Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów = A-Z Symbol jądra: Podstawy fizyki jądrowej - B.Kamys 1
Izotopy,izotony i izobary Izotopy jądra o tym samym Z lecz różnych A,N Izotony jądra o tym samym N lecz różnych A,Z Izobary jądra o tym samym A lecz różnych N,Z Izobary mające taką samą masę (różniącą się tylko o energię oddziaływania elektromagnetycznego) i mające taki sam spin oraz parzystość mogą zachowywać się identycznie jeżeli chodzi o silne oddziaływanie. Mówimy wtedy, że tworzą one multiplet izospinowy o liczebności 2T+1, gdzie T to tzw. izospin. Składniki multipletu różnią się rzutem izospinu T 3 przyjmującym 2T+1 wartości (-T, -T+1,, T-1, T). Neutron i proton tworzą multiplet o izospinie T=1/2 oraz rzutach T 3 (n)=+1/2, T 3 (p)=-1/2 Podstawy fizyki jądrowej - B.Kamys 2
c.d. izospin Izospin jądra T (lub I) to suma wektorowa izospinów nukleonów UWAGA: W fizyce cząstek używa się innej konwencji znaków rzutu izospinu. Izospin oznacza się wtedy zwykle literą I i neutron ma rzut I 3 =-1/2a proton I 3 =+1/2. Ogólniej : składnik multipletu izospinowego o najmniejszym ładunku (uwzględniając znak ) ma I 3 = - I a kolejne następne mają trzecią składową powiększoną o 1 (I 3 = -I+1, -I+2, itd.) UWAGA: Jądra atomowe w stanie podstawowym mają prawie zawsze izospin równy trzeciej składowej T=T 3 =(N-Z)/2 a jądra w stanie wzbudzonym mają izospin NIE MNIEJSZY od stanu podstawowego różniący się o liczbę całkowitą ( T 3 T A/2) Podstawy fizyki jądrowej - B.Kamys 3
Multiplet izospinowy dla A=10 Podstawy fizyki jądrowej - B.Kamys 4
Zachowywane liczby kwantowe Π- parzystość (wartość własna operatora odbicia przestrzennego) J spin (wektorowa suma spinów nukleonów i ich krętów orbitalnych) W układzie izolowanym (a jądro lub oddziałujące jądra zwykle można za taki uważać) zachowywana jest zawsze energia, pęd i kręt (moment pędu) Oddziaływanie silne zachowuje dodatkowo Π, T i T 3 Elektromagnetyczne zachowuje Π i T 3 ale NIE T Słabe zachowuje T 3 ale NIE zachowuje Π i T Podstawy fizyki jądrowej - B.Kamys 5
Gęstość rozkładu masy w jądrze atomu Dla A<5 funkcja Gaussa Dla 4<A<30 dno butelki Dla A>30 stała w centrum Podstawy fizyki jądrowej - B.Kamys 6
Średni promień kwadratowy rozkładu ładunku Pierwiastek ze średniego promienia kwadratowego Wzór dla A<30: Wzór dla A>30: Podstawy fizyki jądrowej - B.Kamys 7
Średni promień kwadratowy rozkładu masy Na rysunku pokazano pierwiastek ze średniego promienia kwadratowego masy A 1/3 i ładunku (2Z) 1/3 Podstawy fizyki jądrowej - B.Kamys 8
Wyznaczanie rozmiarów Rozkład masy: Rozpraszanie hadronów (protony, cz. alfa): Poziomy atomów pionowych Emisja cząstek alfa Rozkład ładunku: Rozpraszanie leptonów (elektrony) Przesunięcia izotopowe poziomów energetycznych atomów (atomy jednoelektronowe i atomy mionowe) dla rozkładu ładunku Różnica energii jąder zwierciadlanych Podstawy fizyki jądrowej - B.Kamys 9
Rozpraszanie hadronów Historycznie pierwsza metoda, która pozwoliła na odkrycie jądra atomu Wzór Rutherforda Podstawy fizyki jądrowej - B.Kamys 10
Uwzględnienie silnego oddziaływania Potencjał hadron-jądro fenomenologiczny lub wyliczony mikroskopowo ( Model optyczny ) Korzysta ze znanych oddziaływań nukleon-nukleon oraz rozkładów gęstości (masy) cząstki i jądra atomu Podstawy fizyki jądrowej - B.Kamys 11
Atomy pionowe Pion o ładunku ujemnym (-e) zachowuje się w polu kulombowskim jądra jak ciężki elektron Orbita Bohra a 0 elektronu w atomie wodoru ma promień odwrotnie proporcjonalny do masy elektronu: Pion ma masę ok. 139,6 MeV/c 2 (273 razy większą niż elektron) więc część czasu spędza wewnątrz jądra Oddziaływanie silne zmienia energię poziomu a możliwość pochłonięcia pionu powoduje zwiększenie szerokości naturalnej poziomu Podstawy fizyki jądrowej - B.Kamys 12
Rozpad alfa Emisja cząstki alfa jest faworyzowana energetycznie bo jej masa i masa jądra końcowego jest mniejsza od masy jadra emitującego cząstkę alfa Rozpad zachodzi po pewnym czasie silnie zależnym od promienia bariery potencjału (zmiana promienia o 5% zmienia czas życia 10 5 razy) Podstawy fizyki jądrowej - B.Kamys 13