Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r"

Transkrypt

1 Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, r

2 Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby

3 Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną wariancją Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ, σ 2 ), zakładamy, że σ 2 jest znane.

4 Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną wariancją Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ, σ 2 ), zakładamy, że σ 2 jest znane. Testujemy hipotezę: Przy możliwych alternatywach: H 0 : µ = µ 0 H 1 : µ µ 0 H 2 : µ < µ 0 H 3 : µ > µ 0

5 Model 1 Statystyka testowa Statystyka testowa postaci: Z = X µ 0 n, σ ma standardowy rozkład normalny N(0, 1).

6 Model 1 Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, u 1 α 2 ] [u 1 α 2, ) dla alternatywy H 1 C 2 : (, u 1 α ] dla alternatywy H 2 C 3 : [u 1 α, ) dla alternatywy H 3

7 Przykład 6.1 W pewnym dużym zakładzie cukierniczym norma techniczna przewiduje średnio 85s. na spakowanie do kartonu 50 zajączków wielkanocnych. Wiadomo, że czas wykonywania tego zadania jest zmienną losową o rozkładzie normalnym z odchyleniem standardowym równym 15s. W związku z częstymi skargami robotników na zbytnie zaniżanie norm fabrycznych, wykonano pomiary czasu pakowania zajączków u 200 losowo wybranych robotników, otrzymując średni czas pakowania na poziomie 87s. Czy na poziomie istotności 0.05 można przyznać rację pracownikom?

8 Przykład 6.1 W pewnym dużym zakładzie cukierniczym norma techniczna przewiduje średnio 85s. na spakowanie do kartonu 50 zajączków wielkanocnych. Wiadomo, że czas wykonywania tego zadania jest zmienną losową o rozkładzie normalnym z odchyleniem standardowym równym 15s. W związku z częstymi skargami robotników na zbytnie zaniżanie norm fabrycznych, wykonano pomiary czasu pakowania zajączków u 200 losowo wybranych robotników, otrzymując średni czas pakowania na poziomie 87s. Czy na poziomie istotności 0.05 można przyznać rację pracownikom? Dane: σ = 15 X = 87 n = 200

9 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację

10 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85

11 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 =

12 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 = Zbiór krytyczny jest postaci: C : [u 0.95, ) = [1.64, )

13 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 = Zbiór krytyczny jest postaci: C : [u 0.95, ) = [1.64, ) Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem

14 Przykład c.d. Testujemy H 0 : H 1 : pracownicy nie mają racji pracownicy mają rację H 0 : µ = 85 H 1 : µ > 85 Statystyka testowa przyjmuje wartość: Z = X µ 0 σ n = 200 = Zbiór krytyczny jest postaci: C : [u 0.95, ) = [1.64, ) Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem pracownicy mają rację.

15 Model 2 Testowanie hipotez dla średniej w rozkładzie normalnym z nieznaną wariancją Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ, σ 2 ), gdzie parametry µ i σ 2 są nieznane. Testujemy hipotezę: Przy możliwych alternatywach: H 0 : µ = µ 0 H 1 : µ µ 0 H 2 : µ < µ 0 H 3 : µ > µ 0

16 Model 2 Statystyka testowa Statystyka testowa postaci: T = X µ 0 n 1, S przy prawdziwości H 0 ma rozkład studenta z n 1 stopniami swobody.

17 Model 2 Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, t 1 α 2 (n 1)] [t 1 α 2 (n 1), ) dla alternatywy H 1 C 2 : (, t 1 α (n 1)] dla alternatywy H 2 C 3 : [t 1 α (n 1), ) dla alternatywy H 3

18 Przykład 6.2 Szacuje się, że dzieci w wieku 3-5 lat przesypiają w trakcie doby około 12 godzin. W celu zweryfikowania tej hipotezy przeprowadzono badania na grupie 240 dzieci mierząc ich dobowy czas snu. W wyniku eksperymentu otrzymano, że średnia z czasu snu w badanej grupie wyniosła 11.2 h z odchyleniem standardowym S = 1.5h. Czy na poziomie istotności 0.01 możemy obalić hipotezę o średnim czasie snu, na rzecz alternatywy, że dzieci sypiają krócej?

19 Przykład 6.2 Szacuje się, że dzieci w wieku 3-5 lat przesypiają w trakcie doby około 12 godzin. W celu zweryfikowania tej hipotezy przeprowadzono badania na grupie 240 dzieci mierząc ich dobowy czas snu. W wyniku eksperymentu otrzymano, że średnia z czasu snu w badanej grupie wyniosła 11.2 h z odchyleniem standardowym S = 1.5h. Czy na poziomie istotności 0.01 możemy obalić hipotezę o średnim czasie snu, na rzecz alternatywy, że dzieci sypiają krócej? Dane: X = 11.2 S = 1.5 n = 240

20 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę

21 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12

22 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 =

23 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 = Zbiór krytyczny jest postaci: C : (, t 0.99 (239)] = (, 2.34]

24 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 = Zbiór krytyczny jest postaci: C : (, t 0.99 (239)] = (, 2.34] Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem

25 Przykład c.d. Testujemy H 0 : H 1 : dzieci sypiają średnio 12 godzin na dobę dzieci sypiają krócej niż 12 godzin na dobę H 0 : µ = 12 H 1 : µ < 12 Statystyka testowa przyjmuje wartość: T = X µ 0 S n 1 = 239 = Zbiór krytyczny jest postaci: C : (, t 0.99 (239)] = (, 2.34] Wartość statystyki testowej mieści się w zbiorze krytycznym, a zatem odrzucamy hipotezę zerową, zatem dzieci sypiają krócej niż 12h.

26 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ X, σ 2 X ), Y = (Y 1, Y 2,..., Y m ) - próba z rozkładu normalnego N (µ Y, σ 2 Y ).

27 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ X, σ 2 X ), Y = (Y 1, Y 2,..., Y m ) - próba z rozkładu normalnego N (µ Y, σ 2 Y ). próby zależne próby niezależne

28 Testowanie hipotez dla średniej w rozkładzie normalnym dla dwóch prób niezależnych

29 Test studenta dla prób niezależnych Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ X, σx 2 ), a Y = (Y 1, Y 2,..., Y m ) będzie próbą z rozkładu normalnego N (µ Y, σy 2 ), zakładamy że wariancje są nieznane oraz są sobie równe, tj. σx 2 = σ2 Y

30 Test studenta dla prób niezależnych Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego N (µ X, σx 2 ), a Y = (Y 1, Y 2,..., Y m ) będzie próbą z rozkładu normalnego N (µ Y, σy 2 ), zakładamy że wariancje są nieznane oraz są sobie równe, tj. σx 2 = σ2 Y Testujemy hipotezę: Przy możliwych alternatywach: H 0 : µ X = µ Y H 1 : µ X µ Y H 2 : µ X < µ Y H 3 : µ X > µ Y

31 Test studenta dla prób niezależnych Statystyka testowa postaci: X Ȳ T = (n 1)SX 2 + (m 1)S Y 2 nm n + m (n + m 2), przy prawdziwości H 0 ma rozkład t-studenta z n + m 2 stopniami swobody.

32 Test studenta dla prób niezależnych Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, t 1 α 2 (n + m 2)] [t 1 α 2 (n + m 2), ) dla alternatywy H 1 C 2 : (, t 1 α (n + m 2)] dla alternatywy H 2 C 3 : [t 1 α (n + m 2), ) dla alternatywy H 3

33 Przykład 6.3 W celu sprawdzenia czy sportowcy trenujący według nowej formy treningu osiągają lepsze wyniki w skoku w dal zmierzono wyniki w grupie sportowców trenujących standardowo i tych, którzy zostali poddani nowemu treningowi. Wyniki w obu grupach przedstawiają się następująco 6.20, 5.95, 6.30, 6.90, 6.15, 6.25 w grupie trenującej po staremu oraz 6.15, 7.05, 6.10, 6.40, 6.05 w drugiej grupie. Czy na poziomie istotności 0.01 możemy uznać, że sportowcy trenujący według nowatorskiego podejścia osiągają lepsze wyniki.

34 Przykład c.d Testujemy hipotezę: H 0 : H 1 : typ treningu nie ma wpływu na wyniki sportowców sportowcy trenujący według nowatorskiego podejścia osiągają lepsze wyniki

35 Przykład c.d Testujemy hipotezę: H 0 : H 1 : typ treningu nie ma wpływu na wyniki sportowców sportowcy trenujący według nowatorskiego podejścia osiągają lepsze wyniki H 0 : H 1 : µ X = µ Y µ X < µ Y

36 Przykład c.d Obliczamy: X = 6.29 Ȳ = 6.35 SX 2 = 0.08 S Y 2 = 0.13

37 Przykład c.d Obliczamy: X = 6.29 Ȳ = 6.35 S 2 X = 0.08 S 2 Y = 0.13 Statystyka testowa jest postaci: T = ( ) = = 0.26

38 Przykład c.d Obliczamy: X = 6.29 Ȳ = 6.35 S 2 X = 0.08 S 2 Y = 0.13 Statystyka testowa jest postaci: T = ( ) = = 0.26 Zbiór krytyczny przyjmuje postać: C : (, t 0.99 (9)] = (, 2.82] T = 0.26 > 2.82, a zatem nie możemy powiedzieć, że sportowcy z drugiej grupy osiągają lepsze wyniki.

39 Testowanie hipotez dla średniej w rozkładzie normalnym dla dwóch prób zależnych

40 Test studenta dla prób zależnych Zmienne losowe postaci D i = X i Y i tworzą próbę niezależnych zmiennych losowych o rozkładzie normalnym N(µ D, σ 2 D ) z nieznaną średnią i wariancją.

41 Test studenta dla prób zależnych Zmienne losowe postaci D i = X i Y i tworzą próbę niezależnych zmiennych losowych o rozkładzie normalnym N(µ D, σ 2 D ) z nieznaną średnią i wariancją. Testujemy hipotezę: Przy możliwych alternatywach: µ D = 0 H 1 : µ D 0 H 2 : µ D < 0 H 3 : µ D > 0

42 Test studenta dla prób zależnych Statystyka testowa postaci: T = D S D n przy prawdziwości H 0 ma rozkład t-studenta z n 1 stopniami swobody.

43 Testowanie hipotez dla średniej w rozkładzie normalnym Obszar odrzucenia hipotezy zerowej Zbiór krytyczny przyjmuje postać (w zależności od alternatywy): C 1 : (, t 1 α 2 (n 1)] [t 1 α 2 (n 1), ) dla alternatywy H 1 C 2 : (, t 1 α (n 1)] dla alternatywy H 2 C 3 : [t 1 α (n 1), ) dla alternatywy H 3

44 Przykład 6.4 Autor nowej diety odchudzającej twierdzi, że jego metoda jest idealna dla chcących szybko zrzucić zbędne kilogramy. W celu sprawdzenia skuteczności diety zważono 8 ochotników przed i po zastosowaniu diety otrzymując następujące wyniki: przed dietą po diecie Czy na poziomie istotności 0.05 możemy wnioskować, że dieta jest skuteczna?

45 Przykład 6.4 Autor nowej diety odchudzającej twierdzi, że jego metoda jest idealna dla chcących szybko zrzucić zbędne kilogramy. W celu sprawdzenia skuteczności diety zważono 8 ochotników przed i po zastosowaniu diety otrzymując następujące wyniki: przed dietą po diecie Czy na poziomie istotności 0.05 możemy wnioskować, że dieta jest skuteczna? Testujemy hipotezę H 0 : H 1 : dieta nie jest skuteczna dieta jest skuteczna

46 Przykład 6.4 Autor nowej diety odchudzającej twierdzi, że jego metoda jest idealna dla chcących szybko zrzucić zbędne kilogramy. W celu sprawdzenia skuteczności diety zważono 8 ochotników przed i po zastosowaniu diety otrzymując następujące wyniki: przed dietą po diecie Czy na poziomie istotności 0.05 możemy wnioskować, że dieta jest skuteczna? Testujemy hipotezę H 0 : H 1 : dieta nie jest skuteczna dieta jest skuteczna H 0 : µ D = 0 H 1 : µ D > 0

47 Przykład c.d Wektor różnic jest postaci D = (1, 4, 2, 7, 1, 3, 4, 8, 6, 6).

48 Przykład c.d Wektor różnic jest postaci D = (1, 4, 2, 7, 1, 3, 4, 8, 6, 6). Statystyka testowa jest postaci: T = D n = 4 10 = 4.47 S D 2.82

49 Przykład c.d Wektor różnic jest postaci D = (1, 4, 2, 7, 1, 3, 4, 8, 6, 6). Statystyka testowa jest postaci: T = D n = 4 10 = 4.47 S D 2.82 Zbiór krytyczny jest postaci: C : [t 0.95 (9), ) = [1.83, ). Odrzucamy hipotezę zerową, a zatem dietę można uznać za skuteczną.

50 ZAKRES STOSOWALNOŚCI TESTU T 1. Test parametryczny 2. Dane ciągłe 3. Wartości w próbie danych rozkład normalny 4. Porównywane próby danych podobne wariancje Copyright 2014, Joanna Szyda

51 Obliczenia w pakiecie R

52 Pakiet R Przykład 6.5 Czas rozwiązywania jednego zadania na egzaminie z matematyki jest zmienną losową o rozkładzie normalnym z nieznaną wariancją. Przeprowadzający egzamin zaplanował na rozwiązanie jednego zadania 10 minut. Studenci są przekonani, że zaplanowany czas jest zbyt krótki. Dla 7 losowo wybranych studentów zmierzono czas rozwiązywania przez nich zadania otrzymując następujące wyniki: 16.0, 19.5, 7.5, 11.0, 9.0, 15.5, Czy na poziomie istotności α = 0.05 przekonanie studentów można uznać za słuszne?

53 Pakiet R Przykład 6.5 Czas rozwiązywania jednego zadania na egzaminie z matematyki jest zmienną losową o rozkładzie normalnym z nieznaną wariancją. Przeprowadzający egzamin zaplanował na rozwiązanie jednego zadania 10 minut. Studenci są przekonani, że zaplanowany czas jest zbyt krótki. Dla 7 losowo wybranych studentów zmierzono czas rozwiązywania przez nich zadania otrzymując następujące wyniki: 16.0, 19.5, 7.5, 11.0, 9.0, 15.5, Czy na poziomie istotności α = 0.05 przekonanie studentów można uznać za słuszne? Testujemy H 0 : µ = 10 H 1 : µ > 10

54 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10)

55 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10) One Sample t-test data: x t = , df = 6, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x

56 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10) One Sample t-test data: x t = , df = 6, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x Zatem wartość statystyki testowej to T = ,

57 Pakiet R x <-c (16.0, 19.5, 7.5, 11.0, 9.0, 15.5, 11.0) t. test (x, alternative = greater, mu =10) One Sample t-test data: x t = , df = 6, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x Zatem wartość statystyki testowej to T = , p = > 0.05 = α, a zatem nie mamy podstaw do odrzucenia hipotezy zerowej, założony przez wykładowcę czas jest wystarczający.

58 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T)

59 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T) Two Sample t-test data: a and b t = , df = 9, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y

60 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T) Two Sample t-test data: a and b t = , df = 9, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y Zatem wartość statystyki testowej to T = ,

61 Pakiet R - Przykład 6.3 c.d. x <-c (6.20, 5.95, 6.30, 6.90, 6.15, 6.25) y <-c (6.15, 7.05, 6.10, 6.40, 6.05) t. test (x,y, alternative = less,var. equal =T) Two Sample t-test data: a and b t = , df = 9, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y Zatem wartość statystyki testowej to T = , p = > 0.01 = α, a zatem nie mamy podstaw do odrzucenia hipotezy zerowej.

62 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater )

63 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater ) Paired t-test data: x and y t = , df = 9, p-value = alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: Inf sample estimates: mean of the differences 4

64 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater ) Paired t-test data: x and y t = , df = 9, p-value = alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: Inf sample estimates: mean of the differences 4 Zatem wartość statystyki testowej to T = ,

65 Pakiet R - Przykład c.d x <-c(61, 73, 59, 89, 94, 68, 78, 115, 93, 69) y <-c(60, 69, 57, 82, 95, 65, 74, 107, 87, 63) t. test (x,y, paired =T, alternative = greater ) Paired t-test data: x and y t = , df = 9, p-value = alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: Inf sample estimates: mean of the differences 4 Zatem wartość statystyki testowej to T = , p = < 0.05 = α, a zatem dieta działa.

66 Literatura: Bartoszewicz J.,Wykłady ze statystyki matematycznej, PWN, Warszawa M. Krzyśko,Statystyka matematyczna, Wyd. UAM, Poznań R. Zieliński,Siedem wykładów wprowadzających do statystyki matematycznej, PWN, Warszawa 1990.

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Zadanie Punkty Ocena

Zadanie Punkty Ocena Statystyka matematyczna Test przykładowy na zaliczenie laboratorium / ćwiczeń PROSZĘ NIE ODWRACAĆ KARTKI PRZED ROZPOCZĘCIEM TESTU! Wskazówki: 1. Wybierz zadania, za które w sumie możesz otrzymać 30 punktów

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego

Bardziej szczegółowo

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej 1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Testowanie hipotez cz. I

Testowanie hipotez cz. I Wykład 11 Testowanie hipotez cz. I TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipoteza statystyczna jest to przypuszczenie dotyczące nieznanej własności rozkładu prawdopodobieństwa badanej cechy populacji. W zadaniach

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy

Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy Wykład 9: Testy Studenta Jest kilka typów testów Studenta. Mają podobną strukturę, ale służą do testowania różnych hipotez i różnią się nieco postacią statystyki testowej. Trzy podstawowe typy testów Studenta

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące 2 Na dziś Wykład 5: Statystyka matematyczna Estymatory punktowe i przedziałowe 4

Bardziej szczegółowo

hipotez statystycznych

hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Pomiar na skali porządkowej mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

Repeated Measures ANOVA ANOVA z powtarzanymi pomiarami

Repeated Measures ANOVA ANOVA z powtarzanymi pomiarami Repeated Measures ANOVA ANOVA z powtarzanymi pomiarami Plan prezentacji 1 Wprowadzenie 2 Postać modelu Założenia Droga do testu Test Sferyczność 3 Problem Badanie skuteczności pewnej terapii medycznej:

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy Elektrotechnika II [ Ćwiczenia ] 206/207 Zimowy Lp Nazwisko i imię Pkt Kol Suma Popr Ocena Data Egzamin Basaj Mateusz 2 Ciechowski Dawid Dst Dst 3 Cieślik Piotr 4 Glica Mateusz 5 Głuszkowski Michał 6 Kikulski

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania ze statystyki matematycznej-zestaw 2 ZADANIA - ZESTAW 2 L.Kowalski zadania ze statystyki matematycznej-zestaw ZADANIA - ZESTAW Zadanie.1 Badano maksymalną prędkość pewnego typ samochodów osobowych (cecha X poplacji. W 5 pomiarach tej prędkości otrzymano x 195,8

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I. STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne 1 Wybrane testy nieparametryczne 1. Test chi-kwadrat zgodności z rozkładem oczekiwanym 2. Test chi-kwadrat niezależności dwóch zmiennych kategoryzujących 3. Test U Manna-Whitney

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM

TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Badanie pilotażowe TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Czy łatwa prośba etyczna zostanie spełniona istotnie częściej jeśli poprzedzi się ją nieetyczną prośbą trudną? H0 nie, H1 tak. Schemat eksperymentu

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

W tym rozdziale książka opisuje kilka podejść do poszukiwania kolokacji.

W tym rozdziale książka opisuje kilka podejść do poszukiwania kolokacji. 5 Collocations Związek frazeologiczny (kolokacja), to często używane zestawienie słów. Przykłady: strong tea, weapons of mass destruction, make up. Znaczenie całości wyrażenia, nie zawsze wynika ze znaczeń

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez statystycznych

Bardziej szczegółowo

Przykłady Ryzyko względne a iloraz szans ANOVA ZMAD. Stanisław Jaworski: ZMAD. Uniwersytet Medyczny

Przykłady Ryzyko względne a iloraz szans ANOVA ZMAD. Stanisław Jaworski: ZMAD. Uniwersytet Medyczny ZMAD Stanisław Jaworski proporcja Stosunek do aborcji (1) Z pewnej ściśle określonej populacji kobiet wylosowano 950 osób. Każdą kobietę zapytano, czy jest za utrzymaniem obecnej ustawy antyaborcyjnej.

Bardziej szczegółowo

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo