1. Ubezpieczenia życiowe



Podobne dokumenty
Ubezpieczenia życiowe

MODELE MATEMATYCZNE W UBEZPIECZENIACH

Ubezpieczenia na życie

3 Ubezpieczenia na życie

Elementy teorii przeżywalności

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

1. Przyszła długość życia x-latka

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

Składki i rezerwy netto

LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

Matematyka ubezpieczeń życiowych r.

XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

MODELE MATEMATYCZNE W UBEZPIECZENIACH

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2

MODELE MATEMATYCZNE W UBEZPIECZENIACH

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

Tablice trwania życia

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

UBEZPIECZENIA NA ŻYCIE

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

Matematyka Finansowa i Ubezpieczeniowa Ubezpieczenia na Życie

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA

OGÓLNE RENTY ŻYCIOWE

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

1 Elementy teorii przeżywalności

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

1 Elementy teorii przeżywalności

Matematyka ubezpieczeń życiowych r.

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

1 Renty życiowe. 1.1 Podstawowe renty życiowe

Elementy matematyki finansowej

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.

LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

Elementy teorii przeżywalności

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

ROZDZIAŁ 5. Renty życiowe

XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń na życie. Piotr Kowalski

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ

Rachunek prawdopodobieństwa i statystyka

1 Funkcja użyteczności

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

Matematyka ubezpieczeń majątkowych r.

Ubezpieczenia majątkowe

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka ubezpieczeń majątkowych r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Agata Boratyńska Statystyka aktuarialna... 1

Transkrypt:

1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas wypłaty i kwota wypłaty mogą być także zmiennymi losowymi. Wartość teraźniejszą wypłaty oznaczamy Z; jest ona obliczana na bazie ustalonej stopy procentowej r (tzw. techniczna stopa procentowa). Oczekiwana wartość teraźniejsza wypłaty, E(Z), nazywana jest jednorazową składką netto (net single premium). Ta składka jednak nie odzwierciedla ryzyka, które ponosi ubezpieczyciel. Aby to ryzyko oszacować potrzebne są inne charakterystyki zmiennej losowej Z, np. wariancja. 1.1. Podstawowe typy ubezpieczeń Podstawowymi typami ubezpieczeń są ubezpieczenia na życie i czasowe ubezpieczenia na życie (ang.: whole life insurance, term insurance). Rozważmy ubezpieczenie na życie, tzn. takie, które wypłaca 1 jp. na koniec roku śmierci. Tak więc kwota wypłaty jest ustalona, ale moment wypłaty K + 1 jest losowy. Wartość teraźniejsza wynosi Z υ K+1. Zmienna Z przyjmuje wartości υ, υ 2, υ 3,... i rozkład zmiennej Z jest określony rozkładem K: Pr(Z υ k+1 ) Pr(K k) k p x q x+k, dla k, 1, 2,.... Jednorazową składkę netto (JSN) oznaczymy A x : A x E[υ K+1 ] υ k+1 kp x q x+k. k Wariancję zmiennej Z obliczymy ze wzoru: Var(Z) E(Z 2 ) (A x ) 2. Ponieważ υ e δ, gdzie δ jest intensywnością oprocentowania, więc E(Z 2 ) E(υ 2(K+1) ) E(e 2δ(K+1) ), a więc jest to jednorazowa składka netto obliczona przy dwukrotnie większej intensywności oprocentowania. Zatem obliczenie wariancji nie jest trudniejsze niż obliczenie składki netto. Przykład. Obliczyć A 3, jeżeli czas życia spełnia prawo de Moivre a z ω 1, tzn. T 3 ma rozkład jednostajny na przedziale [, 7] oraz υ, 95 (odpowiada to r 5, 26%). Ponieważ Pr(K k) 1 7, więc A 3 1 7 69 k,95 k+1 1,95,95 71, 2639. 7,5 Ubezpieczenie, które zapewnia wypłatę tylko wtedy, gdy śmierć nastąpi w ciągu n lat nazywamy czasowym (terminowym) ubezpieczeniem na życie z czasem trwania n. Np. 1 jp. jest wypłacana tylko, gdy śmierć nastąpi w ciągu pierwszych n lat; terminem wypłaty jest koniec roku śmierci. Mamy zatem: υ K+1 dla K, 1,..., n 1 Z dla K n, n + 1,... Składkę netto oznaczymy A 1 x:n. n 1 A 1 x:n υ k+1 kp x q x+k. k 1

Tak jak poprzednio, drugi moment E(Z 2 ) jest równy jednorazowej składce przy podwojonej intensywności oprocentowania, co wynika z tego, że: Z 2 e 2δ(K+1) dla K, 1,..., n 1 dla K n, n + 1,... 1.2. Ubezpieczenie na dożycie Ubezpieczenie na dożycie (ang.: pure endowment) z czasem trwania n zapewnia wypłatę sumy ubezpieczenia tylko wtedy, gdy ubezpieczony żyje po n latach. Wartość teraźniejsza wypłaty wynosi więc: dla K, 1,..., n 1 Z υ n dla K n, n + 1,... Składkę netto oznaczamy teraz A 1 x:n. Wariancja zmiennej Z ma wartość A 1 x:n υn np x. Var(Z) E(Z 2 ) (EZ) 2 υ 2n np x υ 2n np 2 x υ 2n np x nq x. 1.3. Ubezpieczenie na życie i dożycie W ubezpieczeniu na życie i dożycie (ang.: endowment) suma ubezpieczenia jest płatna na koniec roku śmierci, jeśli ta nastąpi w ciągu n lat, lub na koniec n-tego roku: υ K+1 dla K, 1,..., n 1 Z υ n dla K n, n + 1,... Jednorazową składkę netto oznaczamy A x:n. Jak widać, zmienna Z jest sumą zmiennych odpowiadających ubezpieczeniu na życie (Z 1 ) i ubezpieczeniu na dożycie (Z 2 ): Z Z 1 + Z 2. Zatem oraz Ale A x:n A 1 x:n + A 1 x:n, Var(Z) Var(Z 1 ) + 2Cov(Z 1, Z 2 ) + Var(Z 2 ). Cov(Z 1, Z 2 ) E[(Z 1 E(Z 1 ))(Z 2 E(Z 2 ))] Zatem ostatecznie E(Z 1 Z 2 Z 1 E(Z 2 ) E(Z 1 )Z 2 + E(Z 1 )E(Z 2 )) E(Z 1 Z 2 ) E(Z 1 )E(Z 2 )) E(Z 1 )E(Z 2 ) A 1 x:n A 1 x:n. Var(Z) Var(Z 1 ) + Var(Z 2 ) 2A 1 x:n A 1 x:n. Stąd wynika, że ryzyko przy sprzedaży ubezpieczenia na życie i dożycie jest mniejsze niż przy sprzedaży ubezpieczenia na życie jednej osobie, a na dożycie drugiej. Uwaga. Zakładamy (dla prostoty), że suma ubezpieczenia wynosi 1. Gdyby suma wynosiła C, to jednorazową składkę netto należy pomnożyć przez C, a wariancję przez C 2. Rozważmy jeszcze bezterminowe ubezpieczenia na życie odroczone na m lat: dla K, 1,..., m 1 Z υ K+1 dla K m, m + 1,... 2

Składkę dla tego ubezpieczenia oznaczamy m A x. Mamy oraz także m A x m p x υ m A x+m, m A x A x A 1 x:m. Tak jak w przypadku zwykłym (bez odroczenia) drugi moment E(Z 2 ) równy jest jednorazowej składce netto przy dwukrotnie większej intensywności oprocentowania. 1.4. Ubezpieczenie płatne w momencie śmierci Do tej pory zakładaliśmy, że suma ubezpieczenia jest płatna na koniec roku śmierci. To założenie pozwala na wyprowadzenie wzorów bezpośrednio z tablic trwania życia, ale nie jest realistyczne. Załóżmy teraz, że wypłata następuje w momencie śmierci, tj. w chwili T. Wartością bieżącą kwoty 1 płatną w momencie T jest Z υ T. Składkę netto dla tego ubezpieczenia oznaczamy Āx. Ponieważ, jak wiemy: tj. g(t) t p x µ x+t, więc Pr(t < T < t + dt) t p x µ x+t dt, Ā x υ t tp x µ x+t dt. Przykład. W ubezpieczeniu x-latka wypłata kwoty 1 następuje w momencie śmierci, i wiadomo, że odchylenie standardowe wartości obecnej równa się JSN dla tego ubezpieczenia. Obliczyć tę składkę przy założeniu, że długość życia ma rozkład wykładniczy. oraz Ā x υ t tp x µ x+t dt e δt e µt µdt µ µ + δ, ) 2 Var(Z) 2 µ ( µ ) 2. Ā x (Āx µ + 2δ µ + δ Z równości odchylenia standardowego i JSN mamy: skąd Zatem µ ( µ ) 2 ( µ ) 2, µ + 2δ µ + δ µ + δ µ δ 2 1. Ā x µ µ µ + δ δ 2 1 µ δ + 1, 2929. 2 1 + 1 Praktyczny wzór przybliżony dla Āx można znaleźć zakładając, że u q x jest liniową funkcją u, dla < u < 1 (Założenie a). Wtedy, ponieważ T K + S (K + 1) (1 S), oraz z założenia K i S są niezależne i S ma rozkład jednostajny, więc υ T υ K+1 υ (1 S) υ K+1 (1 + r) 1 S, a ponieważ E((1 + r) 1 S ) (1 + r) u du s 1 r δ, 3

zatem ostatecznie Ā x E(υ K+1 )E((1 + r) 1 S ) r δ A x. Podobny wzór można wyprowadzić dla ubezpieczeń terminowych. Dla ubezpieczenia na życie i dożycie czynnik r δ pojawia się tylko w części dotyczącej ubezpieczenia terminowego: Ā x:n Ā1 x:n + A 1 x:n r δ A1 x:n + A 1 x:n A x:n + ( r δ 1)A1 x:n. 1.5. Ubezpieczenie płatne na koniec miesiąca śmierci Załóżmy teraz, że suma ubezpieczenia jest płatna na koniec m-tej części roku (np. na koniec miesiąca), w której następuje śmierć, tj. w chwili K +S (m), gdzie S (m) 1 [ms + 1], m (czyli S (m) otrzymujemy z S przez zaokrąglenie w górę do następnej wielokrotności liczby 1 m ). Zatem dla ubezpieczenia na życie o sumie 1 mamy: Z υ K+S(m). Zakładając, że u q x jest liniowe dla < u < 1 (Założenie a), mamy, analogicznie jak wyżej K + S (m) (K + 1) (1 S (m) ), E((1 + r) 1 S(m) ) 1 m (1 + r) 1 k (m) m s r m 1 r. (m) Otrzymujemy: k1 ( A (m) x E(υ K+1 )E (1 + r) 1 S(m)) r r A x. (m) Przy m mamy znaną już równość: Ā x r δ A x. Przykład. Za jednorazową składkę netto można kupić polisę wypłacającą kwotę K na koniec roku śmierci lub polisę o tej samej wartości płatną na koniec kwartału śmierci. Techniczna stopa procentowa wynosi 5%. O ile procent droższa jest druga polisa? Ponieważ A (4) x r A x r, (4) więc Zatem polisa jest droższa o 1,86%. A (4) x, 5 A x 4( 4 1, 186. 1, 5 1) 2. Ogólne typy ubezpieczeń życiowych Rozważmy ubezpieczenie, w którym wypłata jest zmienna i załóżmy, że suma ubezpieczenia jest płatna na koniec roku śmierci. Jeżeli c j jest sumą ubezpieczenia dla j-tego roku, to Z c K+1 υ K+1. 4

Rozkład zmiennej Z, składkę netto i wyższe momenty tej zmiennej łatwo obliczyć. Mamy: E(Z h ) c h k+1υ h(k+1) kp x q x+k, h 1, 2,.... k Można takie zmienne ubezpieczenie traktować jako kombinację odroczonych ubezpieczeń na życie, z których każde ma stałą wartość. Zatem E(Z) c 1 A x + (c 2 c 1 ) 1 A x + (c 3 c 2 ) 2 A x +... W przypadku ubezpieczenia terminowego: ck+1 υ Z K+1 dla K, 1,..., n 1 dla K n, n + 1,... To ostatnie ubezpieczenie można także przedstawić jako kombinację ubezpieczeń czasowych rozpoczynających się teraz: E(Z) c n A 1 x:n + (c n 1 c n )A 1 x:n 1 + + (c 2 c 3 )A 1 x:2 + (c 1 c 2 )A 1 x:1. Takie równości mogą być przydatne do obliczenia składki netto, ale nie do obliczenia wyższych momentów Z. W przypadku ubezpieczeń płatnych w chwili śmierci, sumę ubezpieczenia traktujemy jako funkcję c(t), t. Zatem Jednorazowa składka netto wynosi: E(Z) Z c(t )υ T. c(t)υ t tp x µ x+t dt. Przykład. Na osobę w wieku x lat wystawiono bezterminową polisę dającą wypłatę 16 w momencie śmierci. Dalsze trwanie życia x-latka opisuje funkcja gęstości t+1 f T (t) 6 gdy t 1 poza tym Wyznacz jednorazową składkę netto przy natężeniu oprocentowania δ, 2. Rozwiązanie. 16Āx 16,2t t+1 e 6 d t 2 1 75 e,2t (t + 1) d t 2 75 ( 5)(t + 15)e,2t 1 2 46 3e 2. 2 Przykład. Na x-latka wystawiono polisę, która po 1 latach odroczenia daje 4-letnie ubezpieczenie na życie ze świadczeniem w wysokości 1, płatnym w momencie śmierci. Wyznacz wariancję wypłat z tej polisy według ich wartości na moment wystawienia polisy, jeśli: (i) natężenie zgonów jest stałe: µ x+t, 5; (ii) natężenie oprocentowania wynosi δ, 5. Wartość obecna wypłaty jest zmienną losową 1Z, gdzie: υ T gdy 1 T < 5 Z poza tym Obliczamy momenty zmiennej: EZ 5 1 e,5t e,5t, 5dt 1 2 (e 1 e 5 ), 5

Zatem 5 E(Z 2 ) e,1t e,5t, 5dt 1 3 (e 1,5 e 7,5 ). 1 Var(1Z) 25( 4 3 e 1,5 4 3 e 7,5 e 2 + 2e 6 e 1 ) 4,16. Rzeczywiste obliczenie składki można zredukować do obliczeń w modelu dyskretnym. Mamy: E(Z) E(Z K k) Pr(K k) k E(c(k + S)υ k+s K k) Pr(K k) k E(c(k + S)(1 + r) 1 S K k)υ k+1 Pr(K k). k Zatem określając otrzymujemy: c k+1 E[c(k + S)(1 + r) 1 S K k], E(Z) c k+1 υ k+1 kp x q x+k. k Oczywiście aby obliczyć c k+1 potrzebna jest znajomość rozkładu warunkowego S pod warunkiem K k. Właściwymi założeniami umożliwiającymi te obliczenia są Założenie a i Założenie b. Przy Założeniu a, tzn. gdy u q x+k jest liniowe, µ x+k+u q x+k 1 uq x+k q x+k up x+k, mamy ( ) c k+1 c(k + u)(1 + r) 1 u k+up x µ x+k+u du : ( k p x q x+k ) 1 q x+k 1 q x+k c(k + u)(1 + r) 1 u up x+k µ x+k+u du Zał.a c(k + u)(1 + r) 1 u q x+k du c(k + u)(1 + r) 1 u du. Założenie b, tj. µ x+k+u µ x+k+ 1 2, up x+k (p x+k ) u daje natomiast: c k+1 1 q x+k c(k + u)(1 + r) 1 u (p x+k ) u µ x+k+ 1 2 du c(k + u)(1 + r) 1 u (p x+k) u µ x+k+ 1 2 du. Przykładowo, załóżmy, że suma ubezpieczenia rośnie wykładniczo, tzn.: Wtedy przy Założeniu a otrzymujemy: c k+1 c(t) e τt. e τ(k+u) (1 + r) 1 u du e τk+δ e (τ δ)u du e τk eδ e τ δ τ. Zauważmy, że dla τ otrzymujemy znany wynik c k+1 eδ 1 δ r δ. 6

Przy Założeniu b : c k+1 e τ(k+u) e µ δ(1 u) x+k+ 1 2 e u ln p x+k du µ x+k+ 1 2 e τk+δ e u(τ δ+ln p x+k) du µ x+k+ 1 2 e τk+δ 1 τ δ + ln p x+k [e τ δ+ln p x+k 1] µ x+k+ 1 2 e τk e τ p x+k e δ τ δ + ln p x+k µ x+k+ 1 2 e τk e δ p x+k e τ. δ τ µ x+k+ 1 2 Wzory obowiązują oczywiście tylko wtedy, gdy mianowniki są niezerowe. Jeżeli np. δ τ, to przy Założeniu a mamy c k+1 e δ(k+u) e δ(1 u) du e δ(k+1) du e δ(k+1). 2.1. Standardowe typy ubezpieczeń życiowych ze zmienną sumą Będziemy zakładać, że suma ubezpieczenia jest płatna na koniec roku śmierci. Rozważmy standardowe rosnące ubezpieczenie na życie, w którym c j j. Wartość teraźniejsza wypłaty jest zmienną losową: Jednorazowa składka netto wynosi: (IA) x Z (K + 1)υ K+1. (k + 1)υ k+1 kp x q x+k. k W przypadku n-letniego ubezpieczenia terminowego: (K + 1)υ K+1, K, 1,..., n 1 Z, K n, n + 1,... a składka netto wynosi: n 1 (IA) 1 x:n (k + 1)υ k+1 kp x q x+k. k Tę składkę można potraktować jako sumę składek dla ubezpieczeń odroczonych: (IA) 1 x:n A x + 1 A x + + n 1 A x n n A x, lub też (IA) 1 x:n na1 x:n A1 x:n 1 A1 x:n 2 A1 x:1. Zauważymy też, że składka dla n-letniego ubezpieczenia na życie i dożycie wynosi: (IA) x:n (IA) 1 x:n + na 1 x:n W standardowym ubezpieczeniu malejącym suma ubezpieczenia zmniejsza się od n do. Dokładniej, wartość teraźniejsza wypłaty to: (n K)υ K+1, K, 1,..., n 1 Z, K n, n + 1,... 7

Tego typu ubezpieczenia są powszechnie stosowane przy spłacie kredytów (o ile dług, zgodnie z planem amortyzacji, również maleje liniowo). Mamy: n 1 (DA) 1 x:n (n k)υ k+1 kp x q x+k, k (DA) 1 x:n A1 x:n + A1 x:n 1 + A1 x:n 1 + + A1 x:1. Załóżmy teraz, że suma ubezpieczenia jest płatna w chwili śmierci, tj. Z c(t )υ T. Jeśli suma ubezpieczenia rośnie corocznie, a dokładniej c(t) [t + 1], to Z (K + 1)υ T. Aby wyliczyć składkę (IĀ) x należy obliczyć wartość oczekiwaną zmiennej: Z (K + 1)υ K+1 (1 + r) 1 S. Przy Założeniu a zmienne K i S są niezależne oraz E((1 + r) 1 S ) r δ, zatem (IĀ) x r δ (IA) x. W sytuacji, gdy suma ubezpieczenia jest zwiększana q razy w roku, za każdym razem o 1 q, mamy: Z (K + S (q) )υ T, i po rachunkach otrzymamy: 2.2. Wzory rekurencyjne Wykażemy, że D o w ó d. (I (q) Ā) x (IĀ) x Āx + r d(q) d (q) δ A x. A x A x υq x + υa x+1 p x υ k+1 kp x q x+k k υq x + υ υq x + υ υ k kp x q x+k k1 υ k+1 k+1p x q x+k+1 k υq x + υp x υ k+1 kp x+1 q x+k+1 k υq x + υp x A x+1. Interpretacja: Składka netto dla x-latka jest wartością oczekiwaną zmiennej losowej określonej jako zdyskontowana suma ubezpieczenia w przypadku śmierci, i jako zdyskontowana składka netto dla x+1-latka w przypadku przeżycia. Przepisując wzór jako A x υa x+1 + υ(1 A x+1 )q x, widzimy, że składka A x+1 jest zachowana w obu przypadkach (życia lub śmierci), a ponadto w przypadku śmierci konieczna jest dodatkowa kwota 1 A x+1 aby wypłacić świadczenie. 8

Ogólniej, mamy dla k, 1, 2,...: A x+k υa x+k+1 υ(1 A x+k+1 )q x+k. Mnożąc przez υ k i sumując po k otrzymamy: A x υ k υ(1 A x+k+1 )q x+k. k Zauważmy, że υ(1 A x+k+1 )q x+k jest składką netto dla ubezpieczenia rocznego. 9