Algorytmy dla gier dwuosobowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy dla gier dwuosobowych"

Transkrypt

1 Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008

2 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające Algorytm α, β cięć Tablice transpozycji

3 Rodzaje gier Rodzaje gier deterministyczne niedeterministyczne pełna szachy, go monopol informacja warcaby, otello niepełna.. poker, brydż informacja scrabble

4 Model gry W grze uczestniczy dwóch graczy. Gracze wykonują ruchy naprzemiennie. W każdym momencie jest skończona liczba możliwych do wykonania ruchów. (skończoność) Sytuacja na planszy i wykonany ruch jednoznacznie wyznaczają następną sytuację na planszy. (determinizm) Sytuacja na planszy może być jednoznacznie zaklasyfikowana jako: wygrana pierwszego gracza, wygrana drugiego gracza, remis, sytuacja nierozstrzygnięta (rozgrywka może jeszcze trwać)

5 Gra dwuosobowa Cel Interesują nas dwuosobowe gry deterministyczne z pełną informacją Szukamy najlepszej strategii (sekwencji ruchów) dla każdej odpowiedzi przeciwnika.

6 Stan gry Sytuacja na planszy Kto się rusza Rysunek: Plansza

7 Drzewo gry Partia może być w pełni opisana przez ciąg naprzemiennych ruchów obu graczy od stanu początkowego do rozstrzygnięcia (wygranej/przegranej/remisu). Rozważamy wszystkie możliwe scenariusze rozwoju gry. Naturalna reprezentacja, to drzewo.

8 Drzewo gry Rysunek: Drzewo gry, Kółko i krzyżyk

9 Przeszukiwanie ruchów Wygrana M, Przegrana -M, Remis 0 Jesteśmy graczem Max Przeciwnik nam przeszkadza, czyli my dążymy do 1 a on do -1 Przeciwnik to Min Nie wiemy jak zagra Min, zakładamy że zagra jak najkorzystniej dla siebie

10 Zasada MiniMax Stany rozstrzygnięte w drzewie gry mają swoją ocenę {M,-M,0} Poziomy należą na przemian do Min i do Max Stany nierozstrzygnięte otrzymują ocenę wg. zasady: Zasada poziom Max a: maximum ocen z jego węzłów potomnych poziom Min a: minimum ocenę z jego węzłów potomnych

11 MiniMax Rysunek: MiniMax

12 Uwagi o MiniMax Nie musimy budować całego drzewa Przechodzimy drzewo w głąb (DFS) Czasami drzewo jest za duże. Obcięcie, i heurystyczna ocena stanu

13 Funkcje oceniające Chcemy przybliżyć ocene sytuacji na planszy Typowe dla szchów Rank(s) = w 1 f 1 (s) + w 2 f 2 (s) +... f 3 (s) = (ilosc h etmanow b ialych) (ilosc h etmanow c zarnych) Dla kółka i krzyżyk np. ilośc gróźb

14 Głębokość Dla szchów ilość możliwych ruchów w każdym kroku, ok b=35 ; długość partii m=100. ( ) Dla minimaxa ok b=4 (nowicjusz) 8 - przeciętny PC, mistrz ; 12 - Kasparow, DeepBlue Można grać ze zmienną głębokością przeszukiwania.

15 Algorytm MiniMax function minimax(node, depth) if node is a terminal node return value of node if depth = CutoffDepth return the heuristic value of node else let a := -inf foreach child of node let a := max(a, -minimax(child, depth+1)) return a

16 Algorytm α, β cięć Rysunek: MiniMax

17 AlfaBeta function minimax(node, depth) return alfabeta(node, depth, -inf, +inf) function alfabeta(node, depth, alfa, beta) if node is a terminal node or depth = 0 return the heuristic value of node else foreach child of node beta := min(beta, alfabeta(child, depth-1, alfa, beta)) if alfa >= beta return alfa return beta else {my mamy zagrac w wezle} foreach child of node alfa := max(alfa, alfabeta(child, depth-1, alfa, beta)) if alfa >= beta return beta return alfa

18 Negamax function negamax(node, depth, alfa, beta) if node is a terminal node or depth = 0 return the heuristic value of node else foreach child of node alfa := max(a, -negamax(child, depth-1, -beta, -alfa)) {the following if statement constitutes alpha-beta pruning} if alfa >= beta return beta return alfa

19 Tablice transpozycji Zapamiętujemy ocenione stany, żeby nie sprawdzać kilka razy tego samego. Do uszeregowania ruchów, dla iteracyjnego pogłebiania Jako strukturę zapamiętującą używamy tablic haszujących.

20 Zorbrist hashing zorbrist[typ figury][kolor][pozycja] wypełnimy liczbami losowymi 64 bitowymi hash = xor(zorbrist[t i ][k i ][p i ]) dla każdej figury i łatwo/szybko się liczy

21 Kilka faktów Komputery grają dobrze w szachy (DeepBlue - Kasparow), warcaby, otello W Go komputery grają słabo (b=300)

Wyznaczanie strategii w grach

Wyznaczanie strategii w grach Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych

Bardziej szczegółowo

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią

Bardziej szczegółowo

SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW

SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiazanie jest strategia specyfikujac a posunięcie dla każdej

Bardziej szczegółowo

Partition Search i gry z niezupełną informacją

Partition Search i gry z niezupełną informacją MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]

Bardziej szczegółowo

WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI

WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 6. GRY POSZUKIWANIA W OBECNOŚCI PRZECIWNIKA Gry Pokażemy, w jaki

Bardziej szczegółowo

Gry. wykład 5. dr inż. Joanna Kołodziejczyk. Zakład Sztucznej Inteligencji ISZiMM. ESI - wykład 5 p. 1

Gry. wykład 5. dr inż. Joanna Kołodziejczyk. Zakład Sztucznej Inteligencji ISZiMM. ESI - wykład 5 p. 1 Gry wykład 5 dr inż. Joanna Kołodziejczyk jkolodziejczyk@wi.ps.pl Zakład Sztucznej Inteligencji ISZiMM ESI - wykład 5 p. 1 Plan wykładu Adversarial search jak postępować, gdy inni agenci sa naszymi przeciwnikami,

Bardziej szczegółowo

Wykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach

Wykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach (4g) Wykład 7 i 8 w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach P. Kobylański Wprowadzenie do Sztucznej Inteligencji 177 / 226 (4g) gry optymalne decyzje w grach algorytm

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w

TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w

Bardziej szczegółowo

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Heurystyczne przeszukiwanie grafów gier dwuosobowych

Heurystyczne przeszukiwanie grafów gier dwuosobowych Heurystyczne przeszukiwanie grafów gier dwuosobowych Wykład Informatyka Studia InŜynierskie Teoria gier w dziedzinie SI Liczba graczy jednoosobowe, dwuosobowe oraz wieloosobowe Suma wypłat gry o sumie

Bardziej szczegółowo

CZYM JEST SZTUCZNA INTELIGENCJA? REPREZENTACJA WIEDZY SZTUCZNA INTELIGENCJA PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI

CZYM JEST SZTUCZNA INTELIGENCJA? REPREZENTACJA WIEDZY SZTUCZNA INTELIGENCJA PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI CZYM JEST SZTUCZNA INTELIGENCJA? Jak działa ludzki mózg? SZTUCZNA INTELIGENCJA Jak zasymulować ludzki mózg? Co to kogo obchodzi zróbmy coś pożytecznego

Bardziej szczegółowo

ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,

ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,

Bardziej szczegółowo

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling

Bardziej szczegółowo

Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5

Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5 Zastosowanie metody Samuela doboru współczynników funkcji oceniajacej w programie grajacym w anty-warcaby Daniel Osman promotor: dr hab. inż. Jacek Mańdziuk 1 Spis treści Algorytmy przeszukiwania drzewa

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład II Problem solving 03 październik 2012 Jakie problemy możemy rozwiązywać? Cel: Zbudować inteligentnego agenta planującego, rozwiązującego problem. Szachy Kostka rubika Krzyżówka Labirynt Wybór trasy

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

Pawnographic chess. (Sztuczna inteligencja) Wydzia ł Informatyki i Zarządzania Informatyka. Pozna ń, 25 lutego 2008 r.

Pawnographic chess. (Sztuczna inteligencja) Wydzia ł Informatyki i Zarządzania Informatyka. Pozna ń, 25 lutego 2008 r. Pozna ń, 25 lutego 2008 r. Pawnographic chess (Sztuczna inteligencja) Wydzia ł Informatyki i Zarządzania Informatyka Bartosz Królikowski, 80081, crulik@poczta.onet.pl Fabian Frąckowiak, 80054, fabian.frackowiak@gmail.com

Bardziej szczegółowo

Propozycje tematów zadań

Propozycje tematów zadań Propozycje tematów zadań 1. WARCABY Opracować program do gry w warcaby dla dwu graczy. Program ma umożliwiać przesuwanie kursora na zmianę po polach białych lub czarnych, wskazywanie początku końca ruchu.

Bardziej szczegółowo

5.9 Modyfikacja gry Kółko i krzyżyk

5.9 Modyfikacja gry Kółko i krzyżyk 274 5.9 Modyfikacja gry Kółko i krzyżyk Zajmiemy się obecnie grą, której plansza jest widoczna na rys. 5.17 (aplikacja Do15.bpr). Rysunek 5.17: Plansza do gry śuma do 15 Jej celem jest zaznaczenie cyfr,

Bardziej szczegółowo

Techniki sztucznej inteligencji w programach grających

Techniki sztucznej inteligencji w programach grających Techniki sztucznej inteligencji w programach grających Jakub Pawlewicz 27 luty 2010 1 Wprowadzenie Sztuczna inteligencja w grach jest bardzo atrakcyjną dziedziną badań, gdyż wymyślone metody można łatwo

Bardziej szczegółowo

Algorytmy i Struktury Danych, 2. ćwiczenia

Algorytmy i Struktury Danych, 2. ćwiczenia Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Praktyczne aspekty programowania gier logicznych. Piotr Beling

Praktyczne aspekty programowania gier logicznych. Piotr Beling Praca magisterska Praktyczne aspekty programowania gier logicznych Piotr Beling nr. albumu: 110341 Promotor: dr inż. Tadeusz Łyszkowski Łódź, 2006 Spis treści Spis treści i 1 Wstęp 1 1.1 Dlaczegowartopisaćgrylogiczne?...

Bardziej szczegółowo

Sztuczna inteligencja w programowaniu gier

Sztuczna inteligencja w programowaniu gier ztuczna inteligencja w programowaniu gier Algorytmy przeszukiwania przestrzeni rozwiązań Krzysztof Ślot Wprowadzenie Ogólna charakterystyka zagadnienia Cel przeszukiwania: znaleźć element będący rozwiązaniem

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Wykład 2. Drzewa poszukiwań binarnych (BST)

Wykład 2. Drzewa poszukiwań binarnych (BST) Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Przedmiotem rozważań są zależności pomiędzy obliczeniami maszynowymi a ludzką inteligencją

Przedmiotem rozważań są zależności pomiędzy obliczeniami maszynowymi a ludzką inteligencją lgorytmiczna inteligencja czyli sztuczna inteligencja (ang. I) Przedmiotem rozważań są zależności pomiędzy obliczeniami maszynowymi a ludzką inteligencją nie wymagamy deterizmu DETERMINISTYCZNE SEKWENCYJNE

Bardziej szczegółowo

Programowanie gier logicznych

Programowanie gier logicznych Programowanie gier logicznych Piotr Beling Instytut Informatyki Politechnika Łódzka 25 marca 2007 Rozważane gry logiczne dwuosobowe- konflikt interesów występuje pomiędzy dwoma uczestnikami deterministyczne-

Bardziej szczegółowo

Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań

Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem

Bardziej szczegółowo

Projekt zaliczeniowy gra PENTAGO

Projekt zaliczeniowy gra PENTAGO Projekt zaliczeniowy gra PENTAGO Sztuczna Inteligencja, drugi rok informatyki Skład zespołu: Gliwiński Jarosław Marek Kruczyński Konrad Marek Urbanek Paweł J. Grupa dziekańska I5 Poznań, 9. marca 2009

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Jak oceniać, gdy nic nie wiemy?

Jak oceniać, gdy nic nie wiemy? Jak oceniać, gdy nic nie wiemy? Jasiek Marcinkowski II UWr 25 października 2012 Jasiek Marcinkowski (II UWr) Jak oceniać, gdy nic nie wiemy? 25 października 2012 1 / 10 Jak się gra w gry, o których dużo

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI FUNKCJI OCENIAJĄCEJ W GRZE OTHELLO Tomasz Dąbrowski, Halina Kwaśnicka, Maciej Piasecki Wydziałowy Zakład Informatyki, Politechnika Wrocławska, ul. Wybrzeże

Bardziej szczegółowo

Instrukcja obsługi programu

Instrukcja obsługi programu Instrukcja obsługi programu 1. Wstęp Korzystając z aplikacji Reversi.NET moŝesz grać w grę Reversi (alt. Othello). Program pozwala na grę pomiędzy dwiema osobami uŝywającymi tego samego komputera, poprzez

Bardziej szczegółowo

"Programowanie gry w szachy" Praca magisterska

Programowanie gry w szachy Praca magisterska "Programowanie gry w szachy" Praca magisterska wykonana pod kierunkiem prof. Stanisława Waligórskiego Uniwersytet Warszawski 1994 r. Adam Kujawski ul. Broniewskiego 6 m. 154 01-785 Warszawa tel. 663-35-17

Bardziej szczegółowo

Szachy INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt.

Szachy INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. INSTRUKCJA Szachy rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. Partia szachowa jest rozgrywana między dwoma przeciwnikami, którzy wykonują posunięcia bierkami na kwadratowej tablicy, zwanej szachownicą.

Bardziej szczegółowo

SZACHY mini INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt.

SZACHY mini INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. INSTRUKCJA SZACHY mini rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. Partia szachowa jest rozgrywana między dwoma przeciwnikami, którzy wykonują posunięcia bierkami na kwadratowej tablicy, zwanej

Bardziej szczegółowo

GRY I ZABAWY UMYSŁOWO- LOGICZNE JAKO FORMA UPOWSZECHNIANIA KULTURY. Donata Fraś

GRY I ZABAWY UMYSŁOWO- LOGICZNE JAKO FORMA UPOWSZECHNIANIA KULTURY. Donata Fraś GRY I ZABAWY UMYSŁOWO- LOGICZNE JAKO FORMA UPOWSZECHNIANIA KULTURY Donata Fraś Gry umysłowe To gry towarzyskie, których rezultat zależy wyłącznie od świadomych decyzji podejmowanych przez partnera Wymagają:

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze ztuczna Inteligencja i ystemy Doradcze Przeszukiwanie przestrzeni stanów Przeszukiwanie przestrzeni stanów 1 Postawienie problemu eprezentacja problemu: stany: reprezentują opisy różnych stanów świata

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Filip Graliński Sztuczna inteligencja i kmputery Histria Histria Teria Teria Histria Algrytmy Teria planszwe Histria Algrytmy Senet Teria planszwe Histria Algrytmy Tryktrak Senet Teria planszwe Histria

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Gra: Partnerstwo biznesowe

Gra: Partnerstwo biznesowe Gra: Partnerstwo biznesowe Opis: Gra uczy partnerstwa biznesowego. Pokazuje jakie są jego zalety i wady. Pozwala uczestnikom szkolenia odkryć główny powód, dla którego firmy tworzą partnerstwa biznesowe.

Bardziej szczegółowo

Algorytmy i schematy blokowe

Algorytmy i schematy blokowe Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Wnioskowanie jako przeszukiwanie przestrzeni stanów

Wnioskowanie jako przeszukiwanie przestrzeni stanów Plan wykładu Wnioskowanie jako przeszukiwanie przestrzeni stanów Rozwiązywanie problemów jako poszukiwanie ścieżki rozwiązania Przestrzeń stanów jako graf skierowany Dokładne metody przeszukiwania przestrzeni

Bardziej szczegółowo

W którym rozważamy problemy pojawiające się, gdy próbujemy planować z góry w świecie zawierającym wrogiego agenta.

W którym rozważamy problemy pojawiające się, gdy próbujemy planować z góry w świecie zawierającym wrogiego agenta. Rozdział 5 Gry W którym rozważamy problemy pojawiające się, gdy próbujemy planować z góry w świecie zawierającym wrogiego agenta. 5.1 Wprowadzenie: gry jako problemy szukania Gry angażowały zdolności intelektualne

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

Elementy kognitywistyki II:

Elementy kognitywistyki II: Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD IV: Agent szuka rozwiązania (na ślepo) Poprzednio: etapy rozwiązywania problemu sformułowanie celu sformułowanie problemu stan początkowy (initial

Bardziej szczegółowo

Implementacja gry szachy tradycyjne

Implementacja gry szachy tradycyjne Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Michał Raczkowski Nr albumu: 214564 Implementacja gry szachy tradycyjne Praca magisterska na kierunku INFORMATYKA Praca wykonana pod kierunkiem

Bardziej szczegółowo

Algorytmy przeszukiwania grafów i drzew dla gier i łamigłówek

Algorytmy przeszukiwania grafów i drzew dla gier i łamigłówek 1/ 39 Algorytmy przeszukiwania grafów i drzew dla gier i łamigłówek Przemysław Klęsk pklesk@wi.ps.pl Zagadnienia i algorytmy 2/ 39 1 Zachłanne (wyczerpujące) przeszukiwanie grafu (algorytm Breadth First

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.

Bardziej szczegółowo

Dwaj gracze na przemian kładą jednakowe monety na stole tak, aby na siebie nie nachodziły Przegrywa ten, kto nie może dołożyć monety

Dwaj gracze na przemian kładą jednakowe monety na stole tak, aby na siebie nie nachodziły Przegrywa ten, kto nie może dołożyć monety Mateusz Lewandowski Krótka filozofia Ciekawość gier Poziomy rozwiązania gier Synchroniczne wykonywanie ruchów w GGP Podejścia do końcówek gier Wykrywanie symetrii Związki z innymi dziedzinami KONSPEKT

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

STRATEGIE HEURYSTYCZNE HEURYSTYCZNE METODY HC: PROBLEM 8 KRÓLOWYCH METODA WZROSTU (SIMPLE) HILL-CLIMBING METODA NAJSZYBSZEGO WZROSTU

STRATEGIE HEURYSTYCZNE HEURYSTYCZNE METODY HC: PROBLEM 8 KRÓLOWYCH METODA WZROSTU (SIMPLE) HILL-CLIMBING METODA NAJSZYBSZEGO WZROSTU METODY HEURYSTYCZNE wykład 2 STRATEGIE HEURYSTYCZNE 1 2 METODA WZROSTU (SIMPLE) HILL-CLIMBING Operator - działanie podejmowane w stosunku do stanu aktualnego aby otrzymać z niego kolejny stan. 1. Wygeneruj

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w KROŚNIE

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w KROŚNIE PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w KROŚNIE INSTYTUT POLITECHNICZNY DZIENNE STUDIA INŻYNIERSKIE Sieciowe Systemy Informatyczne PRACA DYPLOMOWA Szelc Marcin Przegląd metod sztucznej inteligencji służących

Bardziej szczegółowo

WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI

WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul Poziomy sztucznej inteligencji Sztuczna świadomość? Uczenie się

Bardziej szczegółowo

Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS

Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS Problem straŝaka w drzewach Agnieszka Skorupka Matematyka Stosowana FTiMS Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem

Bardziej szczegółowo

Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik:

Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: Elementy teorii gier Dane są następujące reguły gry losowej: losujemy jedną kartę z pełnej talii (bez jokerów) i sprawdzamy wynik: wylosowanie karty w kolorze czerwonym (kier lub karo) oznacza wygraną

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II

34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II 157 Mirosław Dąbrowski 34. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. II Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Działania uczniów klasy 3a wg Scenariusza zajęć edukacyjnych z matematyki Wykorzystanie w edukacji matematycznej własnej gry planszowej

Działania uczniów klasy 3a wg Scenariusza zajęć edukacyjnych z matematyki Wykorzystanie w edukacji matematycznej własnej gry planszowej Działania uczniów klasy 3a wg Scenariusza zajęć edukacyjnych z matematyki Wykorzystanie w edukacji matematycznej własnej gry planszowej rok szkolny 2016/2017 OPRACOWANO W RAMACH PROJEKTU "PODNOSZENIA KOMPETENCJI

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

PyGame Gra w Kółko i Krzyżyk

PyGame Gra w Kółko i Krzyżyk - 1 - PyGame Gra w Kółko i Krzyżyk Opis implementacji: Używając biblioteki PyGame oraz języka Python, stworzymy prostą grę w kółko i krzyżyk. Autorzy: Łukasz Zarzecki, Robert Bednarz Czas realizacji: 90

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Uniwersytet Łódzki dla dzieci 27.02.2011

Uniwersytet Łódzki dla dzieci 27.02.2011 Uniwersytet Łódzki dla dzieci 27.02.2011 Jak jeździć autkiem po zielonej łące, czyli tworzymy grę komputerową Plan zajęć 1. Czym jest gra? 2. Rodzaje gier 3. Gry kiedyś i dzisiaj 4. Trochę o grafice komputerowej

Bardziej szczegółowo

Dodatkowo planowane jest przeprowadzenie oceny algorytmów w praktycznym wykorzystaniu przez kilku niezależnych użytkowników ukończonej aplikacji.

Dodatkowo planowane jest przeprowadzenie oceny algorytmów w praktycznym wykorzystaniu przez kilku niezależnych użytkowników ukończonej aplikacji. Spis Treści 1. Wprowadzenie... 2 1.1 Wstęp... 2 1.2 Cel pracy... 2 1.3 Zakres pracy... 2 1.4 Użyte technologie... 2 1.4.1 Unity 3D... 3 2. Sztuczna inteligencja w grach komputerowych... 4 2.1 Zadanie sztucznej

Bardziej szczegółowo

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 22/23 Outline Programowanie zachłanne Programowanie zachłanne Rodzaje kodów Programowanie zachłanne Kody stałej długości (np. ASCII). Kody zmiennej

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo