EGZAMIN MATURALNY 2010 MATEMATYKA

Wielkość: px
Rozpocząć pokaz od strony:

Download "EGZAMIN MATURALNY 2010 MATEMATYKA"

Transkrypt

1 entralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 010 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 010

2 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od 1. do 5. podane były cztery odpowiedzi:,,, D. Zdający wybierał poprawną odpowiedź i zaznaczał ją na karcie odpowiedzi. Zadanie 1. Obszar standardów i tworzenie informacji Sprawdzane umiejętności interpretacji geometrycznej wartości bezwzględnej do wskazania zbioru rozwiązań nierówności typu x a b Poprawna odpowiedź (1 p.) Zadanie. Zadanie. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. i tworzenie informacji Zadanie 8. i tworzenie informacji Stosowanie w obliczeniach pojęcia procentu w obliczeniach praw działań na potęgach Stosowanie w obliczeniach wzoru na iloraz logarytmu Wykonanie dodawania wielomianów Rozwiązanie prostego równanie wymiernego, prowadzącego do równania liniowego Sprawdzenie, czy dana liczba spełnia nierówność kwadratową Odczytanie z postaci kanonicznej funkcji kwadratowej współrzędnych wierzchołka paraboli D D

3 Egzamin maturalny z matematyki Zadanie 9. Zadanie 10. Zadanie 11. Zadanie 1. Zadanie 1. Zadanie 14. Zadanie 15. Zadanie 16. Zadanie 17. wykorzystanie Zadanie 18. Interpretowanie współczynników we wzorze funkcji liniowej Odczytywanie wartości funkcji z jej wykresu Wyznaczanie wyrazów ciągu arytmetycznego Wyznaczanie wyrazów ciągu geometrycznego własności wielokątów do wyznaczania liczby przekątnych Stosowanie związków między funkcjami trygonometrycznymi kąta ostrego do obliczenia wartości wyrażenia Wyznaczanie długości boku kwadratu opisanego na okręgu związków w trójkącie równoramiennym do wyznaczenia wysokości tego trójkąta Posługiwanie się własnościami figur podobnych do obliczania długości odcinków Korzystanie ze związków między kątem wpisanym i środkowym do obliczenia miary kąta

4 4 Zadanie 19. Zadanie 0. i tworzenie informacji Zadanie 1. i tworzenie informacji Zadanie. Zadanie. Zadanie 4. Zadanie 5. Egzamin maturalny z matematyki Obliczanie pola figury płaskiej z zastosowaniem funkcji trygonometrycznych adanie równoległości prostych na podstawie ich współczynników kierunkowych Odczytanie z równania środkowego okręgu długości promienia Obliczanie odległości punktów na płaszczyźnie Obliczanie pola powierzchni wielościanu własności wielościanów Obliczanie średniej arytmetycznej D D D Zadania otwarte Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów. Zadanie 6. (0 ) Rozwiązywanie nierówności kwadratowej Rozwiązanie Znajdujemy pierwiastki trójmianu kwadratowego obliczamy wyróżnik trójmianu kwadratowego: x1 1 x

5 Egzamin maturalny z matematyki 5 stosujemy wzory Viète a: x1x 1 oraz x1x i stąd x1 1, x zapisujemy nierówność w postaci x1 x 0. Lewą stronę nierówności możemy uzyskać np.: o grupując wyrazy i wyłączając wspólny czynnik, o korzystając z postaci kanonicznej x x x 4 o podając postać iloczynową x1x rysujemy fragment wykresu funkcji kwadratowej z zaznaczonymi miejscami zerowymi, 4 y x -1 - wskazujemy pierwiastki trójmianu x1 1, x Podajemy rozwiązanie nierówności: 1 x. Schemat oceniania Zdający otrzymuje... 1 pkt wyznaczy pierwiastki trójmianu kwadratowego lub zapisze trójmian w postaci iloczynowej i na tym poprzestanie lub dalej popełni błędy. Zdający otrzymuje... pkt poda zbiór rozwiązań nierówności w postaci: 1 x lub 1, lub x 1, sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: x 1, x

6 6 Egzamin maturalny z matematyki poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów: -1 x Zadanie 7. (0 ) Rozwiązanie równania wielomianowego I sposób rozwiązania (metoda grupowania) Przedstawiamy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów lub x x 7 4 x 7 0 x7 x 4 0 x x x Stąd x 7 lub x lub x. Schemat oceniania I sposobu rozwiązania Zdający otrzymuje...1 pkt pogrupuje wyrazy do postaci, z której łatwo można przejść do postaci iloczynowej, np.: xx 47x 40 lub x x7 4 x 7 0 i na tym poprzestanie lub dalej popełni błąd Zdający otrzymuje... pkt wyznaczy bezbłędnie wszystkie rozwiązania równania: x 7 lub x lub x. II sposób rozwiązania (metoda dzielenia) Stwierdzamy, że liczba jest pierwiastkiem wielomianu x 7x 4x 8. Dzielimy wielomian przez dwumian x 5x 14. x x x x. Otrzymujemy iloraz y równanie w postac i x x 5x14 0. Stąd x xx7 0 Zapisujem i x 7 lub x lub x. Stwierdzamy, że liczba jest pierwiastkiem wielomianu x 7x 4x 8. Dzielimy wielomian x 7x 4x8 przez dwumian x. Otrzymujemy iloraz x 9x 14. Zapisujemy równanie w postac i x x 9x14 0. Stąd x xx7 0 i x lub x lub x 7. Stwierdzamy, że liczba 7 jest pierwiastkiem wielomianu x 7x 4x 8. Dzielimy wielomian przez dwumian 7 x 4. x x x Zapisujemy równanie w postac i x 7 x 4 0. St i x 7 lub x lub x. x. Otrzymujemy iloraz ąd x 7 x x 0

7 Egzamin maturalny z matematyki 7 Schemat oceniania II sposobu rozwiązania Zdający otrzymuje... 1 pkt podzieli wielomian przez dwumian x, otrzyma iloraz x x x x 5x 14 i na tym poprzestanie lub dalej popełni błąd podzieli wielo mian przez dwumian x x 9x14 i na tym poprzestanie lub dalej popełni błąd podzieli wielomian przez dwumian x 7 x x x x x x i na tym poprzestanie lub dalej popełni błąd podzieli wielomian przez trójmian np., otrzyma iloraz x x x x x 7, otrzyma iloraz x 4 i na tym poprzestanie lub dalej popełni błąd. Zdający otrzymuje... pkt wyznaczy bezbł ędnie wszystkie rozwiązania równania: x, x, x 7 Zadanie 8. (0 ) Stosowanie prostego rozumowania do rozwiązywania problemów Przeprowadzenie dowodu geometrycznego składającego się z niewielkiej liczby kroków Rozwiązanie Dorysowujemy odcinki D i E. Pokazujemy, że trójkąty D i E są przystające:, bo trójkąt jest równoramienny D E, bo trójkąt DE jest równoramien ny D 90 D E Stosujemy cechę przystawania bkb Schem at oceniania Zdający otrzymuje... 1 pkt napisze, że trójkąty D i E są przystające i wyprowadzi stąd wniosek, że D E zapisze, że, D E i D E Zdający otrzy muje... pkt poprawnie uzasadni, że tró jkąty D i E są przystające i wyprowadzi stąd wniosek, że D E. Wymagamy udowodnienia równości kątów D i E.

8 8 Zadanie 9. (0 ) Użycie strategii do rozwiązywania problemów Egzamin maturalny z matematyki Wyznaczanie wartości funkcji trygonometrycznych kąta ostrego I sposób rozwiązania (jedynka trygonometryczna) sin 5 cos 1 sin cos sin cos 1 cos sin 5 5 cos cos 1 1 sin 5 sin cos cos sin sin cos i cos 0 5 sin i sin cos 5 1 sin i stądcos II sposób rozwiązania (trójkąt prostokątny) c 1x 5x c 1x 5x c 1x 1 cos 1 Schemat oceniania Zdają cy otrzymuje...1 pkt przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko cos 5 5 i wykorzysta jedynkę trygonometryczną, np. sin cos, cos cos i na tym poprzestanie lub dalej popełni błąd przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko sin i wykorzysta jedynk ę trygonometryczną, np. cos sin, sin sin i na tym poprzestanie lub dalej popełni błąd przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko sin np. 5 sin lub 5 5sin 144sin i na tym poprzestanie lub dalej popełni sin błąd

9 Egzamin maturalny z matematyki 9 przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko sin i tg, np. tg cos cos 1 lub cos tg 1 1 i na tym poprzestanie lub dalej popełni błąd obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 1 i 5 (lub ich wielokrotności) z błędem rachunkowym oraz zapisze sin i na tym zakończy obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 1 i 5 (lub ich wielokrotności) z błędem rachunkowym i zapisze cos narysuje trójkąt prostokątny o przyprostokątnych długości 1 i 5 (lub ich wielokrotności), obliczy długość przeciwprostokątnej i zaznaczy w tym trójkącie poprawnie kąt odczyta z tablic przybliżoną wartość kąta : (akceptujem y wynik ) i na tym zakończy lub dalej popełnia błędy Zdający otrzymuje... pkt 1 obliczy wartość cos : cos 1 obliczy przybliżoną wartość cos : cos 0, 97 lub cos 0,905 Zadanie 0. (0 ) Stosowanie prostego rozumowania do rozwiązywania problemów Wykazanie prawdziwości nierówności I sposób rozwiązania Przekształcamy nierówność w sposób równoważny: a 1 a1 a 1 a1 0 a 1 a 1 a 1a 1 a 1 a1 a 1 a a a 1 a a1 0 a 1 0 co kończy dowód. a a1 0 a 1 a 1 a 1 0 co kończy dowód. 0

10 10 Egzamin maturalny z matematyki II sposób rozwiązania Dla każdej liczby rzeczywistej a prawdziwa jest nierówność a 1 0. Przekształcamy tę nierówność w sposób równoważny: a 1 a 1 a a 1 a a a 1 1 Ponieważ a 0, więc co kończy dowód. 1 a 1 a1 a 1 III sposób rozwiązania (dowód nie wprost) a 1 a1 Przypuśćmy, że dla pewnego a 0 mamy. Przekształcamy tę nierówność a 1 tak, jak w I sposobie rozwiązania do postaci, np. a 1 0 i stwierdzamy, że otrzymaliśmy sprzeczność. Schem at oceniania Zdający otrzymuje...1 pkt a a1 otrzyma nierówność a a 1 0 lub 0 i na tym poprzestanie lub a 1 w dalszej części dowodu popełni błąd stosując metodę dowodu nie wprost otrzyma nierówność a 1 0 i nie zapisze żadnych wniosków lub zapisze błędne wnioski stosując II sposób rozwiązania otrzyma nierówność a a 1 i nie zapisze żadnych wniosków lub zapisze błędne wnioski. Zdający otrzymuje... pkt zapisze nierówność a a10 i uzasadni, że wszystkie liczby dodatnie a spełniają tę nierówność a a1 zapisze nierówność 0 i uzasadni, że wszystkie liczby dodatnie a spełniają a 1 tę nierówność stosując metodę dowodu nie wprost otrzyma nierówność a 1 0 i zapisze, że otrzymana nierówność nie zachodzi dla żadnej liczby rzeczywistej a.

11 Egzamin maturalny z matematyki 11 Zadanie 1. (0 ) Użycie i stosowanie strategii do rozwiązywania problemów związków miarowych w figurach płaskich Rozwiązanie D Prowadzimy wysokość E trójkąta równobocznego. Wówczas E i stąd D E. Następnie zapisujemy, że 6 E 6 oraz D E. Stąd obwód trapezu jest równy Schemat oceniania Zdający otrzymuje... 1 pkt prawidłowo podzieli trapez na trójkąty i poprawnie obliczy długość krótszej podstawy trapezu ( D ) i na tym zakończy lub popełni błędy rachunkowe przy obliczaniu obwodu trapezu prawidłowo podzieli trapez na trójkąty i poprawnie obliczy wysokość trapezu ( h ) i na tym zakończy lub popełni błędy rachunkowe przy obliczaniu obwodu trapezu Zdający otrzymuje... pkt obliczy poprawnie obwód trapezu: 15. Zadanie. (0 4) Użycie i stosowanie strategii do rozwiązywania problemów Obliczanie objętości wielościanu Strategia rozwiązania tego zadania sprowadza się do realizacji następujących etapów rozwiązania: obliczenie długości krawędzi lub podstawy ostrosłupa bądź wysokości DE ściany bocznej D zastosowanie poprawnej metody obliczenia pola podstawy i obliczenie tego pola obliczenie objętości ostrosłupa

12 1 Egzamin maturalny z matematyki I sposób rozwiązania (krawędź podstawy, wysokość E podstawy i zwykły wzór na pole trójkąta ) Z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że D D do trójkąta D wynika, że 5. 5, stąd 5. Podobnie z twierdzenia Pitagorasa zastosowanego Rysujemy trójkąt i prowadzimy w nim wysokość E. Trójkąt jest równoramienny ( ), więc E E. Z twierdzenia Pitagorasa dla trójkąta E mamy E. E E 16, stąd E Zatem P Objętość ostrosłupa jest równa V Schemat oceniania I sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania pkt Obliczenie długości krawędzi lub podstawy ostrosłupa: 5, 5. Rozwiązanie, w którym jest istotny postęp... pkt Obliczenie wysokości E trójkąta : E 4. Zdający nie musi uzasadniać, że E E, wystarczy, że poprawnie stosuje twierdzenie Pitagorasa do obliczenia wysokości E trójkąta. Pokonanie zasadniczych trudności zadania... pkt Obliczenie pola podstawy ostrosłupa: P 1. R ozwiązanie pełne pkt Obliczenie objętości ostrosłupa: V 48. Jeśli zdający przy obliczaniu wysokości trójkąta lub pola tego trójkąta (pola podstawy ostrosłupa) nie stosuje poprawnej metody (co przekreśla poprawność strategii rozwiązania zadania), np. przyjmie, że środkowa F trójkąta jest jego wysokością, to za całe rozwiązanie przyznajemy co najwyżej 1 punkt (zdający nie osiągnął istotnego postępu).

13 Egzamin maturalny z matematyki 1 II sposób rozwiązania (krawędź podstawy, cosinus jednego z kątów trójkąta, wzór z sinusem na pole trójkąta ) Z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że D D 5, stąd 5. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że 5. Rysujemy trójkąt i prowadzimy w nim wysokość E i oznaczamy. Wariant I obliczenia pola podstawy. Trójkąt jest równoramienny (. E ), więc E E. Stąd cos E 5. Zatem Pole trójkąta jest równe 4 sin 1cos P sin Wariant II obliczenia pola podstawy. Z twierdzenia cosinusów dla trójkąta obliczamy cos : cos, stąd cos Następnie obliczamy sin 1cos Pole trójkąta jest równe P sin Po obliczeniu pola podstawy obliczamy objętość V ostrosłupa V Schemat oceniania II sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania... 1 pkt O bliczenie długości krawędzi lub podstawy ostrosłupa: 5, 5. Rozwiązanie, w którym jest istotny postęp... pkt 4 4 Obliczenie sinusa jednego z kątów trójkąta : sin lub sin. 5 5

14 14 Egzamin maturalny z matematyki Pokonanie zasadniczych trudności zadania... pkt Obliczenie pola podstawy ostrosłupa: P 1. Rozwiązanie pełne pkt Obliczenie objętości ostrosłupa: V 48. Jeśli zdający przy obliczaniu wysokości trójkąta lub pola tego trójkąta (pola podstawy ostrosłupa) nie stosuje poprawnej metody (co przekreśla poprawność strategii E rozwiązania zadania), np. zapisze, że sin, to za całe rozwiązanie 5 przyznajemy co najwyżej 1 punkt (zdający nie osiągnął istotnego postępu). III sposób rozwiązania (krawędź podstawy, wzór Herona na pole trójkąta ) Z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że D D 5, stąd 5. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta D wynika, że 5. Pole trójkąta obliczamy ze wzoru Herona 556 P p pa pb p c, gdzie p 8, pa86, pb pc85. P Objętość ostrosłupa jest równa V P D Schemat oceniania III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania...1 pkt Obliczenie długości krawędzi lub podstawy ostrosłupa: 5, 5. Pokonanie zasadniczych trudności zadania pkt Obliczenie pola podstawy ostrosłupa: P 1. Zdający otrzymuje punkty, jeśli poprawnie zastosuje wzór Herona, popełni błąd rachunkowy przy obliczaniu pola trójkąta i na tym zakończy. Rozwiązanie pełne...4 pkt Obliczenie objętości ostrosłupa: V 48.

15 Egzamin maturalny z matematyki 15 IV sposób rozwiązania (wysokość ściany bocznej D, wysokość E podstawy i zwykły wzór na pole trójkąta ) Przyjmijmy oznaczenia jak na rysunku. D E Trójkąt D jest równoramienny, więc środek E boku jest spodkiem wysokości DE tego trójkąta. Z twierdzenia Pitagorasa zastosowanego do trójkąta ED wynika, że DE D E Z twierdzenia Pitagorasa w trójkącie DE obliczamy wysokość E trójkąta E DE D , stąd E 4. 1 Pole trójkąta jest równe P Objętość ostrosłupa jest równa V Schemat oceniania IV sposobu rozw iązania Rozwiązanie, w którym postęp jest n iewielki, ale konieczny na drodze do pełnego rozwiązania... 1 pkt Obliczenie wysokości DE ściany bocznej D ostrosłupa (lub kwadratu tej wysokości): DE 410. Zdający nie musi uzasadniać, że E E, wystarczy, że poprawnie stosuje twierdzenia Pitagorasa do obliczenia wysokości DE trójkąta D. Rozwiązanie, w którym jest istotny postęp... pkt Obliczenie wysokości E trójkąta : E 4. Pokonanie zasadniczych trudności zadania... pkt Obliczenie pola podstawy ostrosłupa: P 1. Rozwiązanie pełne... 4 pkt Obliczenie objętości ostrosłupa: V 48.

16 16 Zadanie. (0 4) Modelowanie matematyczne Egzamin maturalny z matematyki Obliczanie prawdopodobieństwa z zastosowaniem klasycznej definicji prawdopodobieństwa Rozwiązanie (model klasyczny) jest zbiorem wszystkich par 6. ab, takich, że ab, 1,,,4,5,6 Zdarzeniu sprzyjają następujące zdarzenia elementarne:,6, 4,,4,6,6,,6,4,6,6 6 1 Z atem 6 i stąd P Mamy model klasyczny. S chemat oceniania Rozwiązanie, w którym postęp je st niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania...1 pkt Zdający zapisze, że 6 i na tym zakończy lub dalej rozwiązuje błędnie. Rozwiązanie, w którym jest istotny postęp... pkt Zdający zapisze, że 6oraz, że,6, 4,, 4,6, 6,, 6, 4, 6,6 i na tym zakończy lub dalej rozwiązuje błędnie. Pokonanie zasadniczych trudności zadania... pkt Zdający zapisze, że 6oraz obliczy 6 i na tym zakończy lub dalej rozwiązuje błędnie. Jeżeli zdający wypisze bezbłędnie wszystkie zdarzenia elementarne sprzyjające zdarzeniu, ale błędnie zapisze ich liczbę (np. 5 7 ) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje punkty. Rozwiązanie bezbłędne pkt 1 Obliczenie prawdopodobieństwa zdarzenia : P 6 1 Jeśli zdający ograniczy swoje rozwiązanie do zapisu 6; 6 oraz P, 6 to otrzymuje 1 pkt. Zadanie 4. (0 5) Modelowanie matematyczne Rozwiązanie zadania, umieszczonego w kontekście praktycznym, prowadzącego do równania kwadratowego Rozwiązanie Oznaczmy przez x długość (w metrach) basenu w pierwszym hotelu i przez y szerokość (w metrach) tego basenu. Zapisujemy układ równań: xy 40 x5y50

17 Egzamin maturalny z matematyki 17 Przekształcamy drugie równanie w sposób równoważny: x yx5y10 50, podstawiamy do tego równania xy 40 i wyznaczamy z tak przekształconego równania 100 5y niewiadomą x : x. Wyznaczon ą wartość x podstawiamy do pierwszego równania 100 5y y 40, które następnie przekształcamy do postaci: y 0y96 0. Rozwiązaniami tego ró wnania są: y1 8, y 1. Zatem: jeże li y 8, to x 0 i wtedy basen w pierwszym hotelu ma wymiary: 0 m 8 m, za ś basen w drugim hotelu: 5 m10 m, jeżeli y 1, to x 0 i wtedy basen w pierwszym hotelu ma wymiary: 0 m 1 m, zaś basen w drugim hotelu: 5 m 14 m. Schemat oceniania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania... 1 pkt Wprowadzenie oznaczeń, na przykład: x, y wymiary basenu w pierwszym hotelu i zapisanie równania xy 40 równan ia x5 y 50. Rozwiązanie, w którym jest istotny postęp... pkt Zapisanie układu równań z niewiadomymi x i y, np. xy 40 x5y50 Zdający nie musi zapisywać układu równań, może od razu zapisać równanie z jedną niewiadomą. Pokonanie zasadniczych trudności zadania... pkt Zapisanie równania z jedną niewiadomą x lub y, np: x y 50 x y Rozwiązanie prawie całkowite... 4 pkt Doprowadzenie równania wymiernego do równania kwadratowego oraz rozwiązanie równania kwadratowego: x 50x600 0, skąd x 0 lub x 0 y 0y96 0, skąd y 8 lub y 1 Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)... 4 pkt Zdający popełnia błąd rachunkowy w rozwiązaniu równania (ale otrzymuje dwa rozwiązania) i konsekwentnie do popełnionego błędu oblicza wymiary obu basenów. Rozwiązanie pełne... 5 pkt Zapisanie wymiarów obu basenów: asen w pierwszym hotelu ma wymiary 0 m 8 m i w drugim hotelu 5 m10 m lub basen w pierwszym hotelu ma wymiary 0 m1 m i w drugim 5 m 14 m.

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA entralna Komisja Egzaminacyjna EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi SIERPIEŃ 0 Zadanie. (0 ) Zakres umiejętności (standardy) Opis wymagań Wykonuje obliczenia procentowe;

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 MATEMATYKA

EGZAMIN MATURALNY 2011 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY MAJ 0 Egzamin maturalny z matematyki poziom podstawowy Zadanie (0 ) Obszar standardów i tworzenie informacji

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie. (0 ) Obszar standardów Modelowanie matematyczne Opis

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 04/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A4, A6, A7) GRUDZIEŃ 04 Klucz odpowiedzi do zadań zamkniętych Nr zadania 4 5 6

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMN MATURALNY W ROKU SZKOLNYM 04/05 FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZOM PODSTAWOWY ZASADY OCENANA ROZWĄZAŃ ZADAŃ ARKUSZ MMA-P MAJ 05 Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych.

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych. Przykładowe zadania z rozwiązaniami: poziom podstawowy. Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami Zadanie. (0 ) Liczba 8 9 jest równa A. B. 9 C. D. 5. Zdający oblicza

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na

Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na poziomie podstawowym. Narzędzie to było dostępne do pobrania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 008 Czas pracy 0 minut Instrukcja dla

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Nieczynnościowy sposób oceniania zadań otwartych

Nieczynnościowy sposób oceniania zadań otwartych Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

EGZAMIN EKSTERNISTYCZNY Z MATEMATYKI Z ZAKRESU LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRZYKŁADOWE ZADANIA EGZAMINACYJNE WRAZ Z ROZWIĄZANIAMI

EGZAMIN EKSTERNISTYCZNY Z MATEMATYKI Z ZAKRESU LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRZYKŁADOWE ZADANIA EGZAMINACYJNE WRAZ Z ROZWIĄZANIAMI EGZAMIN EKSTERNISTYCZNY Z MATEMATYKI Z ZAKRESU LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRZYKŁADOWE ZADANIA EGZAMINACYJNE WRAZ Z ROZWIĄZANIAMI Poniżej prezentujemy przykładowe, które znalazły się na egzaminie

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA POZIOM PODSTAWOWY Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 0/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A, A6, A7) GRUDZIEŃ 0 Klucz odpowiedzi do zadań zamkniętych Nr zadania 5 6 7 8 9

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 UŁAMKI ZWYKŁE I DZIESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe Rozszerza ułamek zwykły Skraca ułamek zwykły Zapisuje ułamek

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III

Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III 249 - Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_249 Zmień rolę na... Włącz tryb edycji Osoby

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo