EGZAMIN MATURALNY 2011 MATEMATYKA

Wielkość: px
Rozpocząć pokaz od strony:

Download "EGZAMIN MATURALNY 2011 MATEMATYKA"

Transkrypt

1 Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY MAJ 0

2 Egzamin maturalny z matematyki poziom podstawowy Zadanie (0 ) Obszar standardów i tworzenie informacji Opis wymagań pojęcia wartości bezwzględnej Poprawna odpowiedź ( p) C Zadanie (0 ) Wykonanie obliczeń procentowych B Zadanie (0 ) i tworzenie informacji Rozłożenie wielomianu na czynniki z zastosowaniem wyłączenia wspólnego czynnika poza nawias B Zadanie (0 ) Modelowanie matematyczne Rozwiązanie układu równań D Zadanie (0 ) Rozwiązanie równania liniowego i sprawdzenie czy rozwiązanie należy do danego przedziału D Zadanie 6 (0 ) Sprawdzenie, które z podanych liczb spełniają nierówność i wybranie z nich najmniejszej B Zadanie (0 ) Zinterpretowanie rozwiązania nierówności kwadratowej i liniowej na osi liczbowej C Zadanie 8 (0 ) definicji logarytmu B

3 Egzamin maturalny z matematyki poziom podstawowy Zadanie 9 (0 ) Określenie funkcji za pomocą wzoru i interpretowanie wykresów funkcji kwadratowych A Zadanie 0 (0 ) Obliczenie miejsca zerowego funkcji liniowej D Zadanie (0 ) Zastosowanie wzory na n-ty wyraz ciągu geometrycznego D Zadanie (0 ) Użycie i tworzenie strategii Zastosowanie wzoru na n-ty wyraz ciągu arytmetycznego C Zadanie (0 ) Wyznaczenie wartości pozostałych funkcji tego samego kąta ostrego, gdy dana jest wartość jednej z nich A Zadanie (0 ) Zastosowanie prostych związków między funkcjami trygonometrycznymi kąta ostrego B Zadanie (0 ) Użycie i tworzenie strategii Znalezienie związków miarowych w przestrzeni C Zadanie 6 (0 ) Skorzystanie ze związków między kątem środkowym i kątem wpisanym B Zadanie (0 ) Użycie i tworzenie strategii Znalezienie związków miarowych w figurach płaskich A

4 Egzamin maturalny z matematyki poziom podstawowy Zadanie 8 (0 ) Zbadanie równoległości i prostopadłości prostych na podstawie ich równań kierunkowych C Zadanie 9 (0 ) Posłużenie się równaniem okręgu ( x a) + ( y b) = r i sprawdzanie czy dana prosta jest styczną B Zadanie 0 (0 ) Wyznaczenie związków miarowych w sześcianie D Zadanie (0 ) Wyznaczenie związków miarowych w bryłach obrotowych B Zadanie (0 ) Modelowanie matematyczne Zastosowanie twierdzenia znanego jako klasyczna definicja prawdopodobieństwa do obliczenia prawdopodobieństwa zdarzenia D Zadanie (0 ) Obliczenie średniej arytmetycznej D

5 Egzamin maturalny z matematyki poziom podstawowy Zadanie (0 ) Rozwiązanie nierówności kwadratowej Rozwiązanie Rozwiązanie nierówności kwadratowej składa się z dwóch etapów Pierwszy etap może być realizowany na sposoby: I sposób rozwiązania (realizacja pierwszego etapu) Znajdujemy pierwiastki trójmianu kwadratowego x 0x + obliczamy wyróżnik tego trójmianu: Δ= 00 = 6 i stąd x = = oraz x = = 6 6 stosujemy wzory Viète a: 0 x+ x = oraz x x = i stąd x = oraz x = podajemy je bezpośrednio, np zapisując pierwiastki trójmianu lub postać iloczynową trójmianu, lub zaznaczając na wykresie x =, x = lub x ( x ) lub y x II sposób rozwiązania (realizacja pierwszego etapu) Wyznaczamy postać kanoniczną trójmianu kwadratowego nierówność w postaci, np x 0, stąd x a następnie x 0x + i zapisujemy

6 6 Egzamin maturalny z matematyki poziom podstawowy przekształcamy nierówność, tak by jej lewa strona była zapisana w postaci iloczynowej x x ( x ) x 0 przekształcamy nierówność do postaci równoważnej, korzystając z własności wartości bezwzględnej 0 6 x 6 6 Drugi etap rozwiązania: 0 8 x 6 6 Podajemy zbiór rozwiązań nierówności: x lub Schemat oceniania Zdający otrzymuje pkt gdy: zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np o obliczy lub poda pierwiastki trójmianu kwadratowego x =, x = i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności o zaznaczy na wykresie miejsca zerowe funkcji f ( x) = x 0x+ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności o rozłoży trójmian kwadratowy na czynniki liniowe, np x ( x ) i na tym poprzestanie lub błędnie rozwiąże nierówność 0 8 o zapisze nierówność x i na tym poprzestanie lub błędnie zapisze 6 6 zbiór rozwiązań nierówności realizując pierwszy etap, popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np o popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność 0 o błędnie zapisze równania wynikające ze wzorów Viète a, np: x + x = 0 i x x = lub x + x = i x x = i konsekwentnie do popełnionego błędu rozwiąże nierówność, lub x,

7 Egzamin maturalny z matematyki poziom podstawowy o błędnie zapisze nierówność, np błędu rozwiąże nierówność 0 8 x + i konsekwentnie do popełnionego 6 6 Zdający otrzymuje pkt gdy: poda zbiór rozwiązań nierówności:, lub x, lub x, sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: x, x poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów Uwaga Jeżeli zdający poprawnie obliczy pierwiastki trójmianu x = i x = i zapisze np x,, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje punkty Zadania (0 ) x Rozumowanie i argumentacja Uzasadnienie zależności arytmetycznej z zastosowaniem wzorów skróconego mnożenia I sposób rozwiązania Ponieważ a b + =, więc ( a b) + =, czyli a + ab+ b = Ponieważ a + b =, więc ab + = Stąd mamy, że ab Stosując wzory skróconego mnożenia, zapisujemy wyrażenie a ( ) a + b a b = czyli II sposób rozwiązania Przekształcamy tezę w sposób równoważny: a + b = ( ) a + b a b = 9 ab = ab = 9 9= co należało uzasadnić = ab = 9 ab = i ( ) + b = w postaci:

8 8 Egzamin maturalny z matematyki poziom podstawowy Korzystając z założeń a + b = i a+ b=, otrzymujemy ab + = Stąd ab = Zatem ab = 9, co kończy dowód Schemat oceniania I i II sposobu rozwiązania Zdający otrzymuje pkt gdy: korzystając z założeń obliczy, że ab = i na tym poprzestanie lub dalej popełnia błędy przekształci tezę w sposób równoważny do postaci ab = 9 i na tym poprzestanie lub dalej popełnia błędy Zdający otrzymuje pkt gdy przeprowadzi pełne rozumowanie III sposób rozwiązania Tak jak w sposobie I obliczamy, że ab = Korzystamy ze wzoru dwumianowego Newtona: ( ) 6 ( ) 6( ) a+ b = a + a b+ a b + ab + b = a + ab a + b + ab + b = ( ) ( ) = a + b = a + b 8+ = a + b 0 Stąd a + b = Schemat oceniania III sposobu rozwiązania Zdający otrzymuje pkt gdy poda lub obliczy wartość wyrażenia ab = i na tym poprzestanie lub dalej popełni błędy wykorzysta wzór dwumianowy Newtona i zapisze np ( ) ( ) 6( ) a+ b = a + ab a + b + ab + b Zdający otrzymuje pkt gdy przeprowadzi pełne rozumowanie IV sposób rozwiązania Rozwiązujemy układ równań, wyznaczając a i b : a + b = stąd: a+ b=

9 Egzamin maturalny z matematyki poziom podstawowy 9 a = + b = lub + a = b = a + b = Układ równań a+ b= możemy rozwiązać jednym z podanych sposobów I sposób Podstawiamy b= a do równania a a ( a) + b =, stąd otrzymujemy równanie + =, które jest równoważne równaniu a a = 0 Obliczamy Δ= oraz a a 6 0 =, czyli a = + b = lub + a = b = II sposób Oznaczamy: a= + x, b= x Wtedy a + b = + x =, stąd x =, czyli Stąd otrzymujemy: x =, więc x =, x = a = + b = lub + a = b = III sposób Obliczamy ab = tak jak w I sposobie rozwiązania Mamy zatem układ równań: a+ b= ab = Stąd otrzymujemy: a = + b = lub + a = b =

10 0 Egzamin maturalny z matematyki poziom podstawowy Obliczamy a + b, korzystając ze wzoru ( c+ d) + ( c d) = c + c d + d : + a + b = + = = + + = = + + = 69 8 = + + = = Uwaga Zdający może także obliczyć: a = = = = = = = = = a = = oraz + b = = = = = = = = = b = = Zatem + a + b = + = Schemat oceniania IV sposobu rozwiązania Zdający otrzymuje pkt + + gdy obliczy jedną z wartości a = lub a = lub b = lub b = i na tym poprzestanie lub dalej popełni błędy Zdający otrzymuje pkt gdy przeprowadzi pełne rozumowanie Uwaga + + Jeżeli zdający obliczy jedną z wartości a = lub a =, lub b =, lub b = i uzasadni tezę tylko dla tej jednej wartości, to otrzymuje punkty

11 Egzamin maturalny z matematyki poziom podstawowy Zadanie 6 (0 ) i tworzenie informacji Odczytanie z wykresu funkcji: zbioru wartości oraz maksymalnego przedziału, w którym funkcja maleje Rozwiązanie Odczytujemy z wykresu zbiór wartości funkcji:, Zapisujemy przedział maksymalnej długości, w którym funkcja jest malejąca:, Schemat oceniania Zdający otrzymuje pkt gdy: zapisze zbiór wartości funkcji f :, i na tym poprzestanie zapisze zbiór wartości funkcji f :, i błędnie zapisze przedział maksymalnej długości, w którym ta funkcja jest malejąca zapisze przedział maksymalnej długości, w którym funkcja f jest malejąca:, i na tym poprzestanie zapisze przedział maksymalnej długości, w którym funkcja f jest malejąca, np:, i błędnie zapisze zbiór wartości funkcji f Zdający otrzymuje pkt gdy zapisze zbiór wartości funkcji f :, oraz przedział maksymalnej długości, w którym funkcja f jest malejąca:, Uwagi Zdający może zapisać przedział maksymalnej długości, w którym funkcja f jest malejąca, w postaci x lub x,, lub x, ), lub x (,, lub x (,) Zdający może zapisać zbiór wartości funkcji f, w postaci y lub x, Zdający może zapisać przedział maksymalnej długości, w którym funkcja f jest malejąca, w postaci,0 0, Nie akceptujemy, jeżeli zdający zapisze przedział maksymalnej długości, w którym, funkcja f jest malejąca, w postaci { }

12 Egzamin maturalny z matematyki poziom podstawowy Zadania (0 ) Modelowanie matematyczne Zastosowanie wzorów na n-ty wyraz ciągu arytmetycznego lub wykorzystanie własności trzech kolejnych wyrazów tego ciągu I sposób rozwiązania Liczby x, y, 9 w podanej kolejności tworzą ciąg arytmetyczny, stąd y = x+ 9 Zapisujemy więc układ równań y = x+ 9 x + y = 8 którego rozwiązaniem jest x = i y = 9 Schemat oceniania I sposobu rozwiązania Zdający otrzymuje pkt gdy wykorzysta własności ciągu arytmetycznego i zapisze równanie np y = x+ 9 i na tym poprzestanie lub dalej popełnia błędy Zdający otrzymuje pkt gdy obliczy: x = i y = 9 Uwaga Zdający może jako rozwiązanie podać ciąg (, 9, 9) i wtedy również otrzymuje punkty II sposób rozwiązania Liczby x, y, 9 w podanej kolejności tworzą ciąg arytmetyczny Niech r będzie różnicą tego ciągu i x = a, y = a = a+ r, 9 = a = a+ r Otrzymujemy układ równań a+ a+ r = 8 a + r = 9 Rozwiązaniem tego układu jest a =, r = 0 Stąd: x= a =, y = a = 9 Uwaga Możemy również otrzymać następujące układy równań: a + r = 8 y = x+ r a + 9 lub 9 = x + r = a + r x + y = 8 Schemat oceniania II sposobu rozwiązania Zdający otrzymuje pkt gdy wprowadzi oznaczenia x = a, y = a = a+ r i zapisze równanie a + r = 9 i na tym poprzestanie lub dalej popełnia błędy Zdający otrzymuje pkt gdy obliczy: x = i y = 9

13 Egzamin maturalny z matematyki poziom podstawowy III sposób rozwiązania Wprowadzamy oznaczenia x = a, y = a, 9 = a Obliczamy: S = x+ y+ 9 = = Korzystając ze wzoru na sumę trzech początkowych wyrazów ciągu arytmetycznego, a + 9 otrzymujemy = Stąd a =, zatem x =, y = 9 Schemat oceniania III sposobu rozwiązania Zdający otrzymuje pkt a+ a gdy wprowadzi oznaczenia x = a, y = a, 9 = a i zapisze równanie = i na tym poprzestanie lub dalej popełnia błędy Zdający otrzymuje pkt gdy obliczy: x = i y = 9 Uwaga Jeżeli zdający zapisze x = i y = 9 bez obliczeń i nie uzasadni, że jest to jedyne rozwiązanie, to otrzymuje punkt Zadanie 8 (0 ) Użycie i tworzenie strategii Zastosowanie prostych związków między funkcjami trygonometrycznymi kąta ostrego I sposób rozwiązania sin cos Sprowadzamy wyrażenie + = do wspólnego mianownika i otrzymujemy cos sin sin + cos = Korzystając z tożsamości sin + cos =, otrzymujemy sincos sincos =, a stąd sincos = Schemat oceniania I sposobu rozwiązania Zdający otrzymuje pkt gdy: sin cos sprowadzi wyrażenie + = do wspólnego mianownika i na tym cos sin poprzestanie lub dalej popełnia błędy sin cos doprowadzi wyrażenie + = do postaci sin + cos = sincos cos sin i na tym poprzestanie lub dalej popełnia błędy Zdający otrzymuje pkt gdy obliczy, że sincos =

14 Egzamin maturalny z matematyki poziom podstawowy II sposób rozwiązania Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych a i b oraz zaznaczamy kąt ostry taki, że sin = a c lub cos = b c a c b Korzystając z twierdzenia Pitagorasa, wyznaczamy długość przeciwprostokątnej: c = a + b Ponieważ sin cos a b a + b c + =, więc + =, czyli = Stąd cos sin b a ab ab = Ponieważ sincos = ab, to sincos = c III sposób rozwiązania Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych a i b oraz zaznaczamy kąt ostry taki, że sin = a c lub cos = b c a c b Ponieważ sin cos + =, więc otrzymujemy kolejno: cos sin a b a + b + =, =, a + b = ab, b a ab stąd ( ) π a b = 0, więc a = b Zatem = = Wtedy sin = sin = i cos = cos = Obliczamy sincos = =

15 Egzamin maturalny z matematyki poziom podstawowy Schemat oceniania II i III sposobu rozwiązania Zdający otrzymuje pkt gdy narysuje trójkąt prostokątny o przyprostokątnych długości a i b, zaznaczy w tym trójkącie kąt i zapisze: sin = a c, cos = b c i a + b = i na tym zakończy lub dalej popełnia błędy ab sin = a c, cos = b c i a + b = a b i na tym zakończy lub dalej popełnia błędy Zdający otrzymuje pkt gdy obliczy, że sincos = Uwaga Zdający może także odczytać z tablic przybliżone wartości funkcji trygonometrycznych i obliczyć: sin cos 0,0 0,0 0,999 0, Nie akceptujemy innych przybliżeń IV sposób rozwiązania Wyrażenie sin cos + = zapisujemy w postaci tg + = cos sin tg Stąd tg tg + = 0 Zatem tg = i stąd = Obliczamy wartość wyrażenia, sin cos = = Schemat oceniania IV sposobu rozwiązania Zdający otrzymuje pkt gdy zapisze równanie tg + = i na tym zakończy lub dalej popełnia błędy tg Zdający otrzymuje pkt gdy obliczy sincos = V sposób rozwiązania Zauważamy, że suma liczby i jej odwrotności jest równa wtedy i tylko wtedy, gdy ta liczba sin jest równa Zatem tg = = i stąd =, a więc sin cos = = cos

16 6 Egzamin maturalny z matematyki poziom podstawowy Schemat oceniania V sposobu rozwiązania Zdający otrzymuje pkt gdy zapisze, że suma liczby i jej odwrotności jest równa wtedy i tylko wtedy, gdy ta liczba jest równa, zapisze tg = lub sin = i na tym zakończy lub dalej popełnia błędy cos Zdający otrzymuje pkt gdy obliczy sincos = Uwaga Jeżeli zdający w V sposobie rozwiązania zapisze bez uzasadnienia: tg = lub sin = lub cos = i na tym zakończy lub dalej popełnia błędy, to otrzymuje 0 punktów tg = lub sin = lub cos = i poprawnie obliczy sincos =, to otrzymuje punkt Zadania 9 (0 ) Rozumowanie i argumentacja Uzasadnienie, że wskazany kąt jest prosty I sposób rozwiązania Niech CED = Ponieważ trójkąt DCE jest równoramienny i EC = CD, to EDC = CED = Zatem DCE = 80 Podobnie, ponieważ trójkąt ABE jest równoramienny i AEB = EAB = β, to ABE = 80 β Kąty ABE i DCE są kątami wewnętrznymi trapezu ABCD i DCE + ABE = 80 Stąd β = 80, czyli + β = 80 + β = 90 AED = 80 CED AEB = 80 β = 80 + β = 90 Zatem ( ) Schemat oceniania I sposobu rozwiązania Zdający otrzymuje pkt gdy napisze zależności między miarami kątów w trójkątach równoramiennych ABE i DCE, np DCE = 80 i ABE = 80 β i na tym zakończy lub dalej popełnia błędy Zdający otrzymuje pkt gdy poprawnie uzasadni, że AED = 90

17 Egzamin maturalny z matematyki poziom podstawowy II sposób rozwiązania D C F β E β A β Niech CED = i AEB = β Trójkąty DCE i ABE są równoramienne Zatem EDC = CED = oraz AEB = EAB = β Dorysowujemy w danym trapezie odcinek EF równoległy do podstaw trapezu ABCD Kąty naprzemianległe CDE i DEF mają równe miary, zatem EDC = DEF = Analogicznie EAB = AEF = β Zatem BEC = 80 = + β, więc + β = 90 Stąd AED = 90, co kończy dowód Schemat oceniania II sposobu rozwiązania Zdający otrzymuje pkt gdy napisze, że trójkąty DCE i ABE są równoramienne, dorysuje odcinek EF równoległy do podstaw trapezu ABCD i zapisze, że EDC = DEF = i EAB = AEF = β Zdający otrzymuje pkt gdy poprawnie uzasadni, że AED = 90 (uzasadnienie równości kątów może być przedstawione na rysunku) B

18 8 Egzamin maturalny z matematyki poziom podstawowy III sposób rozwiązania D 80 C F E Niech ABC =, stąd BCD = 80 A 90 Ponieważ CE = CD i EB = BA, więc trójkąty DCE i ABE są równoramienne 80 Zatem AEB = EAB = = 90 oraz EDC = CED = Dorysowujemy w danym trapezie odcinek EF równoległy do podstaw trapezu ABCD, więc zachodzi równość: EDC = CED = DEF = i AEB = EAB = AEF = 90 Stąd otrzymujemy AED = AEF + DEF = 90 + = 90 Schemat oceniania III sposobu rozwiązania Zdający otrzymuje pkt gdy napisze, że trójkąty DCE i ABE są równoramienne i przyjmie, że ABC =, dorysuje odcinek EF równoległy do podstaw trapezu ABCD i zapisze, 80 że AEB = EAB = AEF = i EDC = CED = DEF = Zdający otrzymuje pkt gdy poprawnie uzasadni, że AED = 90 (uzasadnienie równości kątów może być przedstawione na rysunku) B

19 Egzamin maturalny z matematyki poziom podstawowy 9 IV sposób rozwiązania D C E β A β B Niech CED = Ponieważ trójkąt DCE jest równoramienny i EC = CD, to EDC = CED = Podobnie, ponieważ trójkąt ABE jest równoramienny, to AEB = EAB = β Kąty ADC i BAD są kątami wewnętrznymi trapezu ABCD i ADC + BAD = 80 Stąd ADE + EAD = 80 ( + β ) Zatem w trójkącie DAE mamy: ( ) AED = + β = + β Stąd BEC = 80 = DEC + AED + AEB = + β, czyli + β = 90 Zatem AED = 90 Schemat oceniania IV sposobu rozwiązania Zdający otrzymuje pkt gdy zapisze zależności między miarami kątów w trójkątach równoramiennych ABE i DCE, np EDC = CED = oraz AEB = EAB = β i zapisze, że ADC + BAD = 80 Zdający otrzymuje pkt gdy poprawnie uzasadni, że AED = 90 Uwaga Jeżeli zdający przyjmie dodatkowe założenia o trapezie ABCD, przez co rozważa tylko szczególny przypadek, np ABC = 90 lub DEC =, to za całe rozwiązanie otrzymuje 0 punktów

20 0 Egzamin maturalny z matematyki poziom podstawowy Zadanie 0 (0 ) Użycie i tworzenie strategii Obliczenie prawdopodobieństwa zdarzenia I sposób rozwiązania (metoda klasyczna) Zdarzeniami elementarnymi są wszystkie pary( ab, ) liczb z podanego zbioru Jest to model klasyczny Obliczamy liczbę wszystkich zdarzeń elementarnych: Ω = Obliczamy liczbę zdarzeń elementarnych sprzyjających zdarzeniu A polegającym na otrzymaniu liczb, których suma jest podzielna przez, np wypisując je i zliczając: A =,,,,,,,,,,,,,6,,,,,,,,,, 6,, 6,6,,,,, {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( )( )( )} czyli A = 6 6 Obliczamy prawdopodobieństwo zdarzenia A: PA= ( ) 9 II sposób rozwiązania (metoda tabeli) Zdarzeniami elementarnymi są wszystkie pary( ab, ) liczb z podanego zbioru Jest to model klasyczny Tworzymy tabelę ilustrującą sytuację opisaną w zadaniu 6 X X X X X X X X X X X X 6 X X X X Obliczamy liczbę wszystkich zdarzeń elementarnych: Ω = Zliczamy oznaczone krzyżykami zdarzenia elementarne sprzyjające zdarzeniu A: A = 6 Obliczamy prawdopodobieństwo zdarzenia A: 6 PA= ( ) 9 Schemat oceniania I i II sposobu rozwiązania Zdający otrzymuje pkt gdy obliczy liczbę wszystkich możliwych zdarzeń elementarnych: Ω = = 9 obliczy liczbę zdarzeń elementarnych sprzyjających zdarzeniu A : A = 6 Zdający otrzymuje pkt 6 gdy obliczy prawdopodobieństwo zdarzenia A: PA= ( ) 9

21 Egzamin maturalny z matematyki poziom podstawowy III sposób rozwiązania (metoda drzewa) Rysujemy drzewo, uwzględniając tylko istotne gałęzie Prawdopodobieństwo na każdym odcinku tego drzewa jest równe Obliczamy prawdopodobieństwo zdarzenia A: 6 PA= ( ) 6 = 9 IV sposób rozwiązania (metoda drzewa) Rysujemy drzewo, uwzględniając tylko istotne gałęzie i zapisujemy na nich prawdopodobieństwo {, 6 } {,, } {,} {, 6 } {, } {,, } Obliczamy prawdopodobieństwo zdarzenia A: ( ) 6 P A = + + =

22 Egzamin maturalny z matematyki poziom podstawowy Schemat oceniania III i IV sposobu rozwiązania Zdający otrzymuje pkt gdy: narysuje pełne drzewo i przynajmniej na jednej gałęzi opisze prawdopodobieństwo narysuje drzewo tylko z istotnymi gałęziami Zdający otrzymuje pkt 6 gdy obliczy prawdopodobieństwo zdarzenia A: PA= ( ) 9 Uwagi Jeśli zdający rozwiąże zadanie do końca i otrzyma PA> ( ), to otrzymuje za całe rozwiązanie 0 punktów Jeżeli zdający opuści przez nieuwagę w rozwiązaniu niektóre gałęzie i konsekwentnie obliczy prawdopodobieństwo, to za całe rozwiązanie otrzymuje punkt Jeżeli zdający poprawnie obliczy prawdopodobieństwo i błędnie skróci ułamek, np 6 PA= ( ) =, to otrzymuje punkty 9 Zadanie (0 ) Użycie i tworzenie strategii Wyznaczenie współrzędnych punktu styczności prostej z okręgiem I sposób rozwiązania Wyznaczamy współczynnik kierunkowy m prostej prostopadłej do prostej o równaniu y = x : m = S =, : Zapisujemy równanie prostej prostopadłej do stycznej i przechodzącej przez punkt ( ) y = x + Zapisujemy i rozwiązujemy układ równań: y = x y = x + x + = x x = Stąd y = Zatem punkt styczności ma współrzędne:,

23 Egzamin maturalny z matematyki poziom podstawowy Schemat oceniania I sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania pkt Zapisanie współczynnika kierunkowego prostej prostopadłej do prostej o równaniu y = x, np m = Rozwiązanie, w którym jest istotny postęp pkt y = x Zapisanie układ równań y = x + Pokonanie zasadniczych trudności zadania pkt Przekształcenie układu równań do równania z jedną niewiadomą, np x + = x lub y = y + Rozwiązanie pełne pkt Obliczenie współrzędnych punktu styczności:, Uwaga Jeśli zdający zapisał układ równań liniowych i odgadł jego rozwiązanie, to otrzymuje punkty II sposób rozwiązania Obliczamy odległość d środka okręgu S = (,) od prostej y = x : 6 d = = + Punkt P= ( x,x ) jest punktem styczności okręgu o środku w punkcie S = (,) i prostej y = x Zatem PS = d oraz PS x x = ( ) + ( 0) 6 Przekształcamy równanie ( x ) + (x 0) = do postaci x 6x + 09 = 0 Rozwiązujemy równanie x 6x + 0 = 0, stąd x = Zatem punkt styczności ma współrzędne: P =, Schemat oceniania II sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania pkt 6 obliczenie odległości punktu S od danej prostej d = = + zapisanie długości odcinka PS : PS = ( x ) + (x 0) Rozwiązanie, w którym jest istotny postęp pkt y = x Zapisanie układ równań, np ( ) ( x ) + y =

24 Egzamin maturalny z matematyki poziom podstawowy Pokonanie zasadniczych trudności zadania pkt Zapisanie równania z jedną niewiadomą, np x 6x + 0 = 0 ( x ) + (x 0) = Rozwiązanie pełne pkt Obliczenie współrzędnych punktu P styczności:, III sposób rozwiązania P= x, y jest punktem styczności okręgu o środku S = (,) i prostej y = x Punkt ( ) ( x ) + ( y ) = r Zapisujemy układ równań: y = x Przekształcamy układ równań do równania kwadratowego z niewiadomą x: ( x ) + (x 0) = r x 6x+ 09 r = 0 Zapisujemy warunek Δ= 0, dla którego okrąg ma jeden punkt wspólny z prostą y = x i obliczamy r : 6 6 Δ= 6 + 0r, 0r 6 = 0, 0r = 6, r = = 0 Rozwiązujemy równanie: 6 x 6x + 09 = 0 x 6x + 0 = 0 x = Zatem punkt styczności ma współrzędne: P =, Schemat oceniania III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania pkt Zapisanie układu równań i warunku pozwalającego wyznaczyć promień okręgu: ( x ) + ( y ) = r y = x Rozwiązanie, w którym jest istotny postęp pkt Przekształcenie układu do równania z jedną niewiadomą x 6x+ 09 r = 0, zapisanie 6 r : r = Pokonanie zasadniczych trudności zadania pkt Zapisanie równania kwadratowego, np x 6x + 0 = 0 Rozwiązanie pełne pkt Obliczenie współrzędnych punktu styczności: P =, warunku Δ= 0 i obliczenie

25 Egzamin maturalny z matematyki poziom podstawowy Uwaga Jeśli zdający popełnił błąd rachunkowy, przekształcając układ równań do równania kwadratowego, rozwiązał to równanie i otrzymał dwa punkty styczności, to za całe rozwiązanie otrzymuje punkty Zadanie (0 ) Modelowanie matematyczne Rozwiązanie zadania umieszczonego w kontekście praktycznym, prowadzącego do równania kwadratowego z jedną niewiadomą I sposób rozwiązania Niech x oznacza liczbę dni wędrówki, y liczbę kilometrów przebytych każdego dnia przez turystę Drogę przebytą przez turystę opisujemy równaniem x y = Turysta może przeznaczyć na wędrówkę o dni więcej, idąc każdego dnia o km mniej, wówczas zapisujemy równanie: ( x+ ) ( y ) = x y = Zapisujemy układ równań, np ( x+ ) ( y ) = Z pierwszego równania wyznaczamy y = x = x y podstawiamy do drugiego równania i rozwiązujemy ( ) x + = x + ( y ) = y Przekształcamy to równanie do równania Przekształcamy to równanie do równania kwadratowego, np x + x 8= 0 kwadratowego, np y y 8 = 0 Δ= 9 + = = Δ= + 9 = 96 = x = = sprzeczne z zał x > 0 y = = 6 sprzeczne z zał y > 0 + x = = + y = = 8 Obliczamy y: y = = 8 Odp: Turysta przechodził dziennie 8 km Odp: Turysta przechodził dziennie 8 km II sposób rozwiązania Niech x oznacza liczbę dni wędrówki, y liczbę kilometrów przebytych każdego dnia przez turystę Drogę przebytą przez turystę opisujemy równaniem x y = Turysta może przeznaczyć na wędrówkę o dni więcej, idąc każdego dnia o km mniej, wówczas zapisujemy równanie: ( x+ ) ( y ) = x y = Zapisujemy układ równań, np ( x+ ) ( y ) = x y = Stąd otrzymujemy kolejno x y x + y 6 =

26 6 Egzamin maturalny z matematyki poziom podstawowy x y = x+ y 6 = x y = x + y 6 = 0 W równaniu x y 6 0 Otrzymujemy x y+ = 0, stąd wyznaczamy + = obie strony dzielimy przez ( ) y = x+ x = y podstawiamy do równania pierwszego i rozwiązujemy x ( x+ ) = x + x = 0 y y = x + x 8= 0 0 Δ= 9 + = = y y = y y 8 = 0 x = = sprzeczne z zał x > 0 Δ= + 9 = 96 = + x = = y = = 6 sprzeczne z zał y > 0 Obliczamy y: y = + = 8 + y = = 8 Odp: Turysta przechodził dziennie 8 km Odp: Turysta przechodził dziennie 8 km Schemat oceniania I i II sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania pkt Zapisanie zależności między przebytą drogą, liczbą dni wędrówki oraz liczbą kilometrów przebytych każdego dnia przez turystę, np: ( x+ ) ( y ) = x y = Rozwiązanie, w którym jest istotny postęp pkt Zapisanie układu równań z niewiadomymi x i y odpowiednio: liczbą dni wędrówki i liczbą x y = kilometrów przebytych każdego dnia przez turystę, np ( x+ ) ( y ) = Pokonanie zasadniczych trudności zadania pkt Zapisanie równania z jedną niewiadomą x lub y, np: ( ) x + = lub + ( y ) =, lub x ( x+ ) =, x y lub y y = Uwaga Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą

27 Egzamin maturalny z matematyki poziom podstawowy Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np błędy rachunkowe) pkt rozwiązanie równania z niewiadomą x bezbłędnie i nie obliczenie liczby kilometrów przebytych każdego dnia przez turystę rozwiązanie równania z niewiadomą x lub y z błędem rachunkowym i konsekwentne obliczenie liczby kilometrów przebytych każdego dnia przez turystę Rozwiązanie pełne pkt Obliczenie liczby kilometrów przebytych każdego dnia przez turystę: 8 km III sposób rozwiązania Niech x oznacza liczbę dni wędrówki, y liczbę kilometrów przebytych każdego dnia przez turystę Liczbę kilometrów przebytych każdego dnia przez turystę opisujemy równaniem y = x Turysta może przeznaczyć na wędrówkę o dni więcej, idąc każdego dnia o km mniej, wówczas zapisujemy równanie: x x+ Przekształcamy to równanie do postaci x + x 8= 0 Rozwiązaniem równania są: x = = sprzeczne z założeniem x > 0 + i x = = Obliczamy y: y = = 8 Schemat oceniania III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania pkt Przyjęcie oznaczeń: x - liczba dni wędrówki, y liczba kilometrów przebytych każdego dnia przez turystę i zapisanie zależności, np y = x y = x + + Pokonanie zasadniczych trudności zadania pkt Zapisanie równania z jedną niewiadomą: x = x+ + Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np błędy rachunkowe) pkt rozwiązanie równania z niewiadomą x bezbłędnie i nie obliczenie liczby kilometrów przebytych każdego dnia przez turystę rozwiązanie równania z niewiadomą x błędem rachunkowym i konsekwentne obliczenie liczby kilometrów przebytych każdego dnia przez turystę, przy czym obliczona liczba kilometrów musi być większa od

28 8 Egzamin maturalny z matematyki poziom podstawowy Rozwiązanie pełne pkt Obliczenie liczby kilometrów przebytych każdego dnia przez turystę: 8 km Uwagi Jeżeli zdający porównuje wielkości różnych typów, to otrzymuje 0 punktów Jeżeli zdający odgadnie liczbę kilometrów przebytych każdego dnia przez turystę i nie uzasadni, że jest to jedyne rozwiązanie, to otrzymuje punkt Zadanie (0 ) Użycie i tworzenie strategii Wyznaczenie związków miarowych w sześcianie Rozwiązanie H L G E F M A D B K C Trójkąt ABK jest trójkątem prostokątnym, zatem AK = + Stąd AK = Trójkąt MAK jest trójkątem prostokątnym, zatem MK = MA + AK = + = Analogicznie dla trójkątów MEL i LGK obliczamy kwadraty długości boków ML i KL: ML = KL = Ponieważ ML = KL = MK, więc trójkąt KLM jest równoboczny Zatem jego pole wyraża się wzorem MK P =, stąd P = = 8 Uwaga Zdający nie musi obliczać kwadratów długości boków ML i KL Wystarczy, że korzystając z przystawania trójkątów MAK, MEL, LGK uzasadni równość boków: ML = KL = MK

29 Egzamin maturalny z matematyki poziom podstawowy 9 Schemat oceniania Rozwiązanie, w którym jest istotny postęp pkt Obliczenie kwadratu długości odcinka AK : AK = Pokonanie zasadniczych trudności zadania pkt obliczenie kwadratów długości lub długości boków trójkąta KLM: 6 ML = KL = MK = lub ML = KL = MK = i na tym poprzestanie lub dalej popełni błędy zauważenie, że trójkąt KLM jest równoboczny i obliczenie kwadratu długości jednego z boków tego trójkąta, np MK = Rozwiązanie pełne pkt Obliczenie pola trójkąta KLM : P = 8 Uwaga Akceptujemy rozwiązanie, w którym zdający przyjmuje, że długość krawędzi sześcianu jest oznaczona literą l

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA entralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 010 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 010 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od 1. do 5. podane

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA entralna Komisja Egzaminacyjna EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi SIERPIEŃ 0 Zadanie. (0 ) Zakres umiejętności (standardy) Opis wymagań Wykonuje obliczenia procentowe;

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie. (0 ) Obszar standardów Modelowanie matematyczne Opis

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 04/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A4, A6, A7) GRUDZIEŃ 04 Klucz odpowiedzi do zadań zamkniętych Nr zadania 4 5 6

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMN MATURALNY W ROKU SZKOLNYM 04/05 FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZOM PODSTAWOWY ZASADY OCENANA ROZWĄZAŃ ZADAŃ ARKUSZ MMA-P MAJ 05 Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych.

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych. Przykładowe zadania z rozwiązaniami: poziom podstawowy. Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami Zadanie. (0 ) Liczba 8 9 jest równa A. B. 9 C. D. 5. Zdający oblicza

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Zbiór zadań maturalnych z matematyki

Zbiór zadań maturalnych z matematyki Zbiór zadań maturalnych z matematyki Centralna Komisja Egzaminacyjna Warszawa 0 Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 008 Czas pracy 0 minut Instrukcja dla

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy

Próbny egzamin maturalny z matematyki Poziom podstawowy Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na

Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na poziomie podstawowym. Narzędzie to było dostępne do pobrania

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie... Imię i Nazwisko... Klasa... Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY...... Liczba punktów...... Wynik procentowy Informacje dla ucznia

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 ).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 0/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A, A6, A7) GRUDZIEŃ 0 Klucz odpowiedzi do zadań zamkniętych Nr zadania 5 6 7 8 9

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013 CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY UNKTOWANIA GM-M1-132 KWIECIEŃ 2013 Liczba punktów za zadania zamknięte i otwarte: 29

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Nieczynnościowy sposób oceniania zadań otwartych

Nieczynnościowy sposób oceniania zadań otwartych Nieczynnościowy sposób oceniania zadań otwartych MATEMATYKA Zmiany od 2010 roku Maria Dębska doradca metodyczny Bielsko - Biała Standard 3. modelowanie matematyczne Dlaczego zmiany? Standard 4. użycie

Bardziej szczegółowo

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA POZIOM PODSTAWOWY Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo