ALHE Jarosław Arabas. Przeszukiwanie przestrzeni ścieżek w grafie. Algorytm A*

Wielkość: px
Rozpocząć pokaz od strony:

Download "ALHE Jarosław Arabas. Przeszukiwanie przestrzeni ścieżek w grafie. Algorytm A*"

Transkrypt

1 ALHE Jarosław Arabas Przeszukiwanie przestrzeni ścieżek w grafie Algorytm A*

2 Zbiór rozwiązań

3 Przestrzeń rozwiązań

4 Graf odległości Gd 362 Sz 170 Ol By Po 203 Zg Bi 193 Wa L 209 Wr 212 Ki Ka 80 Kr Lu

5 Przeszukiwanie niepoinformowane Gd Sz Ol By Bi Wa Po Zg L Lu Ki Wr Ka Kr

6 Struktura przestrzeni przeszukiwań Rozwiązania dopuszczalne (spełniające ograniczenia)

7 Przestrzeń przeszukiwań GdWaLPo (fragment) GdWaLWr GdWaL GdWaLKa GdWaBy GdOl GdWaOl GdSz Gd GdWa GdWaBi GdWaLu GdBy GdWaKi GdByL GdByLPo GdByLWr GdByWa GdByLKa GdByLKaWr GdByLKaKr GdWaKiKr GdWaLKaWr GdWaLKaKr

8 Przeszukiwanie w głąb i wszerz algorytm wszerz A {s 0 } while A x popfifo ( A) Y sąsiedzi( x) A A Y algorytm w głąb A {s 0 } while A x poplifo ( A ) Y sąsiedzi( x) A A Y

9 Kolejne odwiedzone węzły (wszerz) GdWaLPo GdWaL GdWaLWr GdWaLKa GdWaBy GdOl GdWaOl GdSz Gd GdWa GdWaBi GdWaLu GdBy GdWaKi GdByL GdByLPo GdByLWr GdByWa GdByLKa GdByLKaWr GdByLKaKr GdWaKiKr GdWaLKaWr GdWaLKaKr

10 Kolejne odwiedzone węzły (w głąb) GdWaLPo GdWaL GdWaLWr GdWaLKa GdWaBy GdOl GdWaOl GdSz Gd GdWa GdWaBi GdWaLu GdBy GdWaKi GdByL GdByLPo GdByLWr GdByWa GdByLKa GdByLKaWr GdByLKaKr GdWaKiKr GdWaLKaWr GdWaLKaKr

11 Funkcja kosztu (celu, użyteczności)

12 Algorytm najpierw najlepszy algorytm najpierw najlepszy A init (s 0 ) while! stop x poppriorityqueue ( A) Y sąsiedzi( x) A A Y

13 Niech mi każdy powie szczerze, skąd się funkcja celu bierze?

14 Niech mi każdy powie szczerze, skąd się funkcja celu bierze? Definicja funkcji celu zależy od rozwiązywanego zadania Rolą funkcji celu jest informowanie o stopniu przybliżenia się do rozwiązania

15 Graf odległości Gd 362 Sz 170 Ol By Po 203 Zg Bi 193 Wa L 209 Wr 212 Ki Ka 80 Kr Lu

16 Przestrzeń przeszukiwań GdWaLPo (fragment) GdWaLWr 514 GdWaL 170 GdOl 362 GdSz 377 GdWa Gd 0 GdBy 392 GdByL GdByLPo GdByLWr 165 GdByWa 435 GdWaLu 443 GdByLKa GdByLKaWr GdWaLKa 717 GdWaByGdWaLKaKr GdWaOl 589 GdWaBi 570 GdWaKi 555 GdByLKaKr 665 GdWaLKaWr GdWaKiKr 671

17 Ścieżka do celu w przestrzeni przeszukiwań cel start

18 Funkcja kosztu

19 Graf odległości i oszacowań Gd Sz Ol Zg 409 L Odległości do Krakowa Ka 80 Ki 116 Kr Bi Lu Wr 212 By Wa Po

20 Przestrzeń przeszukiwań GdWaLPo (fragment) GdWaLWr GdOl 362 GdSz GdWa Gd GdWaL GdWaLKa GdWaBy GdWaOl 589 GdWaBi GdBy GdByL GdByLPo GdByLWr GdByWa 435 GdWaLu 443 GdWaKi GdByLKa GdByLKaWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

21 Przestrzeń przeszukiwań GdWaLPo (fragment) GdWaLWr 170 GdOl 362 GdSz GdWa 659 Gd GdWaL GdWaLKa GdWaBy GdWaOl 589 GdWaBi GdBy GdByL GdByWa 435 GdByLPo GdByLWr GdWaLu 443 GdWaKi GdByLKa GdByLKaWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

22 Kiedy można mówić o funkcji heurystycznej Zadanie jest złożeniem składników Da się ocenić rozwiązanie cząstkowe Przestrzeń przeszukiwań obejmuje rozwiązania cząstkowe Algorytmy wszerz, w głąb, najpierw najlepszy są stosowalne w przestrzeniach rozwiązań cząstkowych Pożądana jest drzewiasta struktura przestrzeni A* jest odmianą najpierw najlepszy, która korzysta z sumy f. kosztu i f. heurystycznej

23 Idealna funkcja heurystyczna

24 Idealna funkcja heurystyczna

25 WANTED an oracle

26 Nieidealna funkcja heurystyczna

27 Funkcja heurystyczna (dla problemu minimalizacji) g(xi) h(xi) g(xj) h(xj) g(xs)=0 h(xs) g(xt) h(xt)=0 Nadmierny optymizm dopuszczalność: g(x)+h(x)<=g(xt) Błąd oszacowania malejący wraz ze zbliżaniem się do rozwiązania monotoniczność: g(xj)+h(xj)>=g(xi)+h(xi)

28 Funkcja kosztu i heurystyczna GdWaLPo Funkcja kosztu Funkcja heurystyczna Funkcja oceny 362 GdSz 170 GdOl GdWa 659 Gd GdWaL GdWaLWr GdWaLKa GdWaBy GdWaOl 589 GdWaBi GdBy GdByL GdByWa 435 GdByLPo GdByLWr GdWaLu 443 GdWaKi GdByLKa GdByLKaWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

29 Funkcja kosztu Funkcja kosztu Funkcja heurystyczna Funkcja oceny 362 GdSz 170 GdOl GdWa 659 Gd GdWaL GdWaLPo GdWaLWr GdWaLKa GdWaBy GdWaOl 589 GdWaBi GdBy GdByL GdByWa 435 GdByLPo GdByLWr GdWaLu 443 GdWaKi GdByLKa GdByLKaWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

30 Funkcja kosztu+heurystyczna GdWaLPo Funkcja kosztu Funkcja heurystyczna Funkcja oceny 362 GdSz 170 GdOl GdWa 659 Gd GdWaL GdWaLWr GdWaLKa GdWaBy GdWaOl 589 GdWaBi GdBy GdByL GdByWa 435 GdByLPo GdByLWr GdWaLu 443 GdWaKi GdByLKa GdByLKaWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

31 Zagadnienie komiwojażera Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr

32 Zagadnienie komiwojażera GdWaLPo GdOl GdWaL GdWaLWr GdWaLKa GdWaBy GdWaOl GdSz 377 GdWa Gd GdWaBi GdBy GdByL GdByLPo GdByLWr GdByWa 435 GdWaLu 443 GdWaKi 555 GdByLKa GdByLKaWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

33 Zagadnienie komiwojażera GdOlWaKiKrKaWrZgSzPoLByGd 2154 GdWaLPo 170 GdOl 362 GdSz 514 Gd GdWa GdBy GdByL GdByLPo GdByLWr GdWaL GdWaLKa GdWaBy GdWaOl 589 GdWaKi 555 GdByWa 435 GdByLKa GdByLKaWr GdWaLWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

34 Zagadnienie komiwojażera GdOlWaKiKrKaWrZgSzPoLByGd 2154 GdWaLPo 170 GdOl 362 GdSz Gd 514 GdWa GdBy GdByL GdByLPo GdByLWr GdWaL GdWaLKa GdWaBy GdWaOl 589 GdWaKi 555 GdByWa 435 GdByLKa GdByLKaWr GdByLPoSzZgWrKaKrKiWaOlGd 2154 GdWaLWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

35 Zagadnienie komiwojażera Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr

36 Zagadnienie komiwojażera GdOlWaKiKrKaWrZgSzPoLByGd 2154 GdWaLPo 170 GdOl 362 GdSz GdByLPo Gd GdByL GdByLWr GdWa GdWaL GdWaLKa GdWaBy GdWaOl GdWaKi GdBy GdByWa 435 GdByLKa GdByLKaWr GdByLPoSzZgWrKaKrKiWaOlGd 2154 GdWaLWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

37 Zagadnienie komiwojażera Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr

38 Funkcja heurystyczna Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr Posortowana lista wag krawędzi

39 Koszt ścieżki a funkcja heurystyczna Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr

40 Koszt ścieżki a funkcja heurystyczna Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr

41 Koszt ścieżki a funkcja heurystyczna Gd 362 Sz 170 Ol By Po 203 Zg Wa L 209 Wr 212 Ki Ka 80 Kr

42 Zagadnienie komiwojażera GdOlWaKiKrKaWrZgSzPoLByGd 2154 GdWaLPo 170 GdOl 362 GdSz GdByLPo Gd GdByL GdByLWr GdWa GdWaL GdWaLKa GdWaBy GdWaOl GdWaKi GdBy GdByWa 435 GdByLKa GdByLKaWr GdByLPoSzZgWrKaKrKiWaOlGd 2154 GdWaLWr GdByLKaKr 665 GdWaKiKr 671 GdWaLKaWr GdWaLKaKr 797

43 Zagadnienie komiwojażera inaczej ABCDFE ABCDEF ABCDFE ABDCEF ABDCFE ADBCFE ADBCEF ABDECF ADBECF Funkcja kosztu suma wag pełnego cyklu Funkcja heurystyczna?

44 Zagadnienie komiwojażera inaczej Funkcja kosztu suma wag pełnego cyklu. Funkcja heurystyczna?

45 Przykład - piętnastka Jaka jest reprezentacja rozwiązania? Co jest funkcją kosztu? Czy jest tu miejsce na funkcję heurystyczną? 9

46 Piętnastka - przestrzeń przeszukiwań

47 Solving 15 puzzle attempt #1

48 Przykład - piętnastka Reprezentacja rozwiązania stan planszy Funkcja kosztu Liczba elementów nieprawidłowo umiejcowionych Funkcja heurystyczna? 12

49 Piętnastka przestrzeń przeszukiwań - D L LD DL DD R DR RD RR

50 Przykład - piętnastka Reprezentacja rozwiązania sekwencja ruchów Funkcja kosztu długość sekwencji Funkcja heurystyczna Liczba ruchów, którą trzebaby wykonać gdyby kafelki sobie nie przeszkadzały 30 2:4 4:2 5:4 6:2 7:2 8:2 10:2 11:2 12:4 13:2 14:2 15:2

51 Knapsack problem N items Each item has its weight wi>0 and profit pi>0 Choose items such that total profit is maximized and total weight does not exceed W n max i=1 x i pi n i=1 xi w i W x i {0,1}

52 Knapsack problem N items Each item has its weight wi>0 and profit pi>0 Choose items such that total profit is maximized and total weight does not exceed W n max i=1 x i pi n i=1 xi w i W x i {0,1}

53 Knapsack problem search space???? 0??? 1??? 00?? 000? ?? 01?? 001? ? ? ? ?? 101? ? ?

54 Knapsack problem profit and heuristic function Profit function g( x)= i : x =1 pi i Heuristic function Items are sorted w.r.t. pi/wi (descending) h( x)= i : x =? y i pi i i : x =? y i w i=w i : x =1 xi w i i i y i [0,1]

55 Knapsack problem example profit and heuristic function Items i pi wi pi/wi W=13 Consider the solution Total profit: Total weight: Vector y: Heuristic function: x=? 0? 1? 1 g( x)= p 4 + p6 =5+3=8 w ( x )=w 4 +w 6 =3+3=6 y=[1,0,1/5,0,0,0] h( x)= /5=22

56 Kiedy można mówić o funkcji heurystycznej Zadanie jest złożeniem składników Da się ocenić rozwiązanie cząstkowe Przestrzeń przeszukiwań obejmuje rozwiązania cząstkowe Algorytmy wszerz, w głąb, najpierw najlepszy są stosowalne w przestrzeniach rozwiązań cząstkowych Pożądana jest drzewiasta struktura przestrzeni A* jest odmianą najpierw najlepszy, która korzysta z sumy f. kosztu i f. heurystycznej

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp

Bardziej szczegółowo

Metoda podziału i ograniczeń

Metoda podziału i ograniczeń Seminarium: Algorytmy heurystyczne Metoda podziału i ograniczeń Mateusz Łyczek Wrocław, 16 marca 011 r. 1 Metoda podziału i ograniczeń Metoda podziału i ograniczeń służy do rozwiązywania problemów optymalizacyjnych.

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład II Problem solving 03 październik 2012 Jakie problemy możemy rozwiązywać? Cel: Zbudować inteligentnego agenta planującego, rozwiązującego problem. Szachy Kostka rubika Krzyżówka Labirynt Wybór trasy

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład Studia Inżynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków w odpowiadających

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,[, S, GD], gdzie: N jest zbiorem wierzchołków

Bardziej szczegółowo

LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne

LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia InŜynierskie Przeszukiwanie przestrzeni stanów Przestrzeń stanów jest to czwórka uporządkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka

Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka DEFINICJA: System produkcji M zbiórst.zw.stanów wyróżnionys 0 St.zw.stanpoczątkowy podzbiórg St.zw.stanówdocelowych zbiórot.zw.operacji:

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.

Bardziej szczegółowo

Wykład 7. Algorytmy grafowe

Wykład 7. Algorytmy grafowe Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów strategie heurystyczne

ĆWICZENIE 1: Przeszukiwanie grafów strategie heurystyczne Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE studia niestacjonarne ĆWICZENIE 1: Przeszukiwanie grafów strategie

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze ztuczna Inteligencja i ystemy Doradcze Przeszukiwanie przestrzeni stanów Przeszukiwanie przestrzeni stanów 1 Postawienie problemu eprezentacja problemu: stany: reprezentują opisy różnych stanów świata

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Jak poprawnie wype ni RZ-3?

Jak poprawnie wype ni RZ-3? Instrukcja Jak poprawnie wype ni RZ-3? Lista potrzebnych dokumentów do wype nienia i z enia wniosku RZ-3 Dokumenty niezb dne do wype nienia wniosku: Wniosek RZ-3 Pismo od SF ze zgod na wykre lenie przedmiotu

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Zadania laboratoryjne i projektowe - wersja β

Zadania laboratoryjne i projektowe - wersja β Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki

Bardziej szczegółowo

Algorytmy dla gier dwuosobowych

Algorytmy dla gier dwuosobowych Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 2 Strategie przeszukiwania - ślepe i heurystyczne 27 październik 2011 Plan wykładu 1 Strategie czyli jak znaleźć rozwiązanie problemu Jak wykonać przeszukiwanie Przeszukiwanie przestrzeni stanów

Bardziej szczegółowo

CZYM JEST SZTUCZNA INTELIGENCJA? REPREZENTACJA WIEDZY SZTUCZNA INTELIGENCJA PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI

CZYM JEST SZTUCZNA INTELIGENCJA? REPREZENTACJA WIEDZY SZTUCZNA INTELIGENCJA PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI CZYM JEST SZTUCZNA INTELIGENCJA? Jak działa ludzki mózg? SZTUCZNA INTELIGENCJA Jak zasymulować ludzki mózg? Co to kogo obchodzi zróbmy coś pożytecznego

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Ł Ł ć ć ż ż ż ź ź Ć ń ł ź ż ś ł ź ń ś ż ś ś ś ś ż ź ż ż ź ł ż ż ż ś ś ś ś ż ś ś ź Ś ś ż ś ś ł ż ś ś ł ź ź Ź ś ź ł ż ż ń ł ść ł ś ść ś ż ć ś ż ś ś ź ń ć ź ść ź ż ż ść ć ść ść Ź Ź ł ś ń ł ś ś ł ł ś ś ś ś

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

A Zadanie

A Zadanie where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Harmonogramowanie przedsięwzięć

Harmonogramowanie przedsięwzięć Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp

Bardziej szczegółowo

ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW

ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW Logistyka - nauka Tomasz AMBROZIAK *, Roland JACHIMOWSKI * ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW Streszczenie W artykule scharakteryzowano problematykę klasteryzacji punktów

Bardziej szczegółowo

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) & Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy

xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 BFS DFS Algorytm Dijkstry Algorytm Floyda-Warshalla Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

WABOT CZYM JEST SZTUCZNA INTELIGENCJA? SZTUCZNA INTELIGENCJA REPREZENTACJA WIEDZY KNOWLEDGE SOUP PROBLEM

WABOT CZYM JEST SZTUCZNA INTELIGENCJA? SZTUCZNA INTELIGENCJA REPREZENTACJA WIEDZY KNOWLEDGE SOUP PROBLEM PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI SZTUCZNA INTELIGENCJA WABOT Organista Ichiro Kato, Waseda University Tokyo Wykład dr inż. Łukasz Jeleń Część slajdów pochodzi z wykładu prof. Christiana

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD V: Agent wciąż szuka rozwiązania (choć już nie na ślepo)

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD V: Agent wciąż szuka rozwiązania (choć już nie na ślepo) Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD V: Agent wciąż szuka rozwiązania (choć już nie na ślepo) Poprzednio: węzeł reprezentowany jest jako piątka: stan odpowiadający węzłowi rodzic węzła

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

9. Schematy aproksymacyjne

9. Schematy aproksymacyjne 9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

WOJEWÓDZKI IN S P EKT OR A T OC H R ON Y ŚR ODOWIS KA W KR A KOWIE M 2 0 0 2 U RAPORT O STANIE ŚRODOWISK A W WOJ EWÓ DZ TWIE AŁ OPOL SK IM W ROK BIBLIOTEKA MON ITOR IN G U ŚR OD OW IS KA K r a k ó w 2003

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Wykład 11 - Grafy i podstawowe algorytmy grafowe (ciąg dalszy) Janusz Szwabiński Plan wykładu: Przeszukiwanie w głąb Studium przypadku - zagadnienie skoczka szachowego (ang.

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru. Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4

Bardziej szczegółowo