = 1 3 D. p> 1 3

5 4 EDUKACJA Ich rozwiązanie tylko pozornie polega jedynie na wskazaniu jednej z czterech możliwości. Aby to rozumnie zrobić, i tak trzeba najpierw rozwiązać tradycyjne, często wcale nie najprostsze zadanie maturalne. Na szczęście wydłużono też czas pisania matury do 170 minut (trudno odgadnąć, dlaczego nie do pełnych trzech godzin). Tak jak dotychczas, za cały arkusz będzie można zdobyć 50 punktów, więc aby zdać maturę, czyli zdobyć 30% punktów, trzeba nazbierać 15 punktów. Zatem maturę z dużym zapasem będzie można zdać, rozwiązując tylko zadania testowe (w sumie co najmniej 0 punktów). Kryteria oceniania Zadania testowe będą sprawdzane zapewne automatycznie, tak jak na egzaminie gimnazjalnym. Nie potrzeba więc do nich zatrudniać żadnego egzaminatora, co pozwoli uzyskać sporo oszczędności. Żeby jeszcze ktoś wpadł na pomysł, by jeden egzaminator oceniał jedno zadanie w dużej liczbie prac, a nie wiele zadań w mniejszej liczbie prac. Znajdziemy też w informatorze próbę opisu kryteriów oceniania, jednak na tyle ogólną, że wciąż pozostaje wiele wątpliwości. Rozwiać te wątpliwości ma zapewne przykładowa ocena zadania 31 (s. 45 Informatora ), która jest dość szczegółowa. Wygląda na to, że nastąpi całkowita zmiana podejścia. Ma już nie być przyznawania punktów za byle co, to znaczy za poprawne wprawdzie zapisy lub rysunki, które jednak w żaden sposób nie zbliżają ucznia do właściwego rozwiązania zadania. Trochę szkoda, że do przedstawienia tego nowego wzorca oceniania wybrano zadanie, które jest wręcz karykaturalnym przykładem zadań matematycznych znienawidzonych przez pokolenia maturzystów humanistów (zadanie o pociągach zmierzających z miasta A do miasta B). A zupełnie fatalnie, że we wzorcowym rozwiązaniu korzysta się z metod wyraźnie wykraczających poza podstawę programową dla zakresu podstawowego (układ dwóch równań drugiego stopnia). Krótka odpowiedź -dużowątpliwości Najbardziej tajemniczo przedstawia się kwestia oceniania zadań krótkiej odpowiedzi. Nazwa i forma zapisu tych zadań sugerują, że będzie oceniana sama odpowiedź. Jednak w jednym z przykładowych arkuszy wśród zadań krótkiej odpowiedzi znalazło się zadanie na dowodzenie (zadanie 8 na s. 43 Informatora ). Tutaj żadnej krótkiej odpowiedzi nie da się udzielić i poza niską punktacją (i tym, że jest na dowodzenie) zadanie nie różni się od zadań rozszerzonej odpowiedzi. Zresztą podobne zadanie na dowodzenie w drugim arkuszu (zadanie 9 na s. 66) jest umieszczone właśnie wśród zadań rozszerzonej odpowiedzi i można za nie otrzymać 5 punktów. Patrząc na przedstawione w arkuszu zadania, odnoszę wrażenie, że ich autorzy sami jeszcze nie są pewni, jaką funkcję mają spełniać zadania krótkiej odpowiedzi. To wygląda tak, jakby zadania układano, nie zastanawiając się, do którego z trzech rodzajów mają trafić. Ciąg dalszy nastąpi Do tej pory opisałam tylko techniczną stronę obowiązkowej matury z matematyki, nie wdając się w treść zadań. A jest o czym pisać. Wyraźnie widać, że zmienił się sposób przygotowania arkuszy maturalnych. Zmienił się ich styl, dobór tematyki i rodzajów zadań, poziom trudności. O tym wszystkim napiszę w następnym numerze Matematyki wszkole.

6 8 NAUCZANIE MATEMATYKI Janusz Karkut KILKA ZASTOSOWAŃ PEWNEJ SUMY W rozdziale 3. swojej książki 1 G. Polya podaje zasłyszaną w dzieciństwie wersję opowieści o odkryciu, którego dokonał mały Gauss. Zadanie, które przedstawił uczniom nauczyciel szkoły podstawowej, w nadziei na chwilę spokoju, było następujące: dodać do siebie 1,, 3 i tak dalej aż do 0. Był niemile zaskoczony, gdy mały Gauss już po chwili położył przed nim tabliczkę i rzekł: Oto wynik. Na tabliczce widniała jedna liczba: 10. Jak mały Gauss uzyskał ten wynik? Oczywiste, że nie poznamy odpowiedzi na to pytanie, ale być może jego sposób polegał na tworzeniu par liczb o takiej samej sumie, tak jak czynimy to dzisiaj. Wzór na sumę n kolejnych liczb naturalnych S = n(n+1) jest dość powszechnie wykorzystywany w różnych zadaniach (w tym kon- kursowych), dlatego warto zapoznać z nim uczniów już w starszych klasach gimnazjum. Warto też uwzględnić takie zadania, które rozwiążemy szybciej licząc sumy metodą Gaussa. Oto kilka propozycji. Zadanie 1 Jaka jest największa liczba naturalna n taka, że średnia arytmetyczna wszystkich liczb naturalnych od 1 do n jest mniejsza od 008? Przypominając pojęcie średniej arytmetycznej, napiszemy: n(n+1) n = n +1 Dalej mamy: n+1 < 008, n<4015. Największą liczbą naturalną, która spełnia tę nierów- ność, jest liczba n = Zadanie W ilu miejscach trzeba zmienić znak + na znak w sumie , aby jako wynik sumowania otrzymać liczbę 007? Zauważmy, że suma S = = = 5050 jest liczbą parzystą. Zmieniając w podany niżej sposób znak stojący przed liczbą oznaczoną przez i otrzymujemy zawsze i = S i, czyli liczbę parzystą! Żadna więc zmiana znaków nie pozwala na otrzymanie liczby nieparzystej 007. Zadanie 3 Znajdź sumę liczb nieparzystych i niepodzielnych przez 7, zawartych pomiędzy 0 a Liczb nieparzystych zawartych w podanym przedziale jest Liczb nieparzystych będących wielokrotnością liczby 7 jest w tym przedziale 14.

7 NAUCZANIE MATEMATYKI 9 Stosując teraz metodę Gaussa, obliczymy szukaną wartość, odejmując od sumy wszystkich liczb nieparzystych sumę wszystkich nieparzystych wielokrotności liczby 7: ( ). Ponieważ = = = oraz = = = 30 75, więc otrzymujemy: = Suma liczb z zadanego przedziału, nieparzystych i niepodzielnych przez 7, wynosi Zadanie 4 Dany jest zbiór A = {1,, 3,...,008}. Ile jest takich podzbiorów zbioru A, których suma elementów wynosi ? Zauważmy, że suma wszystkich elementów zbioru A wynosi = Suma elementów podzbioru zbioru A będzie równa wtedy i tylko wtedy, gdy suma elementów jego dopełnienia będzie równa 6. Takimi podzbiorami są jedynie zbiory: {1,, 3}, {1, 5}, {, 4}, {6}. Oznacza to, że są cztery podzbiory zbioru A, których suma elementów wynosi Zadanie 5 Liczby zwane trójkątnymi można zapisać n(n+1) w postaci, gdzie n =1,, 3... Początkowymi liczbami trójkątnymi są więc: 1, 3, 6, 10, 15,... Znajdź wszystkie pary (a, b), gdzie a<b, takich liczb trójkątnych, dla których b a = 008. Niech a i b będą szukanymi liczbami trójkątnymi. Wówczas a = x(x+1), b = y(y+1), x<y. Zgodnie z warunkami zadania: b a = y(y+1) x(x+1) = 008. Po przekształceniach mamy następujące równanie: (y x)(y + x +1)= 51. Ponieważ interesują nas rozwiązania tego równania w zbiorze liczb naturalnych, trzeba rozpatrzyć następujące przypadki (y x<y+ x +1): y x y + x z których tylko pierwszy i ostatni dadzą rozwiązanie. W pierwszym przypadku mamy: { { y x =1 x = 007 y + x +1= 51 y = 008 { a = b = Drugie rozwiązanie jest następujące: { y x = y + x + 1 = 51 { x = 117 y = 133 { a = 6903 b = 8911 W kilku powyższych przykładach celowo użyłem liczby 008. Taki mamy przecież rok! Ach, te lata... Liczba 007 dzieli się przez 9, 008 dzieli się przez 8, 009 dzieli się przez 7, a 010 dzieli się przez 6. Czy łatwo jest znaleźć analogiczną sekwencję, która zdarzy się po roku 007? Powyższe przykłady sygnalizują liczne możliwości zastosowań wzoru na sumę kolejnych liczb naturalnych i myślę, że mogą być inspiracją do dalszych samodzielnych poszukiwań. 1 G. Polya, Odkrycie matematyczne. O rozumieniu, uczeniu się i nauczaniu rozwiązywania zadań, WNT, Warszawa 1975, s

8

Matematyka w Szkole. Lubiê dwie kostki. Stomachion Przez œcis³oœæ do absurdu. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów

Matematyka w Szkole. Lubiê dwie kostki. Stomachion Przez œcis³oœæ do absurdu. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów Matematyka w Szkole nr 49 marzec/kwiecieñ/2009 Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów cena 7,40 z³ ISSN 507-2800 Lubiê dwie kostki Stomachion Przez œcis³oœæ do absurdu ZOSTAŃ PRENUMERATOREM

Bardziej szczegółowo

Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum

Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum 1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,

Bardziej szczegółowo

ZAPRASZAM DO LEKTURY! 1

ZAPRASZAM DO LEKTURY! 1 ZAPRASZAM DO LEKTURY! 1 Matura w innych krajach Po wyroku Trybunału Konstytucyjnego nie wiemy, jak będzie wyglądać matura w Polsce. Możemy więc się dla relaksu przyjrzeć, jak ten egzamin wygląda w innych

Bardziej szczegółowo

W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1

W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania

Bardziej szczegółowo

Matematyka w Szkole. Zobacz œwiat oczami dziecka. Od pch³y do galaktyki Œwi¹teczne origami. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów

Matematyka w Szkole. Zobacz œwiat oczami dziecka. Od pch³y do galaktyki Œwi¹teczne origami. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów Matematyka w Szkole nr 47 listopad/grudzieñ/2008 Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów cena 7,20 z³ ISSN 1507-2800 Zobacz œwiat oczami dziecka Od pch³y do galaktyki Œwi¹teczne origami

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM PODSTAWOWY DATA: 25 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja

Bardziej szczegółowo

Matura Egzamin maturalny jest przeprowadzany z przedmiotów obowiązkowych i dodatkowych.

Matura Egzamin maturalny jest przeprowadzany z przedmiotów obowiązkowych i dodatkowych. Matura 2018 Egzamin maturalny jest przeprowadzany z przedmiotów obowiązkowych i dodatkowych. Które egzaminy są obowiązkowe? Musisz przystąpić do egzaminu pisemnego z trzech przedmiotów obowiązkowych na

Bardziej szczegółowo

XXI Konferencja SNM UKŁADY RÓWNAŃ. Kilka słów o układach równań.

XXI Konferencja SNM UKŁADY RÓWNAŃ. Kilka słów o układach równań. 1 XXI Konferencja SNM UKŁADY RÓWNAŃ Piotr Drozdowski (Józefów), piotr.trufla@wp.pl Krzysztof Mostowski (Siedlce), kmostows@o.pl Kilka słów o układach równań. Streszczenie. 100 układów równań w 5 min, jak

Bardziej szczegółowo

ZAPRASZAM DO LEKTURY! 1

ZAPRASZAM DO LEKTURY! 1 ZAPRASZAM DO LEKTURY! 1 Nie na temat Zuzanna Mikołajska pisze w swoim artykule (s. 42), że lekcja matematyki zawsze jest na jakiś temat, a wiele umiejętności matematycznych nie pasuje do żadnego tematu.

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Przewodnik WSiP Egzamin ósmoklasisty z matematyki

Przewodnik WSiP Egzamin ósmoklasisty z matematyki Egzamin ósmoklasisty z matematyki 1 Przewodnik WSiP Egzamin ósmoklasisty z matematyki Charakterystyka egzaminu ósmoklasisty CECHY EGZAMINU ÓSMOKLASISTY powszechny zdają go wszyscy uczniowie, z wyjątkiem

Bardziej szczegółowo

Twórczość uczniowska na egzaminie gimnazjalnym z zakresu matematyki

Twórczość uczniowska na egzaminie gimnazjalnym z zakresu matematyki Urszula Mazur Szkoła Podstawowa nr 85 w Krakowie Okręgowa Komisja Egzaminacyjna w Krakowie Twórczość uczniowska na egzaminie gimnazjalnym z zakresu matematyki Czy egzamin gimnazjalny z matematyki może

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

nr 54 marzec/kwiecieñ/2010 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN Koœci Efrona Chain sudoku Dzielenie w geometrii

nr 54 marzec/kwiecieñ/2010 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN Koœci Efrona Chain sudoku Dzielenie w geometrii oklad 1-4 ML nr 41 marzec/kwiecieñ/2010 nr 54 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN 1507-2800 Koœci Efrona Chain sudoku Dzielenie w geometrii Doświadczenie Matematyka to w powszechnej opinii

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część V: Ciągi liczbowe ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY MARZEC 2019 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12

Bardziej szczegółowo

Porównanie umiejętności matematycznych uczniów, którzy w 2007 roku pisali próbną maturę na poziomie podstawowym lub rozszerzonym

Porównanie umiejętności matematycznych uczniów, którzy w 2007 roku pisali próbną maturę na poziomie podstawowym lub rozszerzonym XIII Konferencja Diagnostyki Edukacyjnej Uczenie się i egzamin w oczach uczniów. Łomża, 5-7..27 Anna Dubiecka, Jacek Stańdo 2 Matematyka 2_Gimnazjum, WSiP 2 Centrum Nauczania Matematyki i Fizyki, Politechnika

Bardziej szczegółowo

RAPORT z diagnozy umiejętności matematycznych

RAPORT z diagnozy umiejętności matematycznych RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach czwartych szkoły podstawowej 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba uczniów,

Bardziej szczegółowo

Matura z matematyki 2015

Matura z matematyki 2015 Matura z matematyki 2015 P R E Z E N T A C J A N A S P O T K A N I E M E T O D Y C Z N E D L A N A U C Z Y C I E L I M A T E M A T Y K I o p r a c o w a ł a : J O L A N T A C H A D A J Biblia dla nauczycieli

Bardziej szczegółowo

DARIUSZ KULMA JAK ZDAĆ MATURĘ Z MATEMATYKI NA POZIOMIE ROZSZERZONYM? arkusze maturalne

DARIUSZ KULMA JAK ZDAĆ MATURĘ Z MATEMATYKI NA POZIOMIE ROZSZERZONYM? arkusze maturalne DARIUSZ KULMA JAK ZDAĆ MATURĘ Z MATEMATYKI NA POZIOMIE ROZSZERZONYM? arkusze maturalne WYDAWNICTWO ELITMAT Mińsk Mazowiecki 016 Autor: Dariusz Kulma Konsultacje merytoryczne: Witold Pająk Opracowanie redakcyjne:

Bardziej szczegółowo

listopad/grudzieñ/2008 nr 35 Czasopismo dla nauczycieli szkó³ œrednich cena 7 z³ ISSN

listopad/grudzieñ/2008 nr 35 Czasopismo dla nauczycieli szkó³ œrednich cena 7 z³ ISSN nr 35 listopad/grudzieñ/2008 Czasopismo dla nauczycieli szkó³ œrednich cena 7 z³ ISSN 1642-3550 ZAPRASZAM DO LEKTURY! 1 Omega Całkiem niedawno bardzo popularna była książka kurs przygotowawczy do matury,

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Spis treści Wstęp Zadania maturalne Szkice rozwiązań.

Spis treści Wstęp Zadania maturalne Szkice rozwiązań. Spis treści Wstęp.... Zadania maturalne......................................................... 5. Liczby. Potęgi.... 5. Logarytmy.... Procenty.... Wartość bezwzględna... 7 5. Równania. Nierówności...

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Okręgowa Komisja Egzaminacyjna w Gdańsku

Okręgowa Komisja Egzaminacyjna w Gdańsku Obowiązkowy egzamin maturalny z matematyki od 2010 roku 1 BEZ MATEMATYKI KARIERY NIE ZROBISZ Do 1983 roku egzamin maturalny z matematyki był obowiązkowy dla wszystkich przystępujących do egzaminu dojrzałości.

Bardziej szczegółowo

DARIUSZ KULMA JAK ZDAĆ MATURĘ Z MATEMATYKI NA POZIOMIE PODSTAWOWYM? arkusze maturalne

DARIUSZ KULMA JAK ZDAĆ MATURĘ Z MATEMATYKI NA POZIOMIE PODSTAWOWYM? arkusze maturalne DARIUSZ KULMA JAK ZDAĆ MATURĘ Z MATEMATYKI NA POZIOMIE PODSTAWOWYM? arkusze maturalne WYDAWNICTWO ELITMAT Mińsk Mazowiecki 017 Autor: Dariusz Kulma Konsultacje merytoryczne: Witold Pająk Opracowanie redakcyjne:

Bardziej szczegółowo

Konferencja Innowacyjne metody nauczania matematyki we współczesnej szkole dla nauczycieli matematyki

Konferencja Innowacyjne metody nauczania matematyki we współczesnej szkole dla nauczycieli matematyki Konferencja Innowacyjne metody nauczania matematyki we współczesnej szkole dla nauczycieli matematyki Ełk/Olsztyn 27 i 28 sierpnia 2014 r. EGZAMIN MATURALNY Z MATEMATYKI OD ROKU SZKOLNEGO 2014/2015 Rozporządzenie

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU MATURALNEGO Z MATEMATYKI W XIII LO W ROKU SZKOLNYM 2013/14

ANALIZA WYNIKÓW EGZAMINU MATURALNEGO Z MATEMATYKI W XIII LO W ROKU SZKOLNYM 2013/14 ANALIZA WYNIKÓW EGZAMINU MATURALNEGO Z MATEMATYKI W XIII LO W ROKU SZKOLNYM 2013/14 (dane z 12 września 2013 r.) 1. Dane statystyczne Zdawalność matury z matematyki kraj woj. dolnośląskie woj. dolnośląskie,

Bardziej szczegółowo

Skrypt 16. Ciągi: Opracowanie L6

Skrypt 16. Ciągi: Opracowanie L6 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.

Bardziej szczegółowo

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 Jerzy Matwijko Okręgowa Komisja Egzaminacyjna w Krakowie W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 W Pracowni

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

INFORMACJA DLA RODZICÓW I UCZNIÓW KLAS TRZECICH EGZAMIN GIMNAZJALNY KWIECIEŃ 2017

INFORMACJA DLA RODZICÓW I UCZNIÓW KLAS TRZECICH EGZAMIN GIMNAZJALNY KWIECIEŃ 2017 INFORMACJA DLA RODZICÓW I UCZNIÓW KLAS TRZECICH 1. ZASADY OGÓLNE EGZAMIN GIMNAZJALNY KWIECIEŃ 2017 Egzamin gimnazjalny przeprowadzany jest w trzeciej klasie gimnazjum. Jest on powszechny i obowiązkowy,

Bardziej szczegółowo

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej matematyka sprawdziany kompetencji dla klasy zreformowanej szkoły podstawowej Łódź 2001 Korekta Grażyna Pysznicka-Kozik Projekt okładki Jacek Wilk Skład Krzysztof Jodłowski Copyright by Piątek Trzynastego,

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej

Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Temat: Wzory Viete a. Zastosowanie wzorów Viete a w zadaniach. Czas trwania lekcji: dwie jednostki lekcyjne (90 minut) Powiązanie z wcześniejszą

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny

Bardziej szczegółowo

Analiza porównawcza egzaminu ósmoklasisty z egzaminem w klasie trzeciej gimnazjum na poziomie podstawowym oraz rozszerzonym

Analiza porównawcza egzaminu ósmoklasisty z egzaminem w klasie trzeciej gimnazjum na poziomie podstawowym oraz rozszerzonym Analiza porównawcza egzaminu z egzaminem w klasie trzeciej gimnazjum na poziomie podstawowym oraz rozszerzonym Reforma edukacji, zmiany w podstawie programowej oraz, wynikające z nich, wprowadzenie egzaminu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie.. Imię i Nazwisko... Klasa... Liczba uzyskanych punktów PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI... Wynik procentowy... Ocena szkolna POZIOM ROZSZERZONY 1. Sprawdź, czy

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2017 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Matematyka w Szkole. Uk³adamy p³ytki. Proporcjonalne flagi Inna podstawa. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów.

Matematyka w Szkole. Uk³adamy p³ytki. Proporcjonalne flagi Inna podstawa. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów. Matematyka w Szkole nr 45 maj/czerwiec/2008 Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów cena 7,20 z³ ISSN 1507-2800 Uk³adamy p³ytki Proporcjonalne flagi Inna podstawa ZAPRASZAM DO LEKTURY!

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Jak zdać maturę z matematyki? Dziesięć praktycznych porad

Jak zdać maturę z matematyki? Dziesięć praktycznych porad Jak zdać maturę z matematyki? Dziesięć praktycznych porad Adam Kiersztyn, Joanna Szyszkowska, Magdalena Zoła Strona 1 z 39 1. Co musisz wiedzieć PRZED przystąpieniem do egzaminu maturalnego z matematyki?

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY DATA: 26 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2019 INFORMACJE DLA RODZICÓW I UCZNIÓW

EGZAMIN GIMNAZJALNY 2019 INFORMACJE DLA RODZICÓW I UCZNIÓW EGZAMIN GIMNAZJALNY 2019 INFORMACJE DLA RODZICÓW I UCZNIÓW 1. ZASADY OGÓLNE Egzamin gimnazjalny jest powszechny i obowiązkowy, co oznacza, że musi do niego przystąpić każdy uczeń kończący szkołę. Przystąpienie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom rozszerzony 1

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom rozszerzony 1 LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom rozszerzony 1 KOD UCZNIA MATEMATYKA 25 LUTY 2015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1

Bardziej szczegółowo

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Analiza egzaminu maturalnego z języka polskiego poziom podstawowy.

Analiza egzaminu maturalnego z języka polskiego poziom podstawowy. Analiza egzaminu maturalnego z języka polskiego poziom podstawowy. Arkusz egzaminacyjny z języka polskiego dla poziomu podstawowego zawierał dwa : rozumienie czytanego tekstu nieliterackiego oraz tworzenie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część X: Statystyka, kombinatoryka i rachunek prawdopodobieństwa ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy

Bardziej szczegółowo

DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM

DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM DIAGNOZA POZIOMU WIEDZY Z MATEMATYKI UCZNIÓW KLAS I TECHNIKUM OPRACOWAŁY MGR A. JASTROWSKA MGR A. KRZYKANOWSKA INOWROCŁAW WRZESIEŃ 2003 1 I. Koncepcja testu Test jest testem sprawdzającym wiadomości i

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

ZAPRASZAM DO LEKTURY! 1

ZAPRASZAM DO LEKTURY! 1 ZAPRASZAM DO LEKTURY! 1 Matura, pierwiastek i życie Podobno za trzy lata wszyscy obowiązkowo będą przystępować do matury z matematyki. Na razie, z własnej woli, matematykę chce zdawać coraz mniej maturzystów.

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

Programowanie w Baltie klasa VII

Programowanie w Baltie klasa VII Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MMA-P1D1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 10 minut ARKUSZ I STYCZEŃ ROK 003 Instrukcja

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2 czerwca 2017

Bardziej szczegółowo

ZAPRASZAM DO LEKTURY! 1

ZAPRASZAM DO LEKTURY! 1 ZAPRASZAM DO LEKTURY! 1 Idzie jeszcze nowsze Nauczyciele doskonale wiedzą, że w ostatniej klasie liceum naprawdę uczą się danego przedmiotu tylko ci, którzy go zdają na maturze. Co więcej, uczniowie wiedzą,

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Egzamin maturalny z matematyki Budowa arkuszy maturalnych według nowej formuły

Egzamin maturalny z matematyki Budowa arkuszy maturalnych według nowej formuły Egzamin maturalny z matematyki Budowa arkuszy maturalnych według nowej formuły Śląski Salon Maturzystów 25, 26 września 2014 CELE I NOWE UWARUNKOWANIA 1. Istotne zwiększenie wymagań na poziomie rozszerzonym

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

18 WRZEŚNIA 2001 r. MMA-P1A1P-011

18 WRZEŚNIA 2001 r. MMA-P1A1P-011 18 WRZEŚNIA 2001 r. MMA-P1A1P-011 Miejsce na naklejkę z kodem KOD ZDAJĄCEGO (Wpisuje zdający przed rozpoczęciem pracy) PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Informacje Czas pracy 120

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

matematyka dla opornych i ich korepetytorów michalina malinowska Matematyka matura raz, dwa, trzy poziom podstawowy

matematyka dla opornych i ich korepetytorów michalina malinowska Matematyka matura raz, dwa, trzy poziom podstawowy matematyka dla opornych i ich korepetytorów michalina malinowska Matematyka matura raz, dwa, trzy poziom podstawowy Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r. KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 5 3 4 4 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r. Przeczytaj uważnie

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie

Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )

Bardziej szczegółowo

e-konferencja: Szkoła na nowej podstawie?! Q&A

e-konferencja: Szkoła na nowej podstawie?! Q&A Czy będzie obowiązkowy podział na grupy? Nadal obowiązuje Rozporządzenie Ministra Edukacji Narodowej z 7.02.2012 r. W sprawie ramowych programów nauczania w szkołach publicznych, gdzie w paragrafie 7.1

Bardziej szczegółowo

marzec/kwiecieñ/2009 nr 37 Czasopismo dla nauczycieli szkó³ œrednich cena 7,20 z³ ISSN Mieszanki Nie tylko PIT Walec i jego tajemnica

marzec/kwiecieñ/2009 nr 37 Czasopismo dla nauczycieli szkó³ œrednich cena 7,20 z³ ISSN Mieszanki Nie tylko PIT Walec i jego tajemnica nr 37 marzec/kwiecieñ/2009 Czasopismo dla nauczycieli szkó³ œrednich cena 7,20 z³ ISSN 1642-3550 Mieszanki Nie tylko PIT Walec i jego tajemnica ZOSTAŃ PRENUMERATOREM MATEMATYKI W SZKOLE 1 numer za 7,20

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo