SZKOŁĄ PODSTAWOWA / KLASA - 4

Podobne dokumenty
IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH F - M A T -

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 12 marca 2009 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 lutego 2016 r. zawody III stopnia (wojewódzkie)

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut

Konkurs dla gimnazjalistów Etap szkolny 9 stycznia 2013 roku

Egzamin w klasie III gimnazjum Część matematyczna

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3

WOJEWÓDZKI KONKURS MATEMATYCZNY

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja

Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2014/2015 ETAP SZKOLNY 4 listopada 2014 roku

Życzymy powodzenia w rozwiązywaniu zadań!

KONKURS MATEMATYCZNY

~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy:

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

WOJEWÓDZKI KONKURS MATEMATYCZNY

Test na koniec nauki w klasie trzeciej gimnazjum

13:00 13:30 14:00 14:30 15:00 15:30 godzina. Które z poniższych zdań jest fałszywe? Wybierz właściwą odpowiedź spośród podanych.

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

Konkurs dla gimnazjalistów Etap szkolny 5 grudnia 2014 roku

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

wynosiła jest budowlane do

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/ minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Zadania z ułamkami. Obliczenia czasowe

~ A ~ PANGEA KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań

TABELA ODPOWIEDZI. kod ucznia

KONKURS MATEMATYCZNY DLA KLASY IV

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

Konkurs dla gimnazjalistów Etap II 14 lutego 2013 roku

Konkurs dla gimnazjalistów i uczniów klas VII szkół podstawowych Etap szkolny 8 grudnia 2017 roku

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

Test z matematyki. Małe Olimpiady przedmiotowe

EGZAMIN WSTĘPNY Z MATEMATYKI

~ A ~ 1. Jaka cyfra stoi na dwutysięcznym miejscu po przecinku w rozwinięciu dziesiętnym ułamka a. 1 b. 2 c. 5 d. 7 e. 8

WYPEŁNIA KOMISJA KONKURSOWA

WOJEWÓDZKI KONKURS MATEMATYCZNY

Konkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku

Matematyka test dla uczniów klas piątych

PRÓBNY EGZAMIN GIMNAZJALNY

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00

KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja

Zadanie 1.2. Zadanie 1.4. Zadanie 1.6. Zadanie 1.8

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

WOJEWÓDZKI KONKURS MATEMATYCZNY

Konkurs dla gimnazjalistów Etap szkolny 11 grudnia 2015 roku

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

KONKURS PRZEDMIOTOWY Z MATEMATYKI

Małopolski Konkurs Matematyczny r. etap szkolny

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

Konkurs Matematyczny MERIDIAN

CO DWIE GŁOWY TO NIE JEDNA

Konkurs przedmiotowy z matematyki dla uczniów szkół podstawowych 23 marca 2018 r. zawody II stopnia (rejonowe)

Małopolski Konkurs Matematyczny r. etap szkolny

XIV WOJEWÓDZKI KONKURS MATEMATYCZNY

Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Czas 90 minut

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

GSP075 Pakiet. KArty pracy. MateMatyka

Konkurs dla gimnazjalistów Etap II 8 lutego 2017 roku

MISTRZ MATEMATYKI. Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 2001.

Czas na rozwiązanie: 120 min.

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Transkrypt:

meridian.edu.pl SZKOŁĄ PODSTAWOWA / KLASA - 4 Wtorek, 3 marca 05 Czas Rozpoczęcia: 09:00 Czas pracy: 45 minut W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. POWODZENIA! vistula.edu.pl. Lizak i cukierki kosztują 6zł, cukierki i tort kosztują 6zł, a tort i lizak kosztują 4zł. Ile muszę zapłacić, żeby kupić lizaka, cukierki i tort? a. 8 zł b. 9 zł c. 0 zł d. zł e. zł. W klasie Bartka /3 dzieci ma brata, / dzieci ma siostrę, a /3 dzieci nie ma ani brata ani siostry. Jaka część dzieci w klasie Bartka ma zarówno brata jak i siostrę? a. / b. /3 c. /4 d. /6 e. / 5. Przed rozpoczęciem spotkania samorządu szkolnego każdy z 5 uczniów wchodzących w jego skład uściskał dłonie wszystkim innym uczniom z samorządu. Ile wykonano uścisków dłoni? b. 0 d. 0 e. 5 6. Na ile sposobów może przejść mrówka siedząca w wierzchołku A czworościanu na sąsiedni wierzchołek B idąc wyłącznie po jego krawędziach, ale tak żeby dwa razy nie przechodzić przez ten sam wierzchołek? d. 6 e. 7 3. W hotelu Baryłka ma sześć razy więcej pokoi niż hotel Amigo i trzy razy mniej pokoi niż hotel Cezar. Ile razy więcej jest pokoi w hotelu Cezar niż w hotelu Amigo? a. razy więcej b. 3 razy więcej c. 6 razy więcej d. razy więcej e. 8 razy więcej 4. Ile dzielników naturalnych ma liczba 36? 7. Ile razy większa jest liczba 4 od liczby? b. c. 8 d. e. 4

8. W ciągu godziny sprawny malarz może wykonać aż 5 portretów albo namalować dwa pejzaże. Ile czasu zajęłoby mu wykonanie 7 portretów i namalowanie jednego pejzażu? a. godzinę 30 minuty b. godzinę 48 minuty c. godzinę 54 minuty d. równo godziny e. godziny 4 minuty 3. Ile miała lat w 03 roku osoba, która w roku 04 miała tyle lat, co suma cyfr roku urodzenia? 9. Jaka jest maksymalna wartość sumy x + y, jeżeli x y = 36. x i y są liczbami naturalnymi. b. 8 c. 0 d. 37 e. 45 4. Kwotę 500 zł dzielimy pomiędzy Asią, Basią i Kasią tak, że Asia dostaje 0 zł więcej od Basi a Kasia dostaje tyle samo, razem Asia i Basia. Jaką kwotę dostała Asia? a. 0 b. 30 0 d. 30 e. 50 0. Ile razy mniejsza jest suma ułamków + od liczby? 4 8 a. b. 8 c. d. 4 e.. Ile wynosi różnica między największą trzycyfrową liczbą a najmniejszą trzycyfrową liczbą? Tworząc trzycyfrowe liczby możemy użyć cyfr 7,, 0, 5 przy czym cyfry nie mogą się powtarzać 5. Suma cyfr pewnej liczby to 58. Ile cyfr może mieć minimalnie ta liczba? 47 b. 545 0 d. 447 e. 505. Kwotę 6 zł 83 gr odliczamy monetami. Najmniejsza liczba monet to: Proszę przenieść odpowiedzi do karty odpowiedzi!!! a.

meridian.edu.pl SZKOŁĄ PODSTAWOWA / KLASA - 5 Wtorek, 3 marca 05 Czas Rozpoczęcia: 09:00 Czas pracy: 45 minut W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. POWODZENIA! vistula.edu.pl. Król Karol podarował po kolei wszystkim swoim 5 córkom koraliki, przy czym pierwszej podarował jeden koralik, a każda następna dostała dwa razy więcej niż poprzednia. Ile łącznie koralików podarował król Karol? c. 3 d. 3 e. 6 5. Ile razy pomiędzy godziną 0:0 a 3:59 wskazówka godzinowa mija wskazówkę minutową? a. b. c. 3 d. 4 e. 5. Suma sześciu kolejnych liczb całkowitych wynosi 75. Największa z nich to: a. b. 3 c. 4 d. 5 e. 6 3. Która z następujących liczb nie jest podzielna przez 3? a. 7 b. 73 c. 835 d. 964 e. 3456 4. Ile wynosi + 4 + 3 6 + 4 8? 6. Tomek, Janek i Filip mają razem 9 lat. Ile będą mieli razem za 5 lat? 4 b. 36 c. 38 d. 4 e. 44 7. Rolnik hoduje w ogródku kapustę, jednak z tegorocznych zbiorów nic nie zostało. Mrozy zniszczyły /3 upraw, a ostatnie 6 główek kapusty zjadła żarłoczna koza rolnika. Ile główek kapusty miał rolnik przed nadejściem mrozów? b. 9 c. d. 6 e. 8 a. 4 b. c. d. e. 4

8. Na ile sposobów można pomalować trójkąt, kwadrat i koło mając do dyspozycji trzy farby: żółtą, czerwoną i zieloną? Figurę można pomalować tylko jednym kolorem, ale kilka figur może zostać pomalowana tym samym kolorem. a. 9 b. 5 c. d. 4 e. 7 9. Ile wynosi a. b. 04 05 c. 05 d. e. 05 04 3 4 04? 3 4 5 05. = 4543 b. 345543 c. 3456543 d. 34566543 e. 345676543 3. Jakie jest pole zacieniowanej figury? a. 6 d. 30 e. 49 4. Ile wynosi x? + 6 = 3 3+ x 0. Jaka jest największe możliwe pole prostokątnej działki, którą można otoczyć ogrodzeniem o długości 0m? a. 0 m m m d. 7 m e. 30 m. Jaka jest suma cyfr liczby mniejszej od 00, podzielnej przez, 3 i 5? c. 0 d. e. 5 a. 6 c. 3 d. e. 5. Wiek Pana Kowalskiego jest o 6 większy od sumy wieku dwóch synów. Za ile lat różnica wieku pomiędzy Panem Kowalskim a sumą dwóch jego synów wyniesie 8? a. 8 b. c. 4 d. 36 e. 38 Proszę przenieść odpowiedzi do karty odpowiedzi!!!

meridian.edu.pl SZKOŁĄ PODSTAWOWA / KLASA - 6 Wtorek, 3 marca 05 Czas Rozpoczęcia: 09:00 Czas pracy: 45 minut W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. POWODZENIA! vistula.edu.pl. Małgosia gra z Jasiem w grę zgadnij liczbę. Polega ona na tym, że jeden gracz (np. Małgosia) wybiera pewną liczbę naturalną z przedziału od do 5, a drugi (np. Jaś) próbuje tą liczbę zgadnąć, po każdej nieudanej próbie dowiadując się czy szukana liczba jest wyższa czy niższa od tej, którą powiedział. O ile szans powinien poprosić Jaś Małgosię, żeby mieć pewność, że uda mu się wygrać? d. 6 e. 7. Jaka cyfra jest na trzecim miejscu w rozwinięciu dziesiętnym ułamka /7? a. b. c. 4 d. 5 e. 8 3. Która z następujących figur ma największe pole powierzchni? a. Trójkąt równoboczny boku b. Kwadrat o boku c. Sześciokąt foremny o boku d. Ośmiokąt foremny o boku e. Koło o promieniu 5. Do trzech szuflad losowo wkładamy kule w trzech kolorach: zielonym, żółtym i czerwonym. Ile co najmniej kul musimy włożyć, aby mieć pewność, że w co najmniej jednej szufladzie znajdą się dwie kule w tym samym kolorze? a. d. 0 e. 6. Słoń waży tyle, co dwie zebry, czyli tyle samo co zebra i dwa goryle. Ile razy cięższy jest słoń od goryla? a. b. c. 3 d. 4 e. 5 7. Bartek buduje trójkątną budowlę z klocków dodając kolejne pięta w sposób pokazany na poniższym rysunku. Ile łącznie kloców potrzebuje Bartek do zbudowania piramidy składającej się z n=0 klocków? 4. Ile jest liczb dwucyfrowych, których pierwiastek jest liczbą naturalną? d. 6 e. 7 a. 80 b. 00 c. 0 d. 5 e. 400

8. Gdyby Jasiowi udało się wyciągnąć ocenę z matematyki z piątki na szóstkę to średnia ocen w jego klasie podniosłaby się z 5.0 na 5.. Ile uczniów jest w klasie Jasia? b. 9 c. 0 d. 9 e. 0 9. Pewien śmiałek wyzwał na pojedynek trójgłową hydrę, wielkiego trójgłowego mitycznego potwora. Niestety po odcięciu dowolnej głowy w jej miejscu wyrastały dwie kolejne. Udało mu się łącznie czterokrotnie uciąć głowę hydrze, po czym uciekł przerażony. Ile głów miała hydra po tym pojedynku?. Które z poniższych wyrażen jest zawsze liczbą nieparzystą. Zakładamy, że x jest liczbą naturalną. a. x+ b. x(x -) c. x +x d. x +x+3 e. x- 3. Ile wynosi: a. 00 b. c. 00 d. e. 000 0,99+0,0099+0,000099 0,000099? d. 7 e. 4. Znajdź x + 3 x = 0. Cena butów zimowych spadła po sezonie o 0%. Obecnie można je kupić za 00 złotych. Jaka była ich cena w trakcie sezonu? a. 60 zł b. 0 zł c. 30 zł d. 40 zł e. 50 zł. Ile wynosi a? a. b. c. 3 d. 4 e. 5 5. Oblicz: 3 + 3 5 + 5 7 +... + 007 009 b. 3 c. d. e. 0 + + + a 3 4 : (3 ) = 3 3 00 ( ) a. 009 b. 008 009 c. 004 009 d. 009 008 e. 007 009 Proszę przenieść odpowiedzi do karty odpowiedzi!!!