4.1 Hierarchiczna budowa białek



Podobne dokumenty
Budowa aminokwasów i białek

Bioinformatyka. z sylabusu... (wykład monograficzny) wykład 1. E. Banachowicz. Wykład monograficzny Bioinformatyka.

Bioinformatyka. z sylabusu...

Materiały pochodzą z Platformy Edukacyjnej Portalu

Przegląd budowy i funkcji białek

Ogólna budowa aminokwasów

protos (gr.) pierwszy protein/proteins (ang.)

Struktura i funkcja białek (I mgr)

2. Produkty żywnościowe zawierające białka Mięso, nabiał (mleko, twarogi, sery), jaja, fasola, bób (rośliny strączkowe)

Informacje. W sprawach organizacyjnych Slajdy z wykładów

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

Bioinformatyka wykład 9

Do zapisu danych w pliku PDB używa się znaków ASCII o graficznej reprezentacji czyli:

Aminokwasy, peptydy i białka. Związki wielofunkcyjne

Bioinformatyka wykład 8

Białka - liniowe kopolimery. złożone z aminokwasów. Liczba rodzajów białek - nieznana

Slajd 1. Slajd 2. Proteiny. Peptydy i białka są polimerami aminokwasów połączonych wiązaniem amidowym (peptydowym) Kwas α-aminokarboksylowy aminokwas

Generator testów bioinformatyka wer / Strona: 1

Budowa aminokwasów i białek

Chemiczne składniki komórek

Właściwości fizykochemiczne białek

Oddziaływanie leków z celami molekularnymi i projektowanie leków

Bioinformatyka Laboratorium, 30h. Michał Bereta

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU KSZTAŁT BIAŁEK.

Modelowanie białek ab initio / de novo

WYKŁAD 4: MOLEKULARNE MECHANIZMY BIOSYNTEZY BIAŁEK. Prof. dr hab. n. med. Małgorzata Milkiewicz Zakład Biologii Medycznej.

Modelowanie białek ab initio / de novo

Substancje o Znaczeniu Biologicznym

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka II Modelowanie struktury białek

Elementy bioinformatyki. Aminokwasy, białka, receptory. Andrzej Bąk Instytut Chemii UŚ chemoinformatyka wykład 1

Bioinformatyka wykład 3.I.2008

Generator testów Biochemia wer / Strona: 1

Translacja i proteom komórki

Biologia medyczna II, materiały dla studentów kierunku lekarskiego

Biomolekuły (3) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. piątek, 7 listopada 2014 Biofizyka

Modelowanie białek ab initio / de novo

Część A wprowadzenie do programu Mercury

Bioinformatyka wykład 11, 11.I.2011 Białkowa bioinformatyka strukturalna c.d.

Bioinformatyka II Modelowanie struktury białek

Komputerowe wspomaganie projektowanie leków

Budowa i funkcje białek

Przegląd budowy i funkcji białek - od enzymów do prionów -

Oddziaływanie leków z celami molekularnymi i projektowanie leków

Wykład z Chemii Ogólnej

Model wiązania kowalencyjnego cząsteczka H 2

Ćwiczenie 5 Aminokwasy i białka

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk

SKŁAD CHEMICZNY ŻYWYCH ORGANIZMÓW

Projektowanie Nowych Chemoterapeutyków

Krystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji

- parametry geometryczne badanego związku: współrzędne i typy atomów, ich masy, ładunki, prędkości początkowe itp. (w NAMD plik.

Kwasy nukleinowe i białka

Wyznaczanie struktury długich łańcuchów RNA za pomocą Jądrowego Rezonansu Magnetycznego. Marta Szachniuk Politechnika Poznańska

Krystalografia. Typowe struktury pierwiastków i związków chemicznych

Structure and Charge Density Studies of Pharmaceutical Substances in the Solid State

Bioinformatyka wykład 8, 27.XI.2012

Modelowanie homologiczne

Podstawy projektowania leków wykład 12

Bioinformatyka wykład 10

Elementy teorii powierzchni metali

The influence of N-methylation on conformational properties of peptides with Aib residue. Roksana Wałęsa, Aneta Buczek, Małgorzata Broda

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie Wprowadzenie do biologicznych baz danych...

Dr. habil. Anna Salek International Bio-Consulting 1 Germany

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

prof. dr hab. Krzysztof Lewiński Kraków, Wydział Chemii Uniwersytetu Jagiellońskiego

Wydział Chemiczny Wybrzeże Wyspiańskiego 27, Wrocław. Prof. dr hab. Ilona Turowska-Tyrk Wrocław, r.

Wykorzystanie bazy Cambridge Structural Database w poszukiwaniu substancji hamujących aktywność enzymatyczną

MultiSETTER: web server for multiple RNA structure comparison. Sandra Sobierajska Uniwersytet Jagielloński

Scenariusz lekcji przyrody/biologii (2 jednostki lekcyjne)

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Notatki maturalne z biologii cz. 1

Chemiczne składniki komórek

SCENARIUSZ LEKCJI CHEMII LUB BIOLOGII Z WYKORZYSTANIEM FILMU SPOSÓB NA IDEALNĄ PIANĘ

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.

spektropolarymetrami;

Stany skupienia materii

Komputerowe wspomaganie projektowanie leków

Wstęp. Krystalografia geometryczna

Zagadnienia omawiane na wykładzie:

Informacje dotyczące pracy kontrolnej

Warszawa, 25 sierpnia 2016

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

RMSD - Ocena jakości wybranych molekularnych struktur przestrzennych

Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową

Webmobis platforma informatyczna do analizy białek

ODDZIAŁYWANIE KSENOBIOTYKÓW Z DNA

SESJA 5 STRUKTURA, MODYFIKACJE I FUNKCJE BIAŁEK WYKŁADY

Dokowanie molekularne. Andrzej Bąk Instytut Chemii UŚ chemoinformatyka wykład 1

Proteomika: umożliwia badanie zestawu wszystkich lub prawie wszystkich białek komórkowych

na podstawie artykułu: Modeling Complex RNA Tertiary Folds with Rosetta Clarence Yu Cheng, Fang-Chieh Chou, Rhiju Das

Molecular dynamics investigation of the structure-function relationships in proteins with examples

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

Wykład 9 Wprowadzenie do krystalochemii

Zasady obsadzania poziomów

Wymagania programowe: Gimnazjum chemia kl. II

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014

Transkrypt:

Spis treści 4.1 ierarchiczna budowa białek... 51 4.1.1 Struktura pierwszorzędowa... 51 4.1.2 Struktura drugorzędowa... 53 4.1.3 Struktura trzeciorzędowa... 60 4.1.4 Rodzaje oddziaływań stabilizujących strukturę... 61 4.1.5 Struktura czwartorzędowa... 67 4.1 ierarchiczna budowa białek 4.1.1 Struktura pierwszorzędowa Łańcuch polipeptydowy Strukturę jaką posiada natywne białko opisuje się w sposób hierarchiczny Struktura I-rzędowa: kolejność, sekwencja aminokwasów w łańcuchu (skład i kolejność kolejność decydują strukturze i funkcji) Podstawowa (pierwotna) informacja o białku zawarta jest w jego sekwencji, czyli kolejności aminokwasów w łańcuchu. Skład i kolejność aminokwasów odpowiadają za późniejszą funkcje i strukturę przestrzenną. To znaczy, że łańcuch polipeptydowy o określonej sekwencji w naturalnych warunkach utworzy zawsze taką samą cząsteczkę. Ten poziom opisu budowy nazywany jest strukturą I-rzędową białka, liniową lub jednowymiarową. Aminowasy połaczone są wiązaniem peptydowym w ustalonej kolejności. Sekwencję aminokwasową odczytuje sie zawsze od tzw. N-końca (wolna grupa aminowa) w kierunku-konca (wolna grupa karbosylowa (Rysunek) Skrypt Bioinformatyka DRAFT Strona 51

Rysunek. Łańcuch polipeptydowy i jego zapis w kodzie 3 i 1-literowym 4.1.1.1 Wiązanie peptydowe Aminokwasy łączą się w łańcuchy polipeptydowe. wiązanie peptydowe 2 + 3 N α + + 3 N α + 3 N α N - Rysunek Powstawanie wiązania peptydowego między dwoma cząsteczkami glicyny. - α - Łańcuch aminokwasów: 2-10 oligopeptyd, 10-100 polipeptyd, powyżej 100 reszt aminokwasowych białko. W nazwie oligopeptydów umieszcza się czasem przedrostek określający liczbę merów (di-, tri, tetra-, itd.), lub cyfrę arabską (2-, 3-, 4-, itd.) Skrypt Bioinformatyka DRAFT Strona 52

1.0 Å 1.23 Å a) b) R 1 + 3 N α N α N R 3 α N α R 2 R 4 - N- koniec - koniec Rysunek. a) 4-Alanina lub tetra-alanina, czyli łańcuch peptydowy złożony z czterech alanin., b) tetrapeptyd o sekwencji R 1 R 2 R 3 R 4, R i oznacza dowolną resztę aminokwasową. kąty walencyjne i długości wiązań R 2 N 3 + 121.1 o 123.2 o 121.9 o 115.6 o N 119.5 o 118.2 o R 1 119.5 o 4.1.2 Struktura drugorzędowa Struktura II- rzędowa białka dotyczy ułożenia w przestrzeni poszczególnych sąsiadujących ze sobą w sekwencji aminokwasów, zdefiniowana za pomocą trzech katów torsyjnych: φ,ψ i ω. Naturalnie skręcony lub rozciągnięty łańcuch białkowy tworzy regularne formy: helisy i β-struktury (struktury Skrypt Bioinformatyka DRAFT Strona 53

pofałdowanej kartki, β-arkusze), zwroty, oraz nieregularne pętle. Struktura stabilizowana jest głównie przez wiązania wodorowe. ztery atomy biorące udział w wiązaniu peptydowym (- α --N- α -) leżą zawsze w jednej płaszczyźnie. Kąt torsyjny ω (kąt obrotu) wokół tego wiązania wynosi ~180 o, utrzymując konformację TRANS. Pozostałe kąty φ (-N- α --N-) i ψ (--N- α --) mogą przyjmować różne wartości z określonych przedziałów (patrz Tabelka, i wykres Ramachandrana). 4.1.2.1 Kąty torsyjne Kąt torsyjny jest to kąt obrotu wokół wiązania 2-3 w łańcuchu utworzonym przez cztery połączone ze sobą atomy 1-2-3-4. W widoku wzdłuż wiązania 2-3, wiązanie 1-2 obraca się względem wiązania 3-4 (Rysunek). Zgodnie z przyjętą konwencją (Klyne&Prelog, 1960) [Klyne, W. and Prelog, V. 1960. Description of steric relationships across single bonds. Experientia 16:521--523.] A B D A B D Rysunek. Definicja kąta torsyjnego brót wokół wiązania opisany może zostać również za pomocą wartości kąta dwuściennego (dihedral angle). Analogicznie jak w przypadku kąta torsyjnego kąt dwuścienny definiuje się w oparciu u cztery atomy. Trzy pierwsze (-A-B--) wyznaczają jedną płaszczyznę, druga płaszczyzna wyznaczona jest przez atomy (-B--D-). Wiązanie między atomem B i pokrywa się z linią przecięcia płaszczyzn, a kąt dwuścienny to kąt między tymi płaszczyznami. Skrypt Bioinformatyka DRAFT Strona 54

R 2 ω=180 o N 3 + N R 1 Rysunek. Kąt torsyjny ω=180 o, konformacja TRANS. Przestrzenne ułożenie łańcucha może zostać opisane za pomocą kątów torsyjnych φ i ψ. Skrypt Bioinformatyka DRAFT Strona 55

4.1.2.2 Elementy struktury II-rzędowej helisy: prawoskrętna α helisa 3 10 helisa π helisa helisa φ ψ ω reszt aminkwasowych na skręt przesunięcie na resztę (Å) wiązania wodorowe α helisa -57-47 180 3,6 1,5 i+4 3 10 helisa -49-26 180 3,0 2,0 i+3 π helisa -57-70 180 4,4 1,2 i+5 α - helisa 3 10 - helisa π - helisa (22-reszty aminokwasowe) Skrypt Bioinformatyka DRAFT Strona 56

beta-harmonijki, (β-kartki, struktury pofałdowanej kartki β-harmonijki): równoległe antyrównoległe mieszane harmonijka φ ψ ω reszt na skręt równoległa -139 135 180 2 3,2 antyrównoległa -119 113-175 2 3,4 przesunięcie na resztę β-struktura równoległa (fragment: 1o94.pdb) β-struktura antyrównoległa (fragment profiliny: 1QA.pdb) Skrypt Bioinformatyka DRAFT Strona 57

Wykres Ramachandrana Wykres Ramachandrana dla białka Skrypt Bioinformatyka DRAFT Strona 58

β - harmonijka równoległa -119 113 β - harmonijka antyrównoległa -139 135 α -helisa -57-47 3 10 - helisa -49-26 π -helisa -57-70 φ Łamacze i wzmacniacze Struktura Wazmacniacze Łamacze α -helisa MLEA PGYTS β - harmonijka równoległa VIFMLY PGDEANSK β - harmonijka antyrównoległa QTRW kłębek i zwrot GPDNSY, naładowane ψ dla β harmonijki Wiązania wodorowe dla α - helisy Skrypt Bioinformatyka DRAFT Strona 59

Wiązania wodorowe dla zwrotu (skrętu, β-turn) 4.1.3 Struktura trzeciorzędowa Przestrzenne ułożenie elementów struktury II-rzędowej pojedynczego łańcucha Skrypt Bioinformatyka DRAFT Strona 60

Rysunek. Struktura III-rzedowa białka EF (E.coli) na podstawie współrzędnych z 1ETU.pdb, żółte strzałki betastuktury, czerwone spirale alfa-helisy, zielone atomy należą do dwufosforamu guanozyny. 4.1.3.1 Klasyfikacja struktur białkowych (do uzupełnienia) AT - AT Protein Structure lassification http://en.wikipedia.org/wiki/at http://www.cathdb.info/ SP - The Structural lassification of Proteins http://en.wikipedia.org/wiki/structural_lassification_of_proteins http://scop.mrc-lmb.cam.ac.uk/scop/ Domeny, motywy, rodziny, superrodziny domeny - odrębne strukturalnie fragmenty białek Domeny, motywy, rodziny, superrodziny motywy strukturalne - struktury naddrugorzędowe: motyw all-α Domeny, motywy, rodziny, superrodziny motywy strukturalne - struktury naddrugorzędowe: motyw all-β Rodzina - homologi Rodziny 4.1.4 Rodzaje oddziaływań stabilizujących strukturę oddziaływania wodorowe oddziaływania hydrofobowe oddziaływania van der Waalsa Skrypt Bioinformatyka DRAFT Strona 61

mostki dwu-siarczkowe mostki solne 4.1.4.1 Wiązanie wodorowe Wiązania wodorowe oddz. elektrostatyczne między dwoma względnie elektroujemnymi atomami energia: 4-13 kj/mol (energia wiązań kowalencyjnych: 418 kj/mol) Wiązanie wodorowe Skrypt Bioinformatyka DRAFT Strona 62

4.1.4.2 ddziaływania hydrofobowe ddziaływania hydrofobowe -spontaniczne zwijanie białek Skrypt Bioinformatyka DRAFT Strona 63

4.1.4.3 ddziaływania van der Waalsa ładunek - dipol dipol - dipol dyspersja (indukowane dipole) Skrypt Bioinformatyka DRAFT Strona 64

4.1.4.4 Mostek dwu-siarczkowy YS6 YS11 2 -S-S- 2 Rysunek. Fragment łańcucha A (5-13) insuliny świńskiej (sus scorfa, PDB ID:1ZNI) łańcuch A S S łańcuch B GIVEQTSISLYQLENYN łańcuch B S S FVNQLGSLVEALYLVGERGFFYTP K Rysunek. Sekwencja i struktura insuliny świńskiej S S łańcuch A Białka rozpuszczalne w wodzie, zawsze tworzą upakowane, globularne struktury z hydrofobowym, niepolarnym rdzeniem i hydrofilową powierzchnią. Struktura stabilizowana jest wieloma oddziaływaniami: wiązaniami wodorowymi, mostakami dwusiarczkowymi, mostkami solnymi, oddziaływaniami hydrofobowymi itd. Białka proste składają się wyłącznie z aminokwasów, białka złożone posiadają niebiałkowa grupę prostetyczna (pomocniczą), niezbędną do pełnego funkcjonowania białka. (Atomy grup protetycznych np. hem, lub inne np. cząsteczki wody nie należące do białka, ale związane z jego strukturą, definiowane są w plikach PDB jako heteroatomy) Wiedza o strukturze przestrzennej białek i kwasów nukleinowych począwszy od budowy na poziome II-rzędowym rozwinęła się znacząco wraz z narodzinami krystalografii rentgenowskiej (rozwiązanie struktury mioglobiny przez Maxa Perutza i Johna owdery Kendrewa w 1958, Nobel) i spektroskopii Skrypt Bioinformatyka DRAFT Strona 65

NMR. Dopiero wówczas możliwe było zweryfikowanie hipotez dotyczących pofałdowania białek i kwasów nukleinowych. bie metody dostarczają informacji o strukturze cząsteczek na poziome atomowym, to znaczy w postaci współrzędnych atomów w przestrzeni 3D. Pliki z zapisem struktury w takiej postaci w formacie PDB przechowywane są w ProteinDataBank [...] bie techniki rozwiązywania struktur mają zarówno wady jaki i zalety, które znajdują swoje odzwierciedlenie w jakości deponowanych danych. Technika spektroskopii NMR ograniczona jest na razie do białek nie większych niż 40kDa. Ponadto obserwacje nie dotyczą pojedynczej cząsteczki, ale zbioru cząsteczek w roztworze, zatem otrzymany wynik jest pewnego rodzaju średnią struktur jakie może przyjmować cząsteczka. Tak więc na podstawie analizy widma NMR otrzymuje się rodzinę nieznacznie różniących się od siebie konformacji przyjmowanych przez białko. (Rys) Różnice między modelami wynikają z braku precyzji danych eksperymentalnych oraz z wewnętrznej dynamiki białka. Rys. Rodzina 10 struktur heksameru insuliny otrzymana dzięki spektroskopii NMR (1ai0.PDB). Problemy krystalografii rentgenowskiej dotyczą głównie pozyskiwania wysokiej jakości kryształów. Nie wszystkie białka udaje się skrystalizować i też nie wszystkie kryształy nadają się do badań. Analiza wyników pochodzących z dyfrakcji na niedoskonałych kryształach jest utrudniona. Jakość rozwiązania struktury (rozdzielczość) określa się w Angstremach (Å). Najlepsza rozdzielczość struktur większości białek wynosi na ogół 2 Å. Skrypt Bioinformatyka DRAFT Strona 66

Nie jest to jednak gwarancja, że wszystkie atomu zostały poprawnie zlokalizowane. zęsto zdarza się, ze gorzej zlokalizowane atomy, aminokwasy, lub całe fragmenty białka nie są umieszczone w pliku PDB. 4.1.5 Struktura czwartorzędowa Przestrzenne ułożenie dwóch lub więcej łańcuchów polipeptydowych tworzących natywną cząsteczkę białka Struktura IV rzędowa opisuje przestrzenne ułożenie podjednostek białkowych. Każda podjednostka jest odrębnym łańcuchem białkowy wchodzący w skład funkcjonalnego białka. Białka mogą mieć strukturę monomeryczną (jednodomenową), ale często spotyka się białka złożone z wielu podjednostek. W najprostszym przypadku jest homodimer złożony z dwóch identycznych łańcuchów. emoglobina transportująca tlen w organizmie jest tertramerem o budowie α 2 β 2 (Rys.) Rys. Dimer αβ i tetramer α 2 β 2 hemoglobiny na przykładzie 1G0B.pdb Jeszcze ciekawszym przykładem struktury IV-rzędowej jest ferrytyna odpowiedzialna za magazynowanie tlenu, która jest 24-merem (Rys.) Rys. Ferrytyna - 24mer (1BG7.pdb) Skrypt Bioinformatyka DRAFT Strona 67