1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas wypłaty i kwota wypłaty mogą być także zmiennymi losowymi. Wartość teraźniejszą wypłaty oznaczamy Z; jest ona obliczana na bazie ustalonej stopy procentowej r (tzw. techniczna stopa procentowa). Oczekiwana wartość teraźniejsza wypłaty, E(Z), nazywana jest jednorazową składką netto (net single premium). Ta składka jednak nie odzwierciedla ryzyka, które ponosi ubezpieczyciel. Aby to ryzyko oszacować potrzebne są inne charakterystyki zmiennej losowej Z, np. wariancja. 1.1. Podstawowe typy ubezpieczeń Podstawowymi typami ubezpieczeń są ubezpieczenia na życie i czasowe ubezpieczenia na życie (ang.: whole life insurance, term insurance). Rozważmy ubezpieczenie na życie, tzn. takie, które wypłaca 1 jp. na koniec roku śmierci. Tak więc kwota wypłaty jest ustalona, ale moment wypłaty K + 1 jest losowy. Wartość teraźniejsza wynosi Z υ K+1. Zmienna Z przyjmuje wartości υ, υ 2, υ 3,... i rozkład zmiennej Z jest określony rozkładem K: Pr(Z υ k+1 ) Pr(K k) k p x q x+k, dla k, 1, 2,.... Jednorazową składkę netto (JSN) oznaczymy A x : A x E[υ K+1 ] υ k+1 kp x q x+k. k Wariancję zmiennej Z obliczymy ze wzoru: Var(Z) E(Z 2 ) (A x ) 2. Ponieważ υ e δ, gdzie δ jest intensywnością oprocentowania, więc E(Z 2 ) E(υ 2(K+1) ) E(e 2δ(K+1) ), a więc jest to jednorazowa składka netto obliczona przy dwukrotnie większej intensywności oprocentowania. Zatem obliczenie wariancji nie jest trudniejsze niż obliczenie składki netto. Przykład. Obliczyć A 3, jeżeli czas życia spełnia prawo de Moivre a z ω 1, tzn. T 3 ma rozkład jednostajny na przedziale [, 7] oraz υ, 95 (odpowiada to r 5, 26%). Ponieważ Pr(K k) 1 7, więc A 3 1 7 69 k,95 k+1 1,95,95 71, 2639. 7,5 Ubezpieczenie, które zapewnia wypłatę tylko wtedy, gdy śmierć nastąpi w ciągu n lat nazywamy czasowym (terminowym) ubezpieczeniem na życie z czasem trwania n. Np. 1 jp. jest wypłacana tylko, gdy śmierć nastąpi w ciągu pierwszych n lat; terminem wypłaty jest koniec roku śmierci. Mamy zatem: υ K+1 dla K, 1,..., n 1 Z dla K n, n + 1,... Składkę netto oznaczymy A 1 x:n. n 1 A 1 x:n υ k+1 kp x q x+k. k 1
Tak jak poprzednio, drugi moment E(Z 2 ) jest równy jednorazowej składce przy podwojonej intensywności oprocentowania, co wynika z tego, że: Z 2 e 2δ(K+1) dla K, 1,..., n 1 dla K n, n + 1,... 1.2. Ubezpieczenie na dożycie Ubezpieczenie na dożycie (ang.: pure endowment) z czasem trwania n zapewnia wypłatę sumy ubezpieczenia tylko wtedy, gdy ubezpieczony żyje po n latach. Wartość teraźniejsza wypłaty wynosi więc: dla K, 1,..., n 1 Z υ n dla K n, n + 1,... Składkę netto oznaczamy teraz A 1 x:n. Wariancja zmiennej Z ma wartość A 1 x:n υn np x. Var(Z) E(Z 2 ) (EZ) 2 υ 2n np x υ 2n np 2 x υ 2n np x nq x. 1.3. Ubezpieczenie na życie i dożycie W ubezpieczeniu na życie i dożycie (ang.: endowment) suma ubezpieczenia jest płatna na koniec roku śmierci, jeśli ta nastąpi w ciągu n lat, lub na koniec n-tego roku: υ K+1 dla K, 1,..., n 1 Z υ n dla K n, n + 1,... Jednorazową składkę netto oznaczamy A x:n. Jak widać, zmienna Z jest sumą zmiennych odpowiadających ubezpieczeniu na życie (Z 1 ) i ubezpieczeniu na dożycie (Z 2 ): Z Z 1 + Z 2. Zatem oraz Ale A x:n A 1 x:n + A 1 x:n, Var(Z) Var(Z 1 ) + 2Cov(Z 1, Z 2 ) + Var(Z 2 ). Cov(Z 1, Z 2 ) E[(Z 1 E(Z 1 ))(Z 2 E(Z 2 ))] Zatem ostatecznie E(Z 1 Z 2 Z 1 E(Z 2 ) E(Z 1 )Z 2 + E(Z 1 )E(Z 2 )) E(Z 1 Z 2 ) E(Z 1 )E(Z 2 )) E(Z 1 )E(Z 2 ) A 1 x:n A 1 x:n. Var(Z) Var(Z 1 ) + Var(Z 2 ) 2A 1 x:n A 1 x:n. Stąd wynika, że ryzyko przy sprzedaży ubezpieczenia na życie i dożycie jest mniejsze niż przy sprzedaży ubezpieczenia na życie jednej osobie, a na dożycie drugiej. Uwaga. Zakładamy (dla prostoty), że suma ubezpieczenia wynosi 1. Gdyby suma wynosiła C, to jednorazową składkę netto należy pomnożyć przez C, a wariancję przez C 2. Rozważmy jeszcze bezterminowe ubezpieczenia na życie odroczone na m lat: dla K, 1,..., m 1 Z υ K+1 dla K m, m + 1,... 2
Składkę dla tego ubezpieczenia oznaczamy m A x. Mamy oraz także m A x m p x υ m A x+m, m A x A x A 1 x:m. Tak jak w przypadku zwykłym (bez odroczenia) drugi moment E(Z 2 ) równy jest jednorazowej składce netto przy dwukrotnie większej intensywności oprocentowania. 1.4. Ubezpieczenie płatne w momencie śmierci Do tej pory zakładaliśmy, że suma ubezpieczenia jest płatna na koniec roku śmierci. To założenie pozwala na wyprowadzenie wzorów bezpośrednio z tablic trwania życia, ale nie jest realistyczne. Załóżmy teraz, że wypłata następuje w momencie śmierci, tj. w chwili T. Wartością bieżącą kwoty 1 płatną w momencie T jest Z υ T. Składkę netto dla tego ubezpieczenia oznaczamy Āx. Ponieważ, jak wiemy: tj. g(t) t p x µ x+t, więc Pr(t < T < t + dt) t p x µ x+t dt, Ā x υ t tp x µ x+t dt. Przykład. W ubezpieczeniu x-latka wypłata kwoty 1 następuje w momencie śmierci, i wiadomo, że odchylenie standardowe wartości obecnej równa się JSN dla tego ubezpieczenia. Obliczyć tę składkę przy założeniu, że długość życia ma rozkład wykładniczy. oraz Ā x υ t tp x µ x+t dt e δt e µt µdt µ µ + δ, ) 2 Var(Z) 2 µ ( µ ) 2. Ā x (Āx µ + 2δ µ + δ Z równości odchylenia standardowego i JSN mamy: skąd Zatem µ ( µ ) 2 ( µ ) 2, µ + 2δ µ + δ µ + δ µ δ 2 1. Ā x µ µ µ + δ δ 2 1 µ δ + 1, 2929. 2 1 + 1 Praktyczny wzór przybliżony dla Āx można znaleźć zakładając, że u q x jest liniową funkcją u, dla < u < 1 (Założenie a). Wtedy, ponieważ T K + S (K + 1) (1 S), oraz z założenia K i S są niezależne i S ma rozkład jednostajny, więc υ T υ K+1 υ (1 S) υ K+1 (1 + r) 1 S, a ponieważ E((1 + r) 1 S ) (1 + r) u du s 1 r δ, 3
zatem ostatecznie Ā x E(υ K+1 )E((1 + r) 1 S ) r δ A x. Podobny wzór można wyprowadzić dla ubezpieczeń terminowych. Dla ubezpieczenia na życie i dożycie czynnik r δ pojawia się tylko w części dotyczącej ubezpieczenia terminowego: Ā x:n Ā1 x:n + A 1 x:n r δ A1 x:n + A 1 x:n A x:n + ( r δ 1)A1 x:n. 1.5. Ubezpieczenie płatne na koniec miesiąca śmierci Załóżmy teraz, że suma ubezpieczenia jest płatna na koniec m-tej części roku (np. na koniec miesiąca), w której następuje śmierć, tj. w chwili K +S (m), gdzie S (m) 1 [ms + 1], m (czyli S (m) otrzymujemy z S przez zaokrąglenie w górę do następnej wielokrotności liczby 1 m ). Zatem dla ubezpieczenia na życie o sumie 1 mamy: Z υ K+S(m). Zakładając, że u q x jest liniowe dla < u < 1 (Założenie a), mamy, analogicznie jak wyżej K + S (m) (K + 1) (1 S (m) ), E((1 + r) 1 S(m) ) 1 m (1 + r) 1 k (m) m s r m 1 r. (m) Otrzymujemy: k1 ( A (m) x E(υ K+1 )E (1 + r) 1 S(m)) r r A x. (m) Przy m mamy znaną już równość: Ā x r δ A x. Przykład. Za jednorazową składkę netto można kupić polisę wypłacającą kwotę K na koniec roku śmierci lub polisę o tej samej wartości płatną na koniec kwartału śmierci. Techniczna stopa procentowa wynosi 5%. O ile procent droższa jest druga polisa? Ponieważ A (4) x r A x r, (4) więc Zatem polisa jest droższa o 1,86%. A (4) x, 5 A x 4( 4 1, 186. 1, 5 1) 2. Ogólne typy ubezpieczeń życiowych Rozważmy ubezpieczenie, w którym wypłata jest zmienna i załóżmy, że suma ubezpieczenia jest płatna na koniec roku śmierci. Jeżeli c j jest sumą ubezpieczenia dla j-tego roku, to Z c K+1 υ K+1. 4
Rozkład zmiennej Z, składkę netto i wyższe momenty tej zmiennej łatwo obliczyć. Mamy: E(Z h ) c h k+1υ h(k+1) kp x q x+k, h 1, 2,.... k Można takie zmienne ubezpieczenie traktować jako kombinację odroczonych ubezpieczeń na życie, z których każde ma stałą wartość. Zatem E(Z) c 1 A x + (c 2 c 1 ) 1 A x + (c 3 c 2 ) 2 A x +... W przypadku ubezpieczenia terminowego: ck+1 υ Z K+1 dla K, 1,..., n 1 dla K n, n + 1,... To ostatnie ubezpieczenie można także przedstawić jako kombinację ubezpieczeń czasowych rozpoczynających się teraz: E(Z) c n A 1 x:n + (c n 1 c n )A 1 x:n 1 + + (c 2 c 3 )A 1 x:2 + (c 1 c 2 )A 1 x:1. Takie równości mogą być przydatne do obliczenia składki netto, ale nie do obliczenia wyższych momentów Z. W przypadku ubezpieczeń płatnych w chwili śmierci, sumę ubezpieczenia traktujemy jako funkcję c(t), t. Zatem Jednorazowa składka netto wynosi: E(Z) Z c(t )υ T. c(t)υ t tp x µ x+t dt. Przykład. Na osobę w wieku x lat wystawiono bezterminową polisę dającą wypłatę 16 w momencie śmierci. Dalsze trwanie życia x-latka opisuje funkcja gęstości t+1 f T (t) 6 gdy t 1 poza tym Wyznacz jednorazową składkę netto przy natężeniu oprocentowania δ, 2. Rozwiązanie. 16Āx 16,2t t+1 e 6 d t 2 1 75 e,2t (t + 1) d t 2 75 ( 5)(t + 15)e,2t 1 2 46 3e 2. 2 Przykład. Na x-latka wystawiono polisę, która po 1 latach odroczenia daje 4-letnie ubezpieczenie na życie ze świadczeniem w wysokości 1, płatnym w momencie śmierci. Wyznacz wariancję wypłat z tej polisy według ich wartości na moment wystawienia polisy, jeśli: (i) natężenie zgonów jest stałe: µ x+t, 5; (ii) natężenie oprocentowania wynosi δ, 5. Wartość obecna wypłaty jest zmienną losową 1Z, gdzie: υ T gdy 1 T < 5 Z poza tym Obliczamy momenty zmiennej: EZ 5 1 e,5t e,5t, 5dt 1 2 (e 1 e 5 ), 5
Zatem 5 E(Z 2 ) e,1t e,5t, 5dt 1 3 (e 1,5 e 7,5 ). 1 Var(1Z) 25( 4 3 e 1,5 4 3 e 7,5 e 2 + 2e 6 e 1 ) 4,16. Rzeczywiste obliczenie składki można zredukować do obliczeń w modelu dyskretnym. Mamy: E(Z) E(Z K k) Pr(K k) k E(c(k + S)υ k+s K k) Pr(K k) k E(c(k + S)(1 + r) 1 S K k)υ k+1 Pr(K k). k Zatem określając otrzymujemy: c k+1 E[c(k + S)(1 + r) 1 S K k], E(Z) c k+1 υ k+1 kp x q x+k. k Oczywiście aby obliczyć c k+1 potrzebna jest znajomość rozkładu warunkowego S pod warunkiem K k. Właściwymi założeniami umożliwiającymi te obliczenia są Założenie a i Założenie b. Przy Założeniu a, tzn. gdy u q x+k jest liniowe, µ x+k+u q x+k 1 uq x+k q x+k up x+k, mamy ( ) c k+1 c(k + u)(1 + r) 1 u k+up x µ x+k+u du : ( k p x q x+k ) 1 q x+k 1 q x+k c(k + u)(1 + r) 1 u up x+k µ x+k+u du Zał.a c(k + u)(1 + r) 1 u q x+k du c(k + u)(1 + r) 1 u du. Założenie b, tj. µ x+k+u µ x+k+ 1 2, up x+k (p x+k ) u daje natomiast: c k+1 1 q x+k c(k + u)(1 + r) 1 u (p x+k ) u µ x+k+ 1 2 du c(k + u)(1 + r) 1 u (p x+k) u µ x+k+ 1 2 du. Przykładowo, załóżmy, że suma ubezpieczenia rośnie wykładniczo, tzn.: Wtedy przy Założeniu a otrzymujemy: c k+1 c(t) e τt. e τ(k+u) (1 + r) 1 u du e τk+δ e (τ δ)u du e τk eδ e τ δ τ. Zauważmy, że dla τ otrzymujemy znany wynik c k+1 eδ 1 δ r δ. 6
Przy Założeniu b : c k+1 e τ(k+u) e µ δ(1 u) x+k+ 1 2 e u ln p x+k du µ x+k+ 1 2 e τk+δ e u(τ δ+ln p x+k) du µ x+k+ 1 2 e τk+δ 1 τ δ + ln p x+k [e τ δ+ln p x+k 1] µ x+k+ 1 2 e τk e τ p x+k e δ τ δ + ln p x+k µ x+k+ 1 2 e τk e δ p x+k e τ. δ τ µ x+k+ 1 2 Wzory obowiązują oczywiście tylko wtedy, gdy mianowniki są niezerowe. Jeżeli np. δ τ, to przy Założeniu a mamy c k+1 e δ(k+u) e δ(1 u) du e δ(k+1) du e δ(k+1). 2.1. Standardowe typy ubezpieczeń życiowych ze zmienną sumą Będziemy zakładać, że suma ubezpieczenia jest płatna na koniec roku śmierci. Rozważmy standardowe rosnące ubezpieczenie na życie, w którym c j j. Wartość teraźniejsza wypłaty jest zmienną losową: Jednorazowa składka netto wynosi: (IA) x Z (K + 1)υ K+1. (k + 1)υ k+1 kp x q x+k. k W przypadku n-letniego ubezpieczenia terminowego: (K + 1)υ K+1, K, 1,..., n 1 Z, K n, n + 1,... a składka netto wynosi: n 1 (IA) 1 x:n (k + 1)υ k+1 kp x q x+k. k Tę składkę można potraktować jako sumę składek dla ubezpieczeń odroczonych: (IA) 1 x:n A x + 1 A x + + n 1 A x n n A x, lub też (IA) 1 x:n na1 x:n A1 x:n 1 A1 x:n 2 A1 x:1. Zauważymy też, że składka dla n-letniego ubezpieczenia na życie i dożycie wynosi: (IA) x:n (IA) 1 x:n + na 1 x:n W standardowym ubezpieczeniu malejącym suma ubezpieczenia zmniejsza się od n do. Dokładniej, wartość teraźniejsza wypłaty to: (n K)υ K+1, K, 1,..., n 1 Z, K n, n + 1,... 7
Tego typu ubezpieczenia są powszechnie stosowane przy spłacie kredytów (o ile dług, zgodnie z planem amortyzacji, również maleje liniowo). Mamy: n 1 (DA) 1 x:n (n k)υ k+1 kp x q x+k, k (DA) 1 x:n A1 x:n + A1 x:n 1 + A1 x:n 1 + + A1 x:1. Załóżmy teraz, że suma ubezpieczenia jest płatna w chwili śmierci, tj. Z c(t )υ T. Jeśli suma ubezpieczenia rośnie corocznie, a dokładniej c(t) [t + 1], to Z (K + 1)υ T. Aby wyliczyć składkę (IĀ) x należy obliczyć wartość oczekiwaną zmiennej: Z (K + 1)υ K+1 (1 + r) 1 S. Przy Założeniu a zmienne K i S są niezależne oraz E((1 + r) 1 S ) r δ, zatem (IĀ) x r δ (IA) x. W sytuacji, gdy suma ubezpieczenia jest zwiększana q razy w roku, za każdym razem o 1 q, mamy: Z (K + S (q) )υ T, i po rachunkach otrzymamy: 2.2. Wzory rekurencyjne Wykażemy, że D o w ó d. (I (q) Ā) x (IĀ) x Āx + r d(q) d (q) δ A x. A x A x υq x + υa x+1 p x υ k+1 kp x q x+k k υq x + υ υq x + υ υ k kp x q x+k k1 υ k+1 k+1p x q x+k+1 k υq x + υp x υ k+1 kp x+1 q x+k+1 k υq x + υp x A x+1. Interpretacja: Składka netto dla x-latka jest wartością oczekiwaną zmiennej losowej określonej jako zdyskontowana suma ubezpieczenia w przypadku śmierci, i jako zdyskontowana składka netto dla x+1-latka w przypadku przeżycia. Przepisując wzór jako A x υa x+1 + υ(1 A x+1 )q x, widzimy, że składka A x+1 jest zachowana w obu przypadkach (życia lub śmierci), a ponadto w przypadku śmierci konieczna jest dodatkowa kwota 1 A x+1 aby wypłacić świadczenie. 8
Ogólniej, mamy dla k, 1, 2,...: A x+k υa x+k+1 υ(1 A x+k+1 )q x+k. Mnożąc przez υ k i sumując po k otrzymamy: A x υ k υ(1 A x+k+1 )q x+k. k Zauważmy, że υ(1 A x+k+1 )q x+k jest składką netto dla ubezpieczenia rocznego. 9