Podstawy teoretyczne i moŝliwości aplikacyjne kwantowej teorii atomów w cząsteczkach - QTAIM

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy teoretyczne i moŝliwości aplikacyjne kwantowej teorii atomów w cząsteczkach - QTAIM"

Transkrypt

1 Podstawy teoretyczne i moŝliwości aplikacyjne kwantowej teorii atomów w cząsteczkach - QTAIM Wrocławskie Centrum Sieciowo-Superkomputerowe

2 Chemia klasyczna wstęp molekuła = atomy + wiązania Chemia kwantowa molekuła = jądro atomowe + elektrony QTAIM łączy oba podejścia

3 Funkcja falowa wstęp wielowymiarowa, trudna do wizualizacji i interpretacji gęstość elektronowa łatwa do wizualizacji, intuicyjna interpretacja, uzyskiwana z funkcji falowej (bez straty informacji) lub bezpośrednio z eksperymentu

4 wstęp

5 gradient paths

6 punkty krytyczne Aby scharakteryzować pole skalarne gęstości elektronowej podajemy liczbę i rodzaj związanych z nim punktów krytycznych czyli takich w których gradient gęstości elektronowej równy jest zeru. = ) ( z y z x z z y y x y z x y x x ρ ρ ρ ρ ρ ρ ρ ρ ρ A r c = = 3 1 λ λ λ ρ ρ ρ z y x A Informacji o charakterze tych punktów dostarcza nam druga pochodna.

7 punkty krytyczne Charakteryzując poszczególne punkty krytyczne uŝywamy pary liczb (r,s) pierwsza - r - rząd (rank) - mówi o ilości niezerowych wartości λ i, a druga - s sygnatura (signature) jest sumą znaków. (3,-3) - lokalne maksimum, maksimum gęstości elektronowej wzdłuŝ wszystkich osi wyznaczonych w procesie diagonalizacji drugich pochodnych, są to najczęściej punkty w których znajdują się jądra atomowe N(NA) ((non) nuclear attractor), (3,-1) - lokalny punkt siodłowy, minimum gęstości elektronowej wzdłuŝ jednej osi, maksimum wzdłuŝ pozostałych - BCP (bond critical point), w teorii AIM jego występowanie jest warunkiem istnienia wiązania chemicznego, (3,1) - lokalny punkt siodłowy, maksimum gęstości wzdłuŝ jednej osi i minimum dla pozostałych - RCP (ring critical point), (3,3) - lokalne minimum, minima gęstości elektronowej wzdłuŝ wszystkich osi - CCP (cage critical point), (,) punkt krytyczny w nieskończoności

8 punkty krytyczne A i B (3,-3) C (3,-1)

9 punkty krytyczne RCP (3,1)

10 punkty krytyczne CCP (3,3)

11 punkty krytyczne Ilość punktów krytycznych dla danego układu nie jest dowolna i określa ją reguła Poincarego-Hopfa: (N(NA) BCP + RCP CCP = 1 Właściwości punktów krytycznych: - gęstość elektronowa w punkcie krytycznym ρ(r) - laplasjan gęstości -eliptyczność ε (ellipticity) -asymetria rozkładu ρ w płaszczyźnie prostopadłej do ścieżki wiązania w BCP 3 1 λ λ λ ρ + + = = = 3 1 λ λ λ ρ ρ ρ z y x A 1 1 = λ λ ε

12 punkty krytyczne Właściwości punktów krytycznych: - gęstość energii kinetycznej G(r) G( r) = h 8m i n i ρ i ρ ρ i i -gęstość energii potencjalnej V(r) h 4m ρ( r ) = G( r) + V( r) -lokalna gęstość energii całkowitej H(r) H(r)= G(r)+ V(r)

13 graf molekularny

14 Interatomic surface (IAS) Zero-flux surface

15 Interatomic surface (IAS) H O---H O

16 Interatomic surface (IAS) UWAGA: Jest nieskończona ilość IAS

17 Interatomic surface (IAS) Zastosowanie topologicznej analizy gęstości elektronowej do opisu oddziaływań niekowalencyjnych, B. Bankiewicz, A. Rybarczyk-Pirek, M. Małecka, M. Domagała, M. Palusiak, Wiadomości Chemiczne 14, 68,5-6

18 Wreszcie atom Atom = nuclear atractor + wszystkie gradient paths, które się na nim kończą ograniczony przez zero-flux surface

19 Wreszcie atom populacja elektronowa ładunek atomowy moment dipolowy Indeks lokalizacji Indeks delokalizacji

20 Wreszcie atom

21 Literatura

22 Aplikacje

23 Aplikacje

24 Aplikacje

25 Aplikacje Rozas I, Alkorta I, Elguero J. J.Am.Chem.Soc., 1, S.J.Grabowski, W.A.Sokalski, E.Dyguda, J.Leszczynski, J.Phys.Chem. B 6, 11, 6444.

26 Aplikacje

27 Aplikacje

28 Aplikacje CAHB: (FHF) -, H O H 3 O +, H 3 O + HCN, H 3 O + OH -, NH 3 NH 4 + XH π π: C 5 H 5- HF, C 5 H 5- HCCH,C H HF, C H 4 HF, C 6 H 6 HF, (C H ) (T-shaped dimer), C H 4 C H, C 6 H 6 C H, C 6 H 6 CH 4, C 6 H 6 CHCl 3, C H CH 4 and C H CHCl 3 CH Y: F 3 CH NCCH 3, H 3 CH NCCH 3, HCCH NCCH 3, F 3 CH OCH, H 3 CH OCH, HCCH OCH, H 3 CH SH, HCCH SH,HCCH S(CH 3 ). XH Y: (C 6 H 5 COOH), (CH 3 COOH), (HCOOH), (HCONH),(HCSNH),(H O) (trans-linear dimer), H O HF,H CO HF S. Grabowski, P. Lipkowski, Characteristics of X-H π interactions: Ab initio and QTAIM studies, J. Phys. Chem. A 115 (18), (11)

29 Aplikacje V BCP /G BCP > ρ BCP < wiązanie kowalencyjne V /G < V BCP /G BCP >1 ρ BCP > i H BCP < partially covalent CAHB XHY XHpi 1 CHY V BCP /G BCP <1 ρ BCP > i H BCP > zamniętopowłokowe oddziaływania 1,1 1,6,1,6 3,1 3,6 odległość proton-akceptor [Å]

30 Aplikacje,,4,6,8,1,1,14,16,18, -1 energia oddziaływania [kcal/mol] NH 3 NH 4 + R² =,8937 CAHB (EDS) XHY (EDS) XHpi (EDS) CHY (EDS) CAHB (SAPT) XHY (SAPT) XHpi (SAPT) CHY (SAPT) -6 R² =, gęstość elektronowa w HBCP [au]

31 Aplikacje,,18,16 gęstość elektronowa w HBCP [au],14,1,1,8,6,4 NH 3 NH 4 + R² =,977 (HCSNH ) CAHB XHY XHpi CHY, 1,1 1,6,1,6 3,1 3,6 odległość proton-akceptor [Å]

32 Aplikacje 3, 3,,5, V /G,5, 1,5 V /G 1,5 1, CAHB XHY XHpi,5 -,1,,1,,3,4,5,6,7 CHY 1,,5, 5, 1, 15,, 5, 3, eliptyczność

33 Aplikacje ś. CzyŜnikowska, R. W. Góra, R. Zaleśny, P. Lipkowski, K. Jarzembska, P. Dominiak, J. Leszczynski, Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs, J. Phys. Chem. B (1) G-C od -6.7 do -4. kcal/mol A-T od -4.3 do -1.4 kcal/mol

34 Aplikacje

35 Aplikacje NH N Å NH O 1.77 Å

36 Aplikacje

37 Aplikacje A. Martyniak, P. Lipkowski, N. Boens, A. Filarowski, J. Mol. Model., 1, 18,

38 Uwaga na NNA

39 Aplikacje absorbance ν, c m - 1

40 Aplikacje

41 WFN, WFNX Gaussian out=wfn (out=wfx) density=current 6D 1F MP(full) Gamess $CTRL AIMPAC=.TRUE. ISPHER=-1 $MP MPPRP=.TRUE. Z pliku *.dat musimy wyciąć wszystko poniżej TOP OF INPUT FILE FOR BADER'S AIMPAC PROGRAM -----

42 AIMPAC CALCULATION OF THE AVERAGE PROPERTIES OF ATOMS IN MOLECULES." F.W. Biegler Konig, R.F.W. Bader, T. Tang Journal of Computational Chemistry Volume 13 (No. ) program darmowy brak interfejsu LINUX ext94b lokalizacja punktów krytycznych proaimv całkowanie po basenach atomowych graficznego 5 atomów, 1 orbitali 5 prymitywnych g. szybkość działania

43 AIM Biegler-König, F Schönbohm, J. Bayles, D AIM - A Program to Analyze and Visualize Atoms in Molecules, J. Comp. Chem. 1,, interfejs graficzny szybkość moŝliwość generowania rysunków kłopoty z lokalizacją CP problemy z przenoszeniem danych kiepskiej jakości rysunki ograniczenie do funkcji f uboga dokumentacja nie wspiera ECP

44 AIMAll AIMAll (Version ), Todd A. Keith, TK Gristmill Software, Overland Park KS USA, 11 (aim.tkgristmill.com) + - same cena (3$)

Modelowanie molekularne

Modelowanie molekularne Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 4 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody chemii

Bardziej szczegółowo

Modelowanie molekularne

Modelowanie molekularne Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 10 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody

Bardziej szczegółowo

Modelowanie molekularne

Modelowanie molekularne Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 4 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody chemii

Bardziej szczegółowo

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka

Bardziej szczegółowo

Wykład 5: Cząsteczki dwuatomowe

Wykład 5: Cząsteczki dwuatomowe Wykład 5: Cząsteczki dwuatomowe Wiązania jonowe i kowalencyjne Ograniczenia teorii Lewisa Orbitale cząsteczkowe Kombinacja liniowa orbitali atomowych Orbitale dwucentrowe Schematy nakładania orbitali Diagramy

Bardziej szczegółowo

Barbara Bankiewicz 1,2, Agnieszka Rybarczyk-Pirek 1, Magdalena Małecka 1, Małgorzata Domagała 1, Marcin Palusiak 1, *

Barbara Bankiewicz 1,2, Agnieszka Rybarczyk-Pirek 1, Magdalena Małecka 1, Małgorzata Domagała 1, Marcin Palusiak 1, * 2014, 68, 5-6 ZASTOSOWANIE TOPOLOGICZNEJ ANALIZY GĘSTOŚCI ELEKTRONOWEJ DO OPISU ODDZIAŁYWAŃ NIEKOWALENCYJNYCH THE USE OF TOPOLOGICAL ANALYSIS OF ELECTRON DENSITY IN CHARACTERIZATION OF NONCOVALENT INTERACTIONS

Bardziej szczegółowo

Modelowanie molekularne

Modelowanie molekularne Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 7 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

Rzędy wiązań chemicznych

Rzędy wiązań chemicznych Seminarium Magisterskie Rzędy wiązań chemicznych w ujęciu Teorii Komunikacji Opracowanie Dariusz Szczepanik Promotor Dr hab. Janusz Mrozek Rzędy wiązań chemicznych w ujęciu Teorii Komunikacji Plan prezentacji

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Cząsteczki. 1.Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? Jakie sąs. typy wiąza

Cząsteczki. 1.Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? Jakie sąs. typy wiąza Cząsteczki 1.Dlaczego atomy łącz czą się w cząsteczki?.jak atomy łącz czą się w cząsteczki? 3.Co to jest wiązanie chemiczne? Co to jest rząd d wiązania? Jakie sąs typy wiąza zań? Dlaczego atomy łącz czą

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB)

CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB) CZ STECZKA Stanislao Cannizzaro (1826-1910) cz stki - elementy mikro wiata, termin obejmuj cy zarówno cz stki elementarne, jak i atomy, jony proste i zło one, cz steczki, rodniki, cz stki koloidowe; cz

Bardziej szczegółowo

Wiązania. w świetle teorii kwantów fenomenologicznie

Wiązania. w świetle teorii kwantów fenomenologicznie Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.2. BUDOWA CZĄSTECZEK Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Ćwiczenie 4: Modelowanie reakcji chemicznych. Stan przejściowy.

Ćwiczenie 4: Modelowanie reakcji chemicznych. Stan przejściowy. Ćwiczenie 4: Modelowanie reakcji chemicznych. Stan przejściowy. Celem ćwiczenia jest wymodelowanie przebiegu reakcji chemicznej podstawienia nukleofilowego zachodzącego zgodnie z mechanizmem SN2. Wprowadzenie:

Bardziej szczegółowo

TEORIA ORBITALI MOLEKULARNYCH (MO) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii

TEORIA ORBITALI MOLEKULARNYCH (MO) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii TERIA RBITALI MLEKULARNYCH (M) Metoda (teoria) orbitali molekularnych (M) podstawy metody M - F. Hund, R.S. Mulliken Teoria M zakłada, że zachowanie się elektronu w cząsteczce opisuje orbital molekularny

Bardziej szczegółowo

Modelowanie molekularne w projektowaniu leków

Modelowanie molekularne w projektowaniu leków Modelowanie molekularne w projektowaniu leków Wykład I Wstęp (o czym będę a o czym nie będę mówić) Opis układu Solwent (woda z rozpuszczonymi jonami i innymi substancjami) Ligand (potencjalny lek) Makromolekuła

Bardziej szczegółowo

Czy poprawki ZPV do stałych ekranowania zależą od konformacji? Przypadek dimetoksymetanu

Czy poprawki ZPV do stałych ekranowania zależą od konformacji? Przypadek dimetoksymetanu Czy poprawki ZPV do stałych ekranowania zależą od konformacji? Przypadek dimetoksymetanu Wojciech Migda Wydział Chemii, Uniwersytet Jagielloński, Kraków Bronowice, 1-2 XII 2004 Zero-Point Vibrational Corrections

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających

Bardziej szczegółowo

Wiązania kowalencyjne

Wiązania kowalencyjne Wiązania kowalencyjne (pierw. o dużej E + pierw. o dużej E), E < 1,8 TERIE WIĄZANIA KWALENCYJNEG Teoria hybrydyzacji orbitali atomowych Teoria orbitali molekularnych Teoria pola ligandów YBRYDYZACJA RBITALI

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1 Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Modelowanie molekularne

Modelowanie molekularne Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 13 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

Ćwiczenie 3. Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe *

Ćwiczenie 3. Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * Ćwiczenie 3 Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * 1 Ćwiczenie 3 Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * I. Narysuj etylen a) Wybierz Default

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Wykład przygotowany w oparciu o podręczniki:

Wykład przygotowany w oparciu o podręczniki: Slajd 1 Wykład przygotowany w oparciu o podręczniki: Organic Chemistry 4 th Edition Paula Yurkanis Bruice Slajd 2 Struktura elektronowa wiązanie chemiczne Kwasy i zasady Slajd 3 Chemia organiczna Związki

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Nanofizyka co wiemy, a czego jeszcze szukamy?

Nanofizyka co wiemy, a czego jeszcze szukamy? Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO

Bardziej szczegółowo

Transport elektronów w biomolekułach

Transport elektronów w biomolekułach Transport elektronów w biomolekułach Równanie Arrheniusa, energia aktywacji Większość reakcji chemicznych zachodzi ze stałą szybkości (k) zaleŝną od temperatury (T) i energii aktywacji ( G*) tej reakcji,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Lokalizacja Orbitali Molekularnych

Lokalizacja Orbitali Molekularnych Lokalizacja Orbitali Molekularnych Regionalnie Zlokalizowane Orbitale Molekularne Marek Giebułtowski Seminarium magisterskie w Zakładzie Chemii Teoretycznej UJ Spis Treści 1 Przegład Metod Lokalizacyjnych

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Wpływ heterocyklicznego ugrupowania na natywną konformację naturalnych peptydów

Wpływ heterocyklicznego ugrupowania na natywną konformację naturalnych peptydów Wpływ heterocyklicznego ugrupowania na natywną konformację naturalnych peptydów Monika Staś, Dawid Siodłak, Małgorzata Broda mstas@uni.opole.pl Zakład Chemii Fizycznej i Modelowania Molekularnego Wydział

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/12

Załącznik Nr 5 do Zarz. Nr 33/11/12 Załącznik Nr 5 do Zarz. Nr 33/11/12 Z1-PU7 WYDANIE N1 Strona 1 z 5 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CHEMIA TEORETYCZNA 2. Kod przedmiotu: - 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

dr Magdalena Małecka

dr Magdalena Małecka Autoreferat (załącznik 2a) dr Magdalena Małecka Katedra Chemii Teoretycznej i Strukturalnej Wydział Chemii Uniwersytet Łódzki 2014 1. Dane osobowe 1.1. Imię i nazwisko: Magdalena Małecka 1.2. Zdobyte wykształcenie

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Obliczanie Dokładnych Parametrów NMR Charakterystyka struktury i parametrów spektroskopowych wybranych układów molekularnych

Obliczanie Dokładnych Parametrów NMR Charakterystyka struktury i parametrów spektroskopowych wybranych układów molekularnych Obliczanie Dokładnych Parametrów NMR Charakterystyka struktury i parametrów spektroskopowych wybranych układów molekularnych Teobald Kupka Uniwersytet Opolski, Wydział Chemii, Opole e-mail: teobaldk@yahoo.com

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych

Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wstęp Krzywa energii potencjalnej 1 to wykres zależności energii potencjalnej cząsteczek od długości wiązania (czyli od wzajemnej

Bardziej szczegółowo

Atomy wieloelektronowe i cząsteczki

Atomy wieloelektronowe i cząsteczki Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie

Bardziej szczegółowo

1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami

1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami 1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami 2. Stechiometria. Prawa stechiometrii Roztwory buforowe Węglowce - budowa elektronowa. Ogólna charakterystyka 3. Mikro- i

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

2. Właściwości kwasowo-zasadowe związków organicznych

2. Właściwości kwasowo-zasadowe związków organicznych 2. Właściwości owo-zasadowe związków organicznych 1 2.1. Teoria Bronsteda-Lowriego Kwas - indywiduum chemiczne oddające proton Zasada - indywiduum chemiczne przyjmujące proton Proton - kation wodorkowy

Bardziej szczegółowo

Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski

Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski Prawo Biota-Savarta Autorzy: Zbigniew Kąkol Piotr Morawski 2018 Prawo Biota-Savarta Autorzy: Zbigniew Kąkol, Piotr Morawski Istnieje równanie, zwane prawem Biota-Savarta, które pozwala obliczyć pole B

Bardziej szczegółowo

( ) ρ ( ) ( ) ( ) ( ) ( ) Rozkład ładunku i momenty dipolowe cząsteczek. woda H 2 O. aceton (CH 3 ) 2 CO

( ) ρ ( ) ( ) ( ) ( ) ( ) Rozkład ładunku i momenty dipolowe cząsteczek. woda H 2 O. aceton (CH 3 ) 2 CO Rozkład ładunku i momenty dipolowe cząsteczek W fizyce klasycznej moment dipolowy układu ładunków oblicza się tak: i i i ( ) ρ ( ) µ = q r lub µ = ρ x, y, z r dxdydz = x, y, z r dv W teorii kwantowej moment

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

dr hab. inż. Katarzyna Pernal, prof. PŁ Instytut Fizyki Politechnika Łódzka ul. Wólczańska Łódź Łódź, dn. 22 maja 2017 r.

dr hab. inż. Katarzyna Pernal, prof. PŁ Instytut Fizyki Politechnika Łódzka ul. Wólczańska Łódź Łódź, dn. 22 maja 2017 r. dr hab. inż. Katarzyna Pernal, prof. PŁ Instytut Fizyki Politechnika Łódzka ul. Wólczańska 219 90-924 Łódź Łódź, dn. 22 maja 2017 r. Recenzja rozprawy doktorskiej mgr Piotra Gniewka zatytułowanej: Perturbacyjna

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Chemia teoretyczna (023) 1. Informacje ogólne koordynator modułu dr hab. Monika Musiał, prof. UŚ rok akademicki

Bardziej szczegółowo

Ligand to cząsteczka albo jon, który związany jest z jonem albo atomem centralnym.

Ligand to cząsteczka albo jon, który związany jest z jonem albo atomem centralnym. 138 Poznanie struktury cząsteczek jest niezwykle ważnym przedsięwzięciem w chemii, ponieważ pozwala nam zrozumieć zachowanie się materii, ale także daje podstawy do praktycznego wykorzystania zdobytej

Bardziej szczegółowo

SPRAWOZDANIE z grantu obliczeniowego za rok 2011

SPRAWOZDANIE z grantu obliczeniowego za rok 2011 Zakład Chemii Nieorganicznej i Strukturalnej Wydział Chemiczny Politechnika Wrocławska SPRAWOZDANIE z grantu obliczeniowego za rok 2011 Teoretyczne badania związków kompleksowych i metaloorganicznych,

Bardziej szczegółowo

CHEMIA WARTA POZNANIA

CHEMIA WARTA POZNANIA Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością. 105 Elektronowa teoria wiązania chemicznego Cząsteczki powstają w wyniku połączenia się dwóch lub więcej atomów. Już w początkowym okresie rozwoju chemii podejmowano wysiłki zmierzające do wyjaśnienia

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie) Kod ucznia Suma punktów Witamy Cię na trzecim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo