Wstęp do astrofizyli i kosmologia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do astrofizyli i kosmologia"

Transkrypt

1 Wstęp do astrofizyli i kosmologia Ryszard Mańka-Marcisz 25 kwietnia Elementy Ogólnej Teorii Względności Obiekty astronomiczne są wynikiem istnienia równowagi miedzy zapadaniem grawitacyjnym a ciśniemiem wytworzonym przez ściskaną meterię. W tym rozdziale wprowadzimy podstawowe pojęcia i wzory ogólnej teorii względności które będą wykorzystywane w astrofizyce. W płaskiej czasoprzestrzeni interwał czasoprzestrzenny określający odległość między punktami p i p (o współrzędnych x µ i x µ + δx µ ) jest 0-0

2 zdefiniowany jako gdzie g µν = η µν = ds 2 = g µν dx µ dx ν Równania dla pól meterii otrzymujemy korzystając z formalizmu wariacyjnego. W płaskiej czasoprzestrzeni wariacja całki działania dla np. pola skalarnego φ A zdefiniowana jako S[φ] = d 4 xl(φ A, µ φ A ) generuje równania ruchu Eulera-Lagrange a µ L ( µ φ A ) = L φ A 0-1

3 W zakrzywionej czasoprzetrzeni ds 2 = g µν dx µ dx ν tensor metryczny można lokalnie zdiagonalizować g µν = e a µe b νη ab Definiując nowe współrzędne dy a = e a µdx µ interwał czasoprzestrzenny będzie wyglądał identycznie jak w przestrzeni płaskiej ds 2 = η ab dy a dy b. Jakobian transformacji jest równy J = y/ x = e = g (e = det(e a µ), g = det(g µν )). Całka działania w zakrzywionej czasoprzestrzeni można więc zapisać jako S = d 4 x J L = d 4 g L (1) L = L g + L matt Lagrangian L g jest funkcją niezmienników czasoprzestrzeni. Takim nieznienikiem jest np. skalar krzywizny zdefiniowany za pomocą R = g µν R µν (2) 0-2

4 tensora krzywizny Ricciego R µν = λ Γ λ µν ν Γ λ µλ + Γ λ µνγ ρ λρ Γρ µνγ λ νρ (3) Jest on zdefiniowany za pośrednictwem symboli Christoffera Γ λ µν określanymi następującym wzorem : Można więc uważać, że Γ λ µν = 1 2 gλρ { ν g ρµ + µ g ρν + ρ g µν } (4) L = L (R, R µν R µν,...) = Λ 0 + ar + br (5) W pierwszym kroku uwzględniamy tylko przybliżenie liniowe, wtedy : L g = 1 1 (R + 2Λ) = (R + 2Λ) (6) 2κ 16πG Dokonamy teraz wariacji całki działanial g ze względu na tensor metryczny g µν. Przy dokonywaniu wariacji całki działania względem tensora metrycznego g µν wygodnie jest wykorzystać algebraiczne własności 0-3

5 wyznacznika i macierzy odwrotnej 1 g = g gµν g µν. 2 Rachunki prowadzą do równania Einstaina gdzie κ = 8πG c 4 pędu R µν 1 2 g µνr g µν Λ = κt µν a Λ jest stałą kosmologiczną a T µν jest tensorem energii T µν = 2 L matt g µν g µν L matt Czasami wygodnie jest przedstawiać tensor energii - pędu w postaci ɛ = c 2 ρ T µν = (P + ɛ)u µ u ν P g µν = 0 P P 0 (7) P 0-4

6 właściwej dla cieczy, gdzie u µ u µ = 1 jest wektorem jednostkowym. P jest cisnieniem, ɛ gestością energii a ρ gęstością masy. Dywergencja tensora energii-pędu jest równa zero T λ µ;λ = 0 gdzie ; jest symbolem pochodnej kowariantnej, np. u µ;λ = µ u λ Γ ρ µλ u ρ O ile stała kosmologiczna Λ 0 to nawet w próżni gdy T µν = 0 przestrzeń jest zakrzywiona ze stałą krzywizną równą R = 4Λ. 2 Kosmologia 2.1 Kosmologia Newtonowska 1576 Digges, 1826 Olbes -> Paradoks Olbesa Dlaczego nocne niebo jest ciemne? Jasność jest proporcjonalna do ilości gwiazd dl dn 0-5

7 Rysunek 1: Soczewkowanie grawitacyjne. 0-6

8 dr r Observer Rysunek 2: Sfery gwiazd. 0-7

9 a liczba gwaizd dn dv = 4πr 2 dr stąd strumień dl Φ = 4πr 2 dr = 1915 powstaje ogólna teoria względności (GR) 1917 de Sitter, 1922 Friedmann, 1927 Lamaître -> wyniki wskazujące na ekspansje Wszechświata, 1929 Hubble 1934 Milne, McCrea odkrywają, że ekspansja może być wyjasniona przy pomocy mechaniki Newtonowskiej Robetrson, Walker -> metryka jednorodnego i izotropowego Wszechświata (FLRW) v = H 0 l W mechanice newtonowskiej oddziaływanie grawitacyjne między dwoma masami M i m opisane jest siłą F = G Mm u = U (8) r2 0-8

10 u = x/r jest wektorem jednostkowym. Potencjał U(r) = mφ z Φ = G M r Prawo zachowania energii oznacza, że E = 1 2 mv2 + U(r) odległość dl 0 między dwoma punktami ulega przeskalowaniu dl = a(t)dl 0. Zmiana czynnika skali z czasem oznacza oddalanie się wszystkich obiektów z prędkościa z stałą Hubbla v = dl dt = ȧdl 0 = ȧ a (adl 0) = Hdl H = ȧ a 0-9

11 Rysunek 3: Oryginalny wykres Hubbla. 0-10

12 W chwili obecnej t 0 H 0 = 71 ± 6 km s 1 Mpc = h 0100 km s 1 Mpc z h 0 = Podstawowym postulatem kosmologii jest postulat uśrednionej jednorodności i izotropowości Wszechświata (zasada kosmologiczna). W kosmologii postulat jednorodneści i izotropowości Wszechświata oznacza, iż interwał czasoprzestrzenny jest równy [ ] dr ds 2 = c 2 dt 2 a 2 2 (t) 1 kr 2 + r2 dθ 2 + r 2 sin 2 θdφ 2 Oznacza to, że tensor metryczny Robertsona-Waklera ma postać g µν = 1 a(t)2 1 kr 2 a(t) 2 r 2 a(t) 2 r 2 sin 2 θ 0-11

13 Rysunek 4: Trzy typy topologii przestrzeni. Równania Einsteina dają ( ) 2 a = H 2 = 8πG a 3c 2 ρ kc2 a 2 + Λc2 3 (9) a a = 4πG Λc2 (ρ + 3p) + 3c2 3 (10) 0-12

14 gdzie k = 0, ±1. Równanie ciągłości przyjmuje prostą postać dρ dt = 3H(ρ + p). Dla pyłu (p = 0) równanie to oznacza skalowanie ρ = a 3 ρ 0. W próżni (ρ = P = 0) w przestrzeni płaskiej istnieje rozwiązanie de Sittera (inflacja) a(t) = a 0 e Ht z H = Λc 2 3. Dzieląc równanie (9) w chwili bieżącej t 0 przez H 2 0 otrzymujemy 1 = Ω m + Ω k + Ω Λ gdzie Ω m = ρ ρ c z ρ c = 3H2 0 c 2 8πG 0-13

15 Ω k = kc2 a 2 H 2 0, Ω Λ = ρ Λ ρ c = Λc2 3H 2 0 Parametry te w pełni określają ewolucję Wszechświata. ρ c jest gęstością krytyczna. Składową materii Ω m można rozbić na część barionową Ω B i część opisującą ciemną materię Ω CDM Ω m = Ω B + Ω CDM. Drugie równanie (10) wymaga znajomości równania stanu. Zapiszemy je w prostej postaci p = wρ Jest to równanie stanu w kosmologii. Zakładamy że w chwili obecnej t 0, a 0 = a(t 0 ) = 1. Tak więc odległość dl 0 między dwoma punktami ulega przeskalowaniu dl = a(t)dl

16 parametr wielkość H 0 72 km s 1 Mpc 1 Ω m 0.30 Ω Λ 0.70 Ω B 0.04 Ω CDM 0.26 Ω k 0.00 q Tablica 1: Oszacowanie parametrów kosmologicznych. 0-15

17 Zmiana czynnika skali z czasem oznacza oddalanie się wszystkich obiektów z prędkościa z stałą Hubbla W chwili obecnej t 0 v = dl dt = ȧdl 0 = ȧ a (adl 0) = Hdl H 0 = 71 ± 6 km s H = ȧ a 1 Mpc = h 0100 km s 1 Mpc z h 0 = Dla przestrzeni płaskiej (k=0) bez stałej kosmologicznej (Λ = 0) mamy H 2 = 8πG 3 ρ co pozwala nam zdefiniować gęstość krytyczną ρ c = 3H2 0 8πG = h2 0r c ev cm 3 r c = M Mpc 3 = g cm 3 = ev cm

18 Pochodzenie stałej kosmologicznej jak i ciemnej materii jest tajemnicze. Możemy już teraz oszacować gęstość energii związanej z stałą kosmologiczną ρ Λ = Ω Λ ρ c ev cm 3 W Wszechświecie zdominowanym przez materię (ρ + 3p > 0) ekspansja będzie zwalniała. To zwolnienie opisujemy przez parametr q = ä0a 0 ȧ 2 0 = 1 2 Ω wω 2.2 Gorący Wielki Wybuch 1965 Penzias, Wilson - promieniowanie reliktowe Gaz fotonowy opisujemy hamiltonianem H = λ,k ω k a + kλ a kλ Średnią wielkości kwantowej A definiujemy jako 0-17

19 0-18

20 H o : Ω Λ 0.6 CLOSED 0.4 FLAT 0.2 OPEN Ω M

21 Rysunek 7: Promieniowanie reliktowe tła. < A >= T r(ρa) gdzie ρ = Z exp( βh) jest operatorem gęstości, Z = exp( βf ) = T r(exp( βh) jest sumą statystyczną a F energią swobodną. Ciśnienie to P = F V a entropia S = k B T r(ρ ln(ρ)) 0-20

22 spełnia związek stąd gęstość entropii Dla gazu fotonowego stąd a gęstość entropii U =< H >= ɛv = F + T S s = S V = (ɛ + P ). T < a + kλ a kλ >= ɛ = 1 π 2 dk 1 exp(β ck) 1 ck 3 exp(β ck) 1 = AT 4 s = S V T 3 V = a(t) 3 V 0 to S/V 0 = (T a(t)) 3 stąd T a(t) = const, czyli T (t) = T 0 a(t) 0-21

23 gdzie T 0 = 2.73 K. Średnia gęstość fotonów to n γ = 1 k 2 dk π 2 exp(β ck) 1 = BT cm 3 W wysokich temperaturach jest rówowaga γ + H e + p Gęstość materii barionowej n B 10 7 cm 3 daje η = n B n γ = 10 9 Przesunęcie ku czerwieni z zdefinowane jako z = λ λ 0 = λ λ 0 λ 0 ponieważ zgodnie z efektem Dopplera λ = a(t)λ

24 to z = 1 a(t) 1 W chwili rekombinacji z Średnia liczba fononów to n γ = N γ V = g γ (2π) 2 d 3 1 k (e βk 1) T 3. W chwili obecnej Średnia energia fotonów ɛ γ = c 2 ρ γ = < H γ > V i ma obecnie wartość n γ, cm 3. = g γ (2π) 2 d 3 k ɛ γ, ev/cm 3. ck (e βk 1) = σt

25 Fluktuacje gestości plazmy δρ generuja fluktuacje potencjału grawitacyjnego δφ a tym samym fluktuacje δz δρ ρ δt T δz 1 + z Fluktuacje te powstają jako fala akustyczna będąca wynikiem równowagi między przyciąganiem grawitacyjnym a cisniemiem wywołanym przez fotony. Fala akustyczna propaguje się z predkością c c s = η η = ρ B ργ Fluktuacje temperatury opisuje funkcja korelacyjna < δt (0)δT (n(ϑ)) >= C(ϑ) = 1 4π (2l + 1)c l P l (cos(ϑ)) l 0-24

26 Rysunek 8: Fluktuacje promieniowania 0-25 reliktowego obserowane przez

27 2.3 Era promieniowania W okresie gdy dominuje promieniowanie ɛ = c 2 ρ = σt 4 P = 1 3 σt 4 Temperatura w tym okresie maleje wraz z wzrostem czynnika skali T = 1 a(t) T 0. Pierwsze równanie Friedmanna ( ) 2 a = 8πG a 3c 2 ρ γ daje z a(t) = 2H γ t 1 2 H 2 γ = 8π 3 Gρ γ,

28 2.4 Era wpółczesna W chwili współczesnej dominuje materia masywna opisana równaniem stanu dla pyłu ρ = ρ 0 a 3 P = 0 Pierwsze równanie Friedmanna (k = 0) daje (dla Λ = 0) ( ) 2 a = 8πG a 3c 2 ρ + Λc2 3 a(t) = ( 3 2 H 0t) 2 3 Definiując czas Hubbla t H wieku Wszechswiata t 0 = 2 3 = ( t t 0 ) 2 3 = H 1 0 otrzymujemy pierwsze oszacowanie 1 H 0 = 2 3 t H. 0-27

29 Obecna stała Hubbla h daje zaledwie lat. Dodając stronami równania Friedmana (9,2 10) otrzymujemy równanie którego ewolucja jest określona tylko przez stała kosmologiczną 2 a a + ( ) 2 a = Λc 2. a Podstawienie ȧ/a = Ω Λ f(x) with x = 3 2 ΩΛ H 0 t daje proste równanie różniczkowe f +f 2 = 1 którego rozwiązaniem jest f(x) = cosh(x)/ sinh(x). Stąd mamy a(t) = sinh( 3 2 ΩΛ H 0 t) 2/3 sinh( 3 2 ΩΛ H 0 t 0 ). 2/3 Definicja stałej Hubbla w chwili obecnej daje równanie na wiek Wszechświata w obecności stałej kosmologicznej tanh( 3 2 ΩΛ H 0 t 0 ) = Ω Λ Otrzymujemy teraz wiek Wszechświata równy t 0 = lat. 0-28

30 3 Bariogeneza Symetia między cząstkami i antycząstkami B, L,obserwowalna w fizyce częstek elementarnuch prowadzi do pytania dlaczego we Wszechświecie istnieje przewaga materii nad antymaterią. Przewagę tą opisuje parametr η = n γ n B Jaki proces doprowadził do złamania tych symetrii w trakcie ochładzania się Wszechświata? 4 Nukleosynteza Po okresie hadronizacji pierwotna materia zbudowana jest z protonów, neutronów, elektronów, mionów i neutrin p, n, e, µ, ν f = {ν e, ν µ, ν τ } 0-29

31 będących w równowadze ze względu na słabe oddziaływania ( rozpad β) p + + e n + ν e µ + ν e e + ν µ Oscylacja zapachów neutrin oznacza również ν e ν µ ν τ. Reakcje te oznaczają równość odpowiednich potencjałów chemicznych µ p + µ e = µ n + µ νe µ µ + µ νe = µ e + µ νµ µ νe = µ νµ = µ ντ µ ν Pozwala to zredukować ilość niezależnych potencjałów do trzech µ n, µ e, µ ν. Mamy trzy warunki: * Neutralność ładunkową (Q=0) n Q i Q i n i (µ i, T ) = 0, 0-30

32 * symetrię L-B n L n B i (L i B i ) n i (µ i, T ) = 0, * warunek ekspansji adiabatycznej (S/B) (entropii na baryon) s i s i(µ i, T ) n B i B i n i (µ i, T ) = constant W niskich temperaturach (T 1 MeV) entropia jest określona przez fotony i prawie bezmasowe neutrina, czyli przez parametr Stąd mamy ograniczenie na η = n γ n B. S/B = Zamiast potencjału chemicznego np. µ n wygodnie jest wszystko parametryzować poprzez η. Wartość ηzgodna z przewidywaniami nukleosyntezy 0-31

33 waha się w przedziale < η < Dzięki misji WMAP znoamy go z dokładnością do 4% η = 6.14 ± W niskich temperaturach równowaga ze względu na rozpad β nie zachodzi i zaczyna się produkcja protonów i pierwszych lekkich jąder n + ν e p + + e n + e + p + + ν e n + p + D + γ D + D 3 H + p + D + D 3 He + N 3 H + D 4 He 3 H + 4 He 7 Li Synteza lekkich jąder kończy się gdy temperatura przekroczy 50 kev. 0-32

34 0-33

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Podstawy astrofizyki i astronomii

Podstawy astrofizyki i astronomii Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 20 marca 2018 th.if.uj.edu.pl/ odrzywolek/ andrzej.odrzywolek@uj.edu.pl A&A Wykład 4 Standardowy

Bardziej szczegółowo

Neutrina z supernowych. Elementy kosmologii

Neutrina z supernowych. Elementy kosmologii Neutrina z supernowych Obserwacja neutrin z SN1987A Kolaps grawitacyjny Własności neutrin z kolapsu grawitacyjnego Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza

Bardziej szczegółowo

Elementy kosmologii. D. Kiełczewska, wykład 15

Elementy kosmologii. D. Kiełczewska, wykład 15 Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Pomiary parametrów kosmologicznych: WMAP SNIa Asymetria materii i antymaterii Rozszerzający

Bardziej szczegółowo

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 10 Maria Krawczyk, Wydział Fizyki UW Ciemny Wszechświat 10.V. 2010 Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 15 Maria Krawczyk, Wydział Fizyki UW 12.01. 2010 Ciemny Wszechświat Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Elementy kosmologii. Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza

Elementy kosmologii. Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza Promieniowanie mikrofalowe tła Ciemna Materia Leptogeneza Rozszerzający się Wszechświat W 1929 Hubble zaobserwował

Bardziej szczegółowo

Geometria Struny Kosmicznej

Geometria Struny Kosmicznej Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład X. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład X. Prawo Hubbla Kosmologia Wykład X Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Przypadek

Bardziej szczegółowo

Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM

Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM Fizyka gwiazd 19 maja 2004 1 Budowa gwiazd Stosunek r g R = 2GM c 2 R (gdzie M, R jest masa i promieniem gwiazdy) daje nam informację konieczności uwzględnienia poprawek relatywistycznych. 0-0 Rysunek

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład VIII. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład VIII. Prawo Hubbla Kosmologia Wykład VIII Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo

Bardziej szczegółowo

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina /28 A. Odrzywołek Dziura w Statycznym Wszechświecie Einsteina Seminarium ZTWiA IFUJ, Środa, 26..22 2/28 A. Odrzywołek 3-sfera o promieniu R(t): Równania Einsteina: Zachowanie energii-pędu: Równanie stanu

Bardziej szczegółowo

ver teoria względności

ver teoria względności ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Prof. Henryk Drozdowski Wydział Fizyki UAM Dedykuję ten wykład o pochodzeniu materii wszystkim czułym sercom,

Bardziej szczegółowo

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków Historia Wszechświata w (dużym) skrócie Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków wczesny Wszechświat późny Wszechświat z (przesunięcie ku czerwieni; redshift)

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla Kosmologia Wykład IX Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 15: Ciemna Strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Czasoprzestrzenie sferycznie symetryczne: jednorodna Robertsona-Walkera i niejednorodna Lemaitre a-tolmana-bondiego

Czasoprzestrzenie sferycznie symetryczne: jednorodna Robertsona-Walkera i niejednorodna Lemaitre a-tolmana-bondiego Czasoprzestrzenie sferycznie symetryczne: jednorodna Robertsona-Walkera i niejednorodna Lemaitre a-tolmana-bondiego Piotr Plaszczyk Obserwatorium Astronomiczne, Wydział Fizyki, Astronomii i Informatyki

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Czarna dziura Schwarzschilda

Czarna dziura Schwarzschilda Czarna dziura Schwarzschilda Mateusz Szczygieł Wydział Fizyki Uniwersytet Warszawski 19 listopada 2018 1 / 32 Plan prezentacji 1. Sferycznie symetryczne, statyczne rozwiązanie równań Einsteina. 2. Przesunięcie

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata Wszechświat Cząstek Elementarnych dla Humanistów Ciemna strona wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 8 stycznia 2019 A.F.Żarnecki WCE Wykład 12 8 stycznia 2019 1 / 50 Ciemna

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Zadania z mechaniki kwantowej

Zadania z mechaniki kwantowej Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje. 1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 16 stycznia 2018 A.F.Żarnecki

Bardziej szczegółowo

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i

Bardziej szczegółowo

Mechanika relatywistyczna Wykład 13

Mechanika relatywistyczna Wykład 13 Mechanika relatywistyczna Wykład 13 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/32 Czterowektory kontrawariantne

Bardziej szczegółowo

Zasada najmniejszego działania

Zasada najmniejszego działania Zasada najmniejszego działania S = T dtl(x, ẋ) gdzie L(x, ẋ) jest lagrangianem. Dokonajmy przesuniecia x = x + y, ẋ = ẋ + ẏ, gdzie y(0) = y(t ) = 0. Wtedy T T S = dt L(x, ẋ ) = dt L(x + y, ẋ = ẋ + ẏ) 0

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Ewolucja Wszechświata

Ewolucja Wszechświata Ewolucja Wszechświata Wykład 6 Mikrofalowe promieniowanie tła Rozseparowanie materii i promieniowania 380 000 lat Temperatura 3000 K Protony i jądra przyłączają elektrony (rekombinacja) tworzą się atomy.

Bardziej szczegółowo

Wszechświat. Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła

Wszechświat. Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła Wszechświat Opis relatywistyczny Początek: inflacja? Równowaga wcześnie Pierwotna nukleosynteza Powstanie atomów Mikrofalowe promieniowanie tła Opis relatywistyczny W mech. Newtona czas i przestrzeń są

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS)

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) 30.11.2017 Masa Jeansa Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M, średniej masie cząsteczkowej µ, promieniu

Bardziej szczegółowo

Transformacja Lorentza Wykład 14

Transformacja Lorentza Wykład 14 Transformacja Lorentza Wykład 14 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/43 Względność Galileusza Dotychczas

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

oraz Początek i kres

oraz Początek i kres oraz Początek i kres Powstanie Wszechświata szacuje się na 13, 75 mld lat temu. Na początku jego wymiary były bardzo małe, a jego gęstość bardzo duża i temperatura niezwykle wysoka. Ponieważ w tej niezmiernie

Bardziej szczegółowo

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.

Bardziej szczegółowo

Galaktyka. Rysunek: Pas Drogi Mlecznej

Galaktyka. Rysunek: Pas Drogi Mlecznej Galaktyka Rysunek: Pas Drogi Mlecznej Galaktyka Ośrodek międzygwiazdowy - obłoki molekularne - możliwość formowania się nowych gwiazd. - ekstynkcja i poczerwienienie (diagramy dwuwskaźnikowe E(U-B)/E(B-V)=0.7,

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23 Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS

Bardziej szczegółowo

Mechanika relatywistyczna Wykład 15

Mechanika relatywistyczna Wykład 15 Mechanika relatywistyczna Wykład 15 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/40 Czterowektory kontrawariantne

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

V.6 Pęd i energia przy prędkościach bliskich c

V.6 Pęd i energia przy prędkościach bliskich c r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Początki Wszechświata Początki Wszechświata Dane obserwacyjne Odkrycie Hubble a w 1929 r. Promieniowanie tła w 1964 r. (Arno Penzias i Robert

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja Wszechświat Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja Geometria w 2D Poszukujemy opisu jednorodnej i izotropowej przestrzeni. Na razie

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Fizyka bez stałych fizycznych

Fizyka bez stałych fizycznych Fizyka bez stałych fizycznych Edward Kapuścik WFiIS AGH 24 marzec 2014 Fizycy stale zajęci są różnorakimi pomiarami. Pomiary wymagają opracowania określonych metod pomiarowych oraz przyjęcia pewnych jednostek,

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

STRUKTURA MATERII PO WIELKIM WYBUCHU

STRUKTURA MATERII PO WIELKIM WYBUCHU Wykład I STRUKTURA MATERII -- -- PO WIELKIM WYBUCHU Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...) Nigdy

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Podstawy astrofizyki i astronomii

Podstawy astrofizyki i astronomii Podstawy astrofizyki i astronomii Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 17 maja 2016 10 11 10 9 Fν[cm -2 s -1 MeV -1 ] 10 7 10 5 1000 10 pp 8 B CNO 13 N CNO 15

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Materia i jej powstanie Wykłady z chemii Jan Drzymała

Materia i jej powstanie Wykłady z chemii Jan Drzymała Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo