nr 54 marzec/kwiecieñ/2010 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN Koœci Efrona Chain sudoku Dzielenie w geometrii

Wielkość: px
Rozpocząć pokaz od strony:

Download "nr 54 marzec/kwiecieñ/2010 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN Koœci Efrona Chain sudoku Dzielenie w geometrii"

Transkrypt

1 oklad 1-4 ML nr 41 marzec/kwiecieñ/2010 nr 54 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN Koœci Efrona Chain sudoku Dzielenie w geometrii

2 Doświadczenie Matematyka to w powszechnej opinii nauka zajmująca się pojęciami abstrakcyjnymi. Jednak nawet na poziomie uniwersyteckim nie musi to być prawdą. Przecież wiele dziedzin matematyki rozwinęło się na zamówienie fizyki doświadczalnej. A już na pewno nie jest prawdą, że na lekcjach matematyki do abstrakcyjnych pojęć powinniśmy zawsze dochodzić drogą abstrakcyjnego rozumowania. Także na matematyce uczniowie powinni planować eksperymenty, oglądać modele i wyciągać wnioski z przeprowadzonych doświadczeń. Jak przygotować takie zajęcia? Można się tego dowiedzieć z artykułów zamieszczonych w Temacie numeru. Doświadczenia matematyczne w szkole podstawowej opisuje Marcin Braun w artykule na stronach 10 13, a Lidia Pawlusińska pokazuje, jak to zrobić w gimnazjum (s ). Doświadczalną matematykę na poziomie szkoły ponadgimnazjalnej prezentuje w swoim artykule Stefan Turnau (s ). Wszystkim Czytelnikom, niezależnie od typu szkoły, w której uczą, polecam tekst na stronach Porównano w nim płace i pensum nauczycieli w krajach europejskich. Dane są naprawdę zaskakujące. Od tego numeru otrzymują Państwo Matematykę w Szkole w nowej wersji. Jest grubsza i kolorowa oraz zawiera teksty dla nauczycieli matematyki ze wszystkich typów szkół. Aby łatwo było znaleźć artykuł związany z danym poziomem nauczania, wprowadziliśmy specjalne oznaczenia, które są objaśnione na dole tej strony. Oznaczenia artykułów: szkoła podstawowa gimnazjum szkoła ponadgimnazjalna Na przykład: artykuł przeznaczony dla nauczycieli szkół podstawowych i gimnazjów artykuł przeznaczony dla nauczycieli gimnazjów i szkół ponadgimnazjalnych (ms54) str. 2

3 SPIS TREŚCI EDUKACJA Jacek Lech Listy z Antwerpii 4 Aleksandra Golec Listy z Wisconsin 6 Dorota Natyw Nauczyciele w Europie 8 TEMAT NUMERU MATEMATYKA DOŚWIADCZALNA Marcin Braun Doświadczenia w klasach IV VI 10 Agnieszka Dyrka Klocki Reko 13 Kazimierz Skurzyński Zapomniany dialog 15 Lidia Pawlusińska Własności ekierki 19 Stefan Turnau Stereometria matematyka brył 22 Marcin Braun Kości Efrona 26 NAUCZANIE MATEMATYKI Michał Kremzer Nietypowe ostrosłupy 29 Aneta Góra Chain sudoku 30 Katarzyna Kroplewska, Marta Szymańska Odczytywanie czasu 32 Paweł Soboń Dzielenie w geometrii 35 Książki nadesłane 38 List od Czytelnika 39 Janusz Karkut Koza w roli głównej 40 Agnieszka Piecewska-Łoś Trzynaście ksiąg. Pola bez wzorów 42 Marzena Filipowicz-Chomko, Edward Zych Śladami Euklidesa. Przekroje ośmiościanu 44 MATEMATYK WYCHOWAWCĄ Ilona Poćwierz-Marciniak Matura i co dalej? 47 MATERIAŁY Małgorzata Rucińska-Wrzesińska Wielkie możliwości kartoników. Ułamki zwykłe i dziesiętne 51 Jolanta Wojtoń Karty pracy dla słabych uczniów, cz Adam Wojaczek Zestawy maturalne arkusz 4 59 ZOSTATNIEJŁAWKI Praworządni 62 KONKURS. Pokropek 64

4 E D U K A C J A 19 WŁASNOŚCI EKIERKI Lidia Pawlusińska W trzeciej klasie gimnazjum omawiam związki miarowe w trójkątach o kątach 30, 60, 90 oraz 45, 45, 90. Żeby urozmaicić lekcję na ten temat, przygotowuję dla moich uczniów karty pracy. Na lekcji potrzebne są ekierki (proszę wcześniej, żeby każdy uczeń przyniósł z domu kilka ekierek), kątomierze i kalkulatory. Podzieliłam uczniów na trzy-, czteroosobowe grupy. Każda grupa otrzymała osiem ekierek (po cztery każdego rodzaju) oraz kartę pracy (patrz następne strony). Po 15 minutach uczniowie przedstawili wyniki swojej pracy. Oto pytania pomocnicze, które może zadać nauczyciel: Jak pogrupowaliście ekierki? Jakie miary mają kąty w badanych trójkątach (ekierkach)? Jaką zależność dostrzegliście między długościami boków w trójkącie o kątach 30, 60 i 90? Jaką zależność dostrzegliście między długościami boków w trójkącie prostokątnym równoramiennym? Po omówieniu kart pracy uczniowie, stosując twierdzenie Pitagorasa, obliczyli długości trzeciego boku w dwóch wybranych ekierkach (każda innego typu). Potem swoje pomiary porównali z wynikami obliczeń. W drugiej części lekcji wyznaczaliśmy wzór na długość przeciwprostokątnej w trójkącie prostokątnym równoramiennym oraz korzystając z własności trójkąta równobocznego, związek między długościami boków w trójkącie o kątach 30, 60 i 90. Oto polecenia dla uczniów: Jaki foremny wielokąt możesz ułożyć z dwóch ekierek o kątach 45, 45 i 90, a jaki z dwóch ekierek o kątch 30, 60 i 90? Narysuj kwadrat o boku długości a i zaznacz jego przekątną. Wyznacz długość tej przekątnej. Jaka jest zależność między długościami boków w powstałym trójkącie prostokątnym równoramiennym? Zapisz swoje spostrzeżenia. Narysuj trójkąt równoboczny o boku długości a. Poprowadź w nim wysokość i wyznacz jej długość. Jaka jest zależność między długościami boków w powstałym trójkącie prostokątnym? Zapisz swoje spostrzeżenia. Na zakończenie lekcji zapisaliśmy, że w trójkątach o kątach 45, 45 i 90 oraz w trójkątach o kątach 30, 60 i 90 wystarczy znać długość jednego z boków, żeby obliczyć długości dwóch pozostałych. Karty pracy nauczyciel może zebrać i ocenić. Plik z materiałami potrzebnymi do przeprowadzenia lekcji znajduje się na stronie

5 40 NAUCZANIE MATEMATYKI KOZA W ROLI GŁÓWNEJ Janusz Karkut Koza jest bohaterką wielu zadań konkursowych. Tutaj przedstawię kilka takich zadań z kozą w roli głównej, które można rozwiązywać z całą klasą w gimnazjum lub w szkole średniej. Żeby rozwiązać ostatnie zadanie, trzeba znać funkcje trygonometryczne (wystarczy znajomość na poziomie podstawowym). Zadanie 1 Kozę uwiązano na sznurku o długości 12 m wrogup kwadratowego domku o boku długości6m.domekjestotoczonyłąką.oblicz pole powierzchni łąki dostępnej dla kozy. Wynik podaj w metrach kwadratowych z dokładnością do całości. Rozwiązanie Odcinek AB o długości 4 m przedstawia przeszkodę, której koza nie może przeskoczyć, zaś kwadrat przedstawia budkę o boku długości 2 m. Oblicz największą powierzchnię łąki, na której koza może skubać trawę. Wynik podaj w metrach kwadratowych z dokładnością do całości. Rozwiązanie Posługując się poniższym rysunkiem, możemy obliczyć, że maksymalne pole powierzchni łąki dostępnej dla kozy wynosi: P = P 1 + P 2 + P 3 + P 4 P = 1 4 π π π π 22 = =16π 50 m 2 Korzystając z rysunku, możemy obliczyć, że pole powierzchni łąki dostępnej dla kozy wynosi: P = 3 4 π π 62 = 126π 396 m 2 Zadanie 2 Koza K jest uwiązana w punkcie A na sznurku o długości 6 m. Rzut z góry przedstawiono na rysunku. Zadanie 3 Rolnik uwiązał kozę na dwóch sznurkach. Każdy ma długość 5 m i jest przymocowany do innego palika, a paliki są od siebie od-

6 NAUCZANIE MATEMATYKI 41 dalone też o 5 m. Oblicz powierzchnię, po której może się poruszać koza. Wynik podaj w metrach kwadratowych z dokładnością do części dziesiątych. Rozwiązanie Na poniższym rysunku paliki są umieszczone w punktach A i B. Zadanie 4 Rolnik przywiązał kozę do dwóch palików, podobnie jak w poprzednim zadaniu. Jednak tym razem paliki są oddalone od siebie o 6 m, a sznurki mają długość po 5 m. Oblicz powierzchnię, po której może się poruszać koza. Przyjmij π = =3,14. Wynik podaj z dokładnością do części dziesiątych metra kwadratowego. Rozwiązanie Jeśli oba sznurki są naprężone, to koza znajdzie się w punkcie C, któryjestwierzchołkiem trójkąta równobocznego ABC oboku 5 m lub w punkcie D, w którym sytuacja jest analogiczna. Obliczmy najpierw pole jednego odcinka koła o promieniu 5 m i kącie środkowym 60.Odpolawycinkawystarczy odjąć pole trójkąta równobocznego ABC. Pole odcinka: π = 25 ( ) π Pole całego obszaru, na którym koza może skubać trawę, jest równe sumie pól dwóch trójkątów równobocznych i czterech pól odcinków koła: ( π 3 ) 3 30,7m 2 2 Tym razem szukane pole to suma pól dwóch przystających odcinków koła. Pole jednego odcinka możemy obliczyć odejmując pole trójkąta ACD od pola wycinka ACD. Trójkąt ACD jest równoramienny, jego boki mają długości 5, 5 i 8 m, a wysokość opuszczona na najdłuższy bok ma długość równą 3 m. Miarę kąta α można obliczyć, korzystając z dowolnej funkcji trygonometrycznej w trójkącie prostokątnym: tg α = 4 3 α 53,13 2α 106,26 P =2 (P ) wycacd P ΔACD ( 106, 26 2 π ) ,34 m 2

7 KONKURS Pora na następne zadanie konkursowe. Na odpowiedzi czekamy do końca maja. Można je przysyłać pocztą zwykłą lub internetową. Przypominamy, że łamigłówkę mogą Państwo rozwiązać także na naszej stronie internetowej Pokropek Na planszy należy narysować wielokąt składający się z odcinków łączących sąsiednie kropki, pamiętając o następujących zasadach: odcinki muszą być równoległe do brzegów diagramu liczby znajdujące się w polach informują o tym, ile odcinków przylega do danego pola, pole, które jest puste, może być otoczone dowolną liczbą odcinków (od 0 do 4). Matematyka wszkole Czasopismo dla nauczycieli matematyki Adres redakcji: Gdańsk al. Grunwaldzka 413 tel Dział sprzedaży: tel fax prenumerata@gwo.pl Adres do korespondencji: Matematyka w Szkole Czasopismo dla nauczycieli matematyki skr. poczt Gdańsk 52 gazetamws@gwo.pl Wydawca: Gdańskie Wydawnictwo Oświatowe, Sp. z o.o Gdańsk, al. Grunwaldzka 413 KRS przy Sądzie Rejonowym w Gdańsku Redaktor naczelny: Marcin Karpiński Redaguje kolegium: Rozstrzygnięcie konkursu Spośród wielu osób, które przysłały prawidłowe rozwiązanie Kuromasu, wylosowaliśmy Sonię Olszok z Lisowa, Magdalenę Andrzejewską z Rawicza i Iwonę Topczewską z miejscowości Wyszki. Panie otrzymują książkę Analfabetyzm matematyczny ijegoskutkiautorstwa J.A. Paulosa. Serdecznie gratulujemy! Marcin Braun Małgorzata Domian Agnieszka Frączyk Jacek Lech Agnieszka Szulc Projekt graficzny: Sławomir Kilian Ilustracje: Sławomir Kilian Skład: Maria Chojnicka Agnieszka Frączyk Na okładce znajduje się zdjęcie nagrodzone w konkursie Zdjęcie na okładkę w kategorii Czas i kalendarz. Zdjęcie na okładce: Katarzyna Zalewska Druk i oprawa: Normex, Gdańsk Nakład: 4500 egz.

8 oklad 1-4 ML nr 41 marzec/kwiecieñ/2010 nr 54 Czasopismo dla nauczycieli matematyki cena 8 z³ ISSN Koœci Efrona Chain sudoku Dzielenie w geometrii

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie

Bardziej szczegółowo

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ROZWIĄZANIA. Organizatorzy: MatmaNa6.p l i Dziennik.pl

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ROZWIĄZANIA. Organizatorzy: MatmaNa6.p l i Dziennik.pl MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Organizatorzy: MatmaNa6.p l i Dziennik.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury

Bardziej szczegółowo

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan

Bardziej szczegółowo

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki

Bardziej szczegółowo

Matematyka w Szkole. Lubiê dwie kostki. Stomachion Przez œcis³oœæ do absurdu. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów

Matematyka w Szkole. Lubiê dwie kostki. Stomachion Przez œcis³oœæ do absurdu. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów Matematyka w Szkole nr 49 marzec/kwiecieñ/2009 Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów cena 7,40 z³ ISSN 507-2800 Lubiê dwie kostki Stomachion Przez œcis³oœæ do absurdu ZOSTAŃ PRENUMERATOREM

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99

PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99 PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99 Dla następujących działów: 1. Wyrażenia algebraiczne. 2. Mierzenie. 3. Bryły. 4. Przekształcenia geometryczne.

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Arkusz I Czas pracy 10 minut ARKUSZ I GRUDZIEŃ ROK 004 Instrukcja dla zdającego

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Skrypt 33. Powtórzenie do matury:

Skrypt 33. Powtórzenie do matury: Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Matematyka w Szkole. Zobacz œwiat oczami dziecka. Od pch³y do galaktyki Œwi¹teczne origami. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów

Matematyka w Szkole. Zobacz œwiat oczami dziecka. Od pch³y do galaktyki Œwi¹teczne origami. Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów Matematyka w Szkole nr 47 listopad/grudzieñ/2008 Czasopismo dla nauczycieli szkó³ podstawowych i gimnazjów cena 7,20 z³ ISSN 1507-2800 Zobacz œwiat oczami dziecka Od pch³y do galaktyki Œwi¹teczne origami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym

Bardziej szczegółowo

Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk

Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk PLANIMETRIA Lekcja 102-103. Miary kątów w trójkącie str. 222-224 Nawiązanie do gimnazjum Planimetria to., czy planimetria zajmuje się. (Dział geometrii, który zajmuje się badaniem płaskich figur geometrycznych)

Bardziej szczegółowo

Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.

Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy Klasa II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria 1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR 2016 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Pole koła κ 1 wynosi P 1 = 20 cm 2. Ile wynosi

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,

Bardziej szczegółowo

Plan wynikowy, klasa 3 ZSZ

Plan wynikowy, klasa 3 ZSZ Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019 Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 018/019 Instrukcja dla ucznia 1. Sprawdź,

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi:

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: 1 Copyright by Wydawnictwa Szkolne i Pedagogiczne, Warszawa 2017 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: czytać teksty

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 W rezultacie kształcenia matematycznego uczeń potrafi: czytać

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY

STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu matematycznym

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Czasopismo dla nauczycieli

Czasopismo dla nauczycieli oklad 1-4 Ms 55 nr 55 maj/czerwiec/2010 Czasopismo dla nauczycieli cena 8 z³ ISSN 1507-2800 Co to jest poziom morza? Problem urodzin Amerykañski porz¹dek na mapie ZOSTAŃ PRENUMERATOREM MATEMATYKI W SZKOLE

Bardziej szczegółowo

COMENIUS PROJEKT ROZWOJU SZKOŁY. Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów.

COMENIUS PROJEKT ROZWOJU SZKOŁY. Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów. COMENIUS PROJEKT ROZWOJU SZKOŁY Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów. GIMNAZJUM 20 GDAŃSK POLSKA Maj 2006 SCENARIUSZ LEKCJI MATEMATYKI Z WYKORZYSTANIEM METODY STACJI UCZENIA

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 6 Szkoły Podstawowej str. 1 Liczby naturalne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 I Okres POTĘGI zapisać potęgę w postaci iloczynu liczb, zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY .......................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach. 12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL VI SZKOŁY PODSTAWOWEJ

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL VI SZKOŁY PODSTAWOWEJ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL VI SZKOŁY PODSTAWOWEJ LICZBY NATURALNE I UŁAMKI - zna nazwy argumentów działań - zna algorytmy czterech działań pisemnych - zna algorytm mnożenia i

Bardziej szczegółowo

Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne.

Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne. Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 32 Przygotowanie do egzaminu Trójkąty prostokątne

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Czas 90 minut pieczęć szkoły pesel ucznia nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Czas 90 minut 1. Otrzymujesz do

Bardziej szczegółowo

ZAPRASZAM DO LEKTURY! 1

ZAPRASZAM DO LEKTURY! 1 ZAPRASZAM DO LEKTURY! 1 Nie na temat Zuzanna Mikołajska pisze w swoim artykule (s. 42), że lekcja matematyki zawsze jest na jakiś temat, a wiele umiejętności matematycznych nie pasuje do żadnego tematu.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2011 w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA oraz WYBRANYCH WZORÓW MATEMATYCZNYCH 2 Próbny egzamin maturalny

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017 Wymagania edukacyjne z matematyki w klasie VI szkoły podstawowej w roku szkolnym 2016/2017 I. LICZBY NATURALNE I UŁAMKI Zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. Zna

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki KLASA VI

Wymagania edukacyjne z matematyki KLASA VI Wymagania edukacyjne z matematyki KLASA VI Ocena dopuszczająca Uczeń: zna nazwy argumentów działań, algorytmy czterech działań pisemnych, algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich.

SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich. Katarzyna Gawinkowska Hanna Małecka VI L.O im J. Korczaka w ZSO nr 2 w Sosnowcu SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temat: Powtórzenie i utrwalenie wiadomości dotyczących geometrii

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność

Bardziej szczegółowo

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV

Bardziej szczegółowo