Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r"

Transkrypt

1 Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, r

2 Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby

3 Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną wariancją Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ, σ 2 ), zakładamy, że σ 2 jest znane.

4 Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną wariancją Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ, σ 2 ), zakładamy, że σ 2 jest znane. Testujemy hipotezę: Przy możliwych alternatywach: H 0 : µ = µ 0 H 1 : µ µ 0 H 2 : µ < µ 0 H 3 : µ > µ 0

5 Model 1 Statystyka testowa Statystyka testowa postaci: Z = X µ 0 n, σ ma standardowy rozkład normalny N(0, 1).

6 Model 1 Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, u 1 α 2 ] [u 1 α 2, ) dla alternatywy H 1 C 2 : (, u 1 α ] dla alternatywy H 2 C 3 : [u 1 α, ) dla alternatywy H 3

7 Przykład 6.1 W pewnym dużym zakładzie cukierniczym norma techniczna przewiduje średnio 85s. na spakowanie do kartonu 50 zajączków wielkanocnych. Wiadomo, że czas wykonywania tego zadania jest zmienną losową o rozkładzie normalnym z odchyleniem standardowym równym 15s. W związku z częstymi skargami robotników na zbytnie zaniżanie norm fabrycznych, wykonano pomiary czasu pakowania zajączków u 200 losowo wybranych robotników, otrzymując średni czas pakowania na poziomie 87s. Czy na poziomie istotności 0.05 można przyznać rację pracownikom?

8 Przykład 6.1 W pewnym dużym zakładzie cukierniczym norma techniczna przewiduje średnio 85s. na spakowanie do kartonu 50 zajączków wielkanocnych. Wiadomo, że czas wykonywania tego zadania jest zmienną losową o rozkładzie normalnym z odchyleniem standardowym równym 15s. W związku z częstymi skargami robotników na zbytnie zaniżanie norm fabrycznych, wykonano pomiary czasu pakowania zajączków u 200 losowo wybranych robotników, otrzymując średni czas pakowania na poziomie 87s. Czy na poziomie istotności 0.05 można przyznać rację pracownikom? Dane: σ = 15 X = 87 n = 200

9 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację

10 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85

11 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 =

12 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 = Zbiór krytyczny jest postaci: C : [u 0.95, ) = [1.64, )

13 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 = Zbiór krytyczny jest postaci: C : [u 0.95, ) = [1.64, ) Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem

14 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 = Zbiór krytyczny jest postaci: C : [u 0.95, ) = [1.64, ) Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem pracownicy mają rację.

15 Model 2 Testowanie hipotez dla średniej w rozkładzie normalnym z nieznaną wariancją Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ, σ 2 ), gdzie parametry µ i σ 2 są nieznane. Testujemy hipotezę: Przy możliwych alternatywach: H 0 : µ = µ 0 H 1 : µ µ 0 H 2 : µ < µ 0 H 3 : µ > µ 0

16 Model 2 Statystyka testowa Statystyka testowa postaci: T = X µ 0 n 1, S przy prawdziwości H 0 ma rozkład studenta z n 1 stopniami swobody.

17 Model 2 Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, t 1 α 2 (n 1)] [t 1 α 2 (n 1), ) dla alternatywy H 1 C 2 : (, t 1 α (n 1)] dla alternatywy H 2 C 3 : [t 1 α (n 1), ) dla alternatywy H 3

18 Przykład 6.2 Szacuje się, że dzieci w wieku 3-5 lat przesypiają w trakcie doby około 12 godzin. W celu zweryfikowania tej hipotezy przeprowadzono badania na grupie 240 dzieci mierząc ich dobowy czas snu. W wyniku eksperymentu otrzymano, że średnia z czasu snu w badanej grupie wyniosła 11.2 h z odchyleniem standardowym S = 1.5h. Czy na poziomie istotności 0.01 możemy obalić hipotezę o średnim czasie snu, na rzecz alternatywy, że dzieci sypiają krócej?

19 Przykład 6.2 Szacuje się, że dzieci w wieku 3-5 lat przesypiają w trakcie doby około 12 godzin. W celu zweryfikowania tej hipotezy przeprowadzono badania na grupie 240 dzieci mierząc ich dobowy czas snu. W wyniku eksperymentu otrzymano, że średnia z czasu snu w badanej grupie wyniosła 11.2 h z odchyleniem standardowym S = 1.5h. Czy na poziomie istotności 0.01 możemy obalić hipotezę o średnim czasie snu, na rzecz alternatywy, że dzieci sypiają krócej? Dane: X = 11.2 S = 1.5 n = 240

20 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę

21 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12

22 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 =

23 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 = Zbiór krytyczny jest postaci: C : (, t 0.99 (239)] = (, 2.34]

24 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 = Zbiór krytyczny jest postaci: C : (, t 0.99 (239)] = (, 2.34] Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem

25 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 = Zbiór krytyczny jest postaci: C : (, t 0.99 (239)] = (, 2.34] Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem dzieci sypiają krócej niż 12h.

26 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ X, σ 2 X ), Y = (Y 1, Y 2,..., Y m ) - próba z rozkładu normalnego N (µ Y, σ 2 Y ).

27 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ X, σ 2 X ), Y = (Y 1, Y 2,..., Y m ) - próba z rozkładu normalnego N (µ Y, σ 2 Y ). próby zależne próby niezależne

28 Testowanie hipotez dla średniej w rozkładzie normalnym dla dwóch prób niezależnych

29 Test studenta dla prób niezależnych Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ X, σx 2 ), a Y = (Y 1, Y 2,..., Y m ) będzie próbą z rozkładu normalnego N (µ Y, σy 2 ), zakładamy że wariancje są nieznane oraz są sobie równe, tj. σx 2 = σ2 Y

30 Test studenta dla prób niezależnych Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ X, σx 2 ), a Y = (Y 1, Y 2,..., Y m ) będzie próbą z rozkładu normalnego N (µ Y, σy 2 ), zakładamy że wariancje są nieznane oraz są sobie równe, tj. σx 2 = σ2 Y Testujemy hipotezę: Przy możliwych alternatywach: H 0 : µ X = µ Y H 1 : µ X µ Y H 2 : µ X < µ Y H 3 : µ X > µ Y

31 Test studenta dla prób niezależnych Statystyka testowa postaci: X Ȳ T = (n 1)SX 2 + (m 1)S Y 2 nm n + m (n + m 2), przy prawdziwości H 0 ma rozkład t-studenta z n + m 2 stopniami swobody.

32 Test studenta dla prób niezależnych Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, t 1 α 2 (n + m 2)] [t 1 α 2 (n + m 2), ) dla alternatywy H 1 C 2 : (, t 1 α (n + m 2)] dla alternatywy H 2 C 3 : [t 1 α (n + m 2), ) dla alternatywy H 3

33 Przykład 6.3 W celu sprawdzenia czy sportowcy trenujący według nowej formy treningu osiągają lepsze wyniki w skoku w dal zmierzono wyniki w grupie sportowców trenujących standardowo i tych, którzy zostali poddani nowemu treningowi. Wyniki w obu grupach przedstawiają się następująco 6.20, 5.95, 6.30, 6.90, 6.15, 6.25 w grupie trenującej po staremu oraz 6.15, 7.05, 6.10, 6.40, 6.05 w drugiej grupie. Czy na poziomie istotności 0.01 możemy uznać, że sportowcy trenujący według nowatorskiego podejścia osiągają lepsze wyniki.

34 Przykład c.d Testujemy hipotezę: H 0 : H 1 : typ treningu nie ma wpływu na wyniki sportowców sportowcy trenujący według nowatorskiego podejścia osiągają lepsze wyniki

35 Przykład c.d Testujemy hipotezę: H 0 : H 1 : typ treningu nie ma wpływu na wyniki sportowców sportowcy trenujący według nowatorskiego podejścia osiągają lepsze wyniki H 0 : H 1 : µ X = µ Y µ X < µ Y

36 Przykład c.d Obliczamy: X = 6.29 Ȳ = 6.35 SX 2 = 0.08 S Y 2 = 0.13

37 Przykład c.d Obliczamy: X = 6.29 Ȳ = 6.35 S 2 X = 0.08 S 2 Y = 0.13 Statystyka testowa jest postaci: T = ( ) = = 0.26

38 Przykład c.d Obliczamy: X = 6.29 Ȳ = 6.35 S 2 X = 0.08 S 2 Y = 0.13 Statystyka testowa jest postaci: T = ( ) = = 0.26 Zbiór krytyczny przyjmuje postać: C : (, t 0.99 (9)] = (, 2.82] T = 0.26 > 2.82, a zatem nie możemy powiedzieć, że sportowcy z drugiej grupy osiągają lepsze wyniki.

39 Testowanie hipotez dla średniej w rozkładzie normalnym dla dwóch prób zależnych

40 Test studenta dla prób zależnych Zmienne losowe postaci D i = X i Y i tworzą próbę niezależnych zmiennych losowych o rozkładzie normalnym N(µ D, σ 2 D ) z nieznaną średnią i wariancją.

41 Test studenta dla prób zależnych Zmienne losowe postaci D i = X i Y i tworzą próbę niezależnych zmiennych losowych o rozkładzie normalnym N(µ D, σ 2 D ) z nieznaną średnią i wariancją. Testujemy hipotezę: Przy możliwych alternatywach: µ D = 0 H 1 : µ D 0 H 2 : µ D < 0 H 3 : µ D > 0

42 Test studenta dla prób zależnych Statystyka testowa postaci: T = D S D n przy prawdziwości H 0 ma rozkład t-studenta z n 1 stopniami swobody.

43 Testowanie hipotez dla średniej w rozkładzie normalnym Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, t 1 α 2 (n 1)] [t 1 α 2 (n 1), ) dla alternatywy H 1 C 2 : (, t 1 α (n 1)] dla alternatywy H 2 C 3 : [t 1 α (n 1), ) dla alternatywy H 3

44 Przykład 6.4 Autor nowej diety odchudzającej twierdzi, że jego metoda jest idealna dla chcących szybko zrzucić zbędne kilogramy. W celu sprawdzenia skuteczności diety zważono 8 ochotników przed i po zastosowaniu diety otrzymując następujące wyniki: przed dietą po diecie Czy na poziomie istotności 0.05 możemy wnioskować, że dieta jest skuteczna?

45 Przykład 6.4 Autor nowej diety odchudzającej twierdzi, że jego metoda jest idealna dla chcących szybko zrzucić zbędne kilogramy. W celu sprawdzenia skuteczności diety zważono 8 ochotników przed i po zastosowaniu diety otrzymując następujące wyniki: przed dietą po diecie Czy na poziomie istotności 0.05 możemy wnioskować, że dieta jest skuteczna? Testujemy hipotezę H 0 : H 1 : dieta nie jest skuteczna dieta jest skuteczna

46 Przykład 6.4 Autor nowej diety odchudzającej twierdzi, że jego metoda jest idealna dla chcących szybko zrzucić zbędne kilogramy. W celu sprawdzenia skuteczności diety zważono 8 ochotników przed i po zastosowaniu diety otrzymując następujące wyniki: przed dietą po diecie Czy na poziomie istotności 0.05 możemy wnioskować, że dieta jest skuteczna? Testujemy hipotezę H 0 : H 1 : dieta nie jest skuteczna dieta jest skuteczna H 0 : µ D = 0 H 1 : µ D > 0

47 Przykład c.d Wektor różnic jest postaci D = (1, 4, 2, 7, 1, 3, 4, 8, 6, 6).

48 Przykład c.d Wektor różnic jest postaci D = (1, 4, 2, 7, 1, 3, 4, 8, 6, 6). Statystyka testowa jest postaci: T = D n = 4 10 = 4.47 S D 2.82

49 Przykład c.d Wektor różnic jest postaci D = (1, 4, 2, 7, 1, 3, 4, 8, 6, 6). Statystyka testowa jest postaci: T = D n = 4 10 = 4.47 S D 2.82 Zbiór krytyczny jest postaci: C : [t 0.95 (9), ) = [1.83, ). Odrzucamy hipotezę zerową, a zatem dietę można uznać za skuteczną.

50 ZAKRES STOSOWALNOŚCI TESTU T 1. Test parametryczny 2. Dane ciągłe 3. Wartości w próbie danych rozkład normalny 4. Porównywane próby danych podobne wariancje Copyright 2014, Joanna Szyda

51 Obliczenia w pakiecie R

52 Pakiet R Przykład 6.5 Czas rozwiązywania jednego zadania na egzaminie z matematyki jest zmienną losową o rozkładzie normalnym z nieznaną wariancją. Przeprowadzający egzamin zaplanował na rozwiązanie jednego zadania 10 minut. Studenci są przekonani, że zaplanowany czas jest zbyt krótki. Dla 7 losowo wybranych studentów zmierzono czas rozwiązywania przez nich zadania otrzymując następujące wyniki: 16.0, 19.5, 7.5, 11.0, 9.0, 15.5, Czy na poziomie istotności α = 0.05 przekonanie studentów można uznać za słuszne?

53 Pakiet R Przykład 6.5 Czas rozwiązywania jednego zadania na egzaminie z matematyki jest zmienną losową o rozkładzie normalnym z nieznaną wariancją. Przeprowadzający egzamin zaplanował na rozwiązanie jednego zadania 10 minut. Studenci są przekonani, że zaplanowany czas jest zbyt krótki. Dla 7 losowo wybranych studentów zmierzono czas rozwiązywania przez nich zadania otrzymując następujące wyniki: 16.0, 19.5, 7.5, 11.0, 9.0, 15.5, Czy na poziomie istotności α = 0.05 przekonanie studentów można uznać za słuszne? Testujemy H 0 : µ = 10 H 1 : µ > 10

54 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10)

55 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10) One Sample t-test data: x t = , df = 6, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x

56 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10) One Sample t-test data: x t = , df = 6, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x Zatem wartość statystyki testowej to T = ,

57 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10) One Sample t-test data: x t = , df = 6, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x Zatem wartość statystyki testowej to T = , p = > 0.05 = α, a zatem nie mamy podstaw do odrzucenia hipotezy zerowej, założony przez wykładowcę czas jest wystarczający.

58 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T)

59 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T) Two Sample t-test data: a and b t = , df = 9, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y

60 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T) Two Sample t-test data: a and b t = , df = 9, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y Zatem wartość statystyki testowej to T = ,

61 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T) Two Sample t-test data: a and b t = , df = 9, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y Zatem wartość statystyki testowej to T = , p = > 0.01 = α, a zatem nie mamy podstaw do odrzucenia hipotezy zerowej.

62 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater )

63 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater ) Paired t-test data: x and y t = , df = 9, p-value = alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: Inf sample estimates: mean of the differences 4

64 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater ) Paired t-test data: x and y t = , df = 9, p-value = alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: Inf sample estimates: mean of the differences 4 Zatem wartość statystyki testowej to T = ,

65 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater ) Paired t-test data: x and y t = , df = 9, p-value = alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: Inf sample estimates: mean of the differences 4 Zatem wartość statystyki testowej to T = , p = < 0.05 = α, a zatem dieta działa.

66 Literatura: Bartoszewicz J.,Wykłady ze statystyki matematycznej, PWN, Warszawa M. Krzyśko,Statystyka matematyczna, Wyd. UAM, Poznań R. Zieliński,Siedem wykładów wprowadzających do statystyki matematycznej, PWN, Warszawa 1990.

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną

Bardziej szczegółowo

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Testy dla dwóch prób w rodzinie rozkładów normalnych

Testy dla dwóch prób w rodzinie rozkładów normalnych Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X

Bardziej szczegółowo

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017 Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej

Bardziej szczegółowo

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015 Testowanie hipotez dla proporcji Wrocław, 13 kwietnia 2015 Powtórka z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wykład 9 Testy rangowe w problemie dwóch prób

Wykład 9 Testy rangowe w problemie dwóch prób Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

Wykład 7 Testowanie zgodności z rozkładem normalnym

Wykład 7 Testowanie zgodności z rozkładem normalnym Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Wykład 10 Testy jednorodności rozkładów

Wykład 10 Testy jednorodności rozkładów Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów

Bardziej szczegółowo

1 Testowanie hipotez statystycznych

1 Testowanie hipotez statystycznych 1 Testowanie hipotez statystycznych Zadanie 1 W pewnym eksperymencie psychiatrycznym przeprowadzonym na grupie 42 chorych otrzymano nastepuj wyniki: (w %) 34.8, 33.9, 32.6, 49.4, 44.9, 55.2, 48.5, 40.3,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Wykład 11 Testowanie jednorodności

Wykład 11 Testowanie jednorodności Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1. Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Na podstawie dokonanych obserwacji:

Na podstawie dokonanych obserwacji: PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp. Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30

Bardziej szczegółowo

Testy post-hoc. Wrocław, 6 czerwca 2016

Testy post-hoc. Wrocław, 6 czerwca 2016 Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Zadanie Punkty Ocena

Zadanie Punkty Ocena Statystyka matematyczna Test przykładowy na zaliczenie laboratorium / ćwiczeń PROSZĘ NIE ODWRACAĆ KARTKI PRZED ROZPOCZĘCIEM TESTU! Wskazówki: 1. Wybierz zadania, za które w sumie możesz otrzymać 30 punktów

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka matematyczna. Wykład V. Parametryczne testy istotności Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

Rozkłady statystyk z próby. Statystyka

Rozkłady statystyk z próby. Statystyka Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Problemy cz lowieka za szafa Cz lowiek za szafa rzuca razy moneta. Może on rzucać : 1 moneta symetryczna; 2 moneta, która ma or la z dwu stron. Zadania 1 Wymyśl procedure pozwalajac a stwierdzić

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

1 Estymacja przedziałowa

1 Estymacja przedziałowa 1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE

Bardziej szczegółowo

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo