SYMULACJA NUMERYCZNA DRGAŃ MASZTU TELEKOMUNIKACYJNEGO

Podobne dokumenty
DRGANIA ELEMENTÓW KONSTRUKCJI

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wydział Inżynierii Mechanicznej i Robotyki PROBLEMY ZWIĄZANE Z OCENĄ STANU TECHNICZNEGO PRZEWODÓW STALOWYCH WYSOKICH KOMINÓW ŻELBETOWYCH

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

EUROKODY. dr inż. Monika Siewczyńska

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

WSPOmAgANiE PROCESU PROjEkTOWANiA ORAz badań STRUkTURY NOWOPROjEkTOWANEj konstrukcji śmigłowca NA POdSTAWiE LEkkiEgO śmigłowca bezpilotowego

NUMERYCZNO-DOŚWIADCZALNA ANALIZA DRGAŃ WYSIĘGNICY KOPARKI WIELOCZERPAKOWEJ KOŁOWEJ

DWUTEOWA BELKA STALOWA W POŻARZE - ANALIZA PRZESTRZENNA PROGRAMAMI FDS ORAZ ANSYS

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO

MODEL DYNAMICZNY STRUKTURY ŚMIGŁOWCA Z UWZGLĘDNIENIEM WARUNKÓW KONTAKTOWYCH PODWOZIE - PODŁOŻE

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wytrzymałość Materiałów

SYSTEMY MES W MECHANICE

WYNIKI OBLICZEN MASZT KRATOWY MK-6.0/CT. Wysokość = 6.0 m

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

WYNIKI OBLICZEN MASZT KRATOWY MK-3.0/CT. Wysokość = 3.0 m

REDUKCJA DRGAŃ KONSTRUKCJI BUDOWLANYCH WPROWADZENIE

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.

Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG

PF11- Dynamika bryły sztywnej.

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

ANALIZA ROZPRASZANIA ENERGII DRGAŃ W AKTYWNYCH ZAWIESZENIACH POJAZDU DLA WYBRANYCH ALGORYTMÓW STEROWANIA

Optymalizacja wież stalowych

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MODELOWANIE BELKI Z CIECZĄ MAGNETOREOLOGICZNĄ METODĄ ELEMENTÓW SKOŃCZONYCH

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych

Analiza fundamentu na mikropalach

Wyboczenie ściskanego pręta

ELEKTROMAGNETYCZNE PRZETWORNIKI ENERGII DRGAŃ AMORTYZATORA MAGNETOREOLOGICZNEGO

OPTYMALIZACJA ZBIORNIKA NA GAZ PŁYNNY LPG

TEORIA DRGAŃ Program wykładu 2016

Projektowanie ściany kątowej

ZBIORNIKI CYLINDRYCZNE POZIOME

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

KOOF Szczecin:

5. Indeksy materiałowe

Wyznaczanie modułu Younga metodą strzałki ugięcia

Drgania układu o wielu stopniach swobody

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

Drgania wymuszone - wahadło Pohla

BADANIE CHARAKTERYSTYK DYNAMICZNYCH DLA RÓŻNYCH KONFIGURACJI ROBOTA CHIRURGICZNEGO

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

3 Podstawy teorii drgań układów o skupionych masach

- Celem pracy jest określenie, czy istnieje zależność pomiędzy nośnością pali fundamentowych, a temperaturą ośrodka gruntowego.

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

Parasejsmiczne obciążenia vs. stateczność obiektów.

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Wyłączenie redukcji parametrów wytrzymałościowych ma zastosowanie w następujących sytuacjach:

Defi f nicja n aprę r żeń

Analiza naprężeń w przekrojach poprzecznych segmentowych kolan stopowych rurociągów stosowanych w technologiach górniczych

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja

STATYCZNA PRÓBA ROZCIĄGANIA

Zwój nad przewodzącą płytą

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ

ANALIZA KINEMATYCZNA PALCÓW RĘKI

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Ć w i c z e n i e K 3

Centrum Techniki Okrętowej S.A. Zespół Laboratoriów Badań Środowiskowych

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

Analiza obudowy wykopu z jednym poziomem kotwienia

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa

WPŁYW ZAKŁÓCEŃ PROCESU WZBOGACANIA WĘGLA W OSADZARCE NA ZMIANY GĘSTOŚCI ROZDZIAŁU BADANIA LABORATORYJNE

Spis treści Przedmowa

POMIAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW ŚMIGŁOWYCH WG PRZEPISÓW FAR 36 APPENDIX G I ROZDZ. 10 ZAŁ. 16 KONWENCJI ICAO

Analiza zderzeń dwóch ciał sprężystych

ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r.

WRAŻLIWOŚĆ POWŁOKI CYLINDRYCZNEJ NA ZMIANĘ GRUBOŚCI

INSTRUKCJA DO ĆWICZENIA NR 4

ZAWIESZENIA WIBRACYJNE

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

(12) OPIS PATENTOWY (19) PL (11) (13) B1

WERYFIKACJA WYTRZYMAŁOŚCI KONSTRUKCJI KABINY ANTENOWEJ JEDNOSTKI JAT-122

Transkrypt:

MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 177-184, Gliwice 009 SYMULACJA NUMERYCZNA DRGAŃ MASZTU TELEKOMUNIKACYJNEGO JANUSZ KOWAL, JACEK SNAMINA, PAWEŁ ORKISZ Katedra Automatyzacji Procesów, Akademia Górniczo-Hutnicza w Krakowie e-mail: jkowal@agh.edu.pl, snamina@agh.edu.pl, orkisz@agh.edu.pl Streszczenie. W pracy przedstawiono model i analizę drgań masztu telekomunikacyjnego. Do obliczeń wykorzystano metodę elementów skończonych (MES). Wyznaczono częstości i formy drgań własnych konstrukcji. Drgania wywołane wiatrem oraz drgania wywołane zjawiskami sejsmicznymi oszacowano, posługując się analizą gęstości widmowej mocy (PSD). Przeprowadzone obliczenia stanowiły punkt wyjścia do budowy stanowiska laboratoryjnego, na którym będą badane układy redukcji drgań konstrukcji smukłych. 1. WSTĘP Konstrukcje masztów powinny wykazywać dużą odporność na oddziaływanie czynników zewnętrznych takich jak wiatr czy ruchy sejsmiczne podłoża [1]. Dlatego coraz częściej w fazie projektowania konstrukcji uwzględnia się możliwość zastosowania aktywnych lub semiaktywnych układów redukcji drgań. Układy te pozwalają wydłużyć czas bezawaryjnej eksploatacji konstrukcji masztów oraz urządzeń na nich umieszczonych. Zagadnienia związane z redukcją drgań są obecnie przedmiotem prac wielu inżynierów i naukowców. W ostatnich latach można zaobserwować szerokie zainteresowanie numerycznymi symulacjami ruchu konstrukcji. Spowodowane jest to wysoką ceną aparatury pomiarowej oraz kosztami wykonania prototypów lub modeli projektowanych konstrukcji. Dużą zaletą symulacji jest możliwość przyspieszenia prac konstrukcyjnych poprzez wprowadzanie rozwiązań optymalnych na podstawie obliczeń numerycznych. Poprawne wyniki symulacji numerycznych związane są głównie z możliwie wiernym odwzorowaniem rzeczywistego obiektu. Ze względu na różnorodność zjawisk wpływających na obiekt rzeczywisty oraz złożoność obiektu obliczenia wykonuje się, stosując specjalnie opracowany model, w którym wprowadza się szereg uproszczeń. Strukturę modelu oraz jego parametry wyznacza się, spełniając zasady analizy wymiarowej. W artykule przedstawiono symulację drgań masztu telekomunikacyjnego. Do budowy modelu wykorzystano metodę elementów skończonych (MES). Wyznaczono częstości i formy drgań własnych konstrukcji. Drgania masztu wywołane oddziaływaniem wiatru i ruchem podłoża oszacowano, wykorzystując analizę gęstości widmowej mocy (PSD). Model i analizy dynamiczne wykonano, stosując pakiet Ansys Multiphisics.

178 J. KOWAL, J. SNAMINA, P. ORKISZ. MODEL MASZTU TELEKOMUNIKACYJNEGO Typowy maszt telekomunikacyjny jest stalową konstrukcją kratową z linowymi odciągami. W górnej części masztu zamocowane są urządzenia infrastruktury naziemnej, takie jak anteny radiowo-telewizyjne, anteny telefonii komórkowej oraz nadajniki sieci bezprzewodowych. Rozpatrywany w dalszej części artykułu maszt jest konstrukcją spawaną złożoną z dwóch sekcji. Sekcja pierwsza, pełniąca rolę podstawy, składa się z dwudziestu trzech zwężających się ku górze segmentów (rys.1b). Podstawa dolnego segmentu jest kwadratem o boku.04 m. Dwa pierwsze segmenty wzmocniono przez przyspawanie dodatkowych prętów do podstawowej konstrukcji. Sekcja druga, rozpoczynająca się na wysokości 30 m, jest złożona z osiemnastu segmentów, których podstawą jest kwadrat o boku 0,76 m (rys.1a). Sekcja kończy się platformą o masie 300 kg umieszczoną na szczycie wieży, na wysokości 45.7 m. Maszt wyposażono w cztery odciągi linowe rozmieszczone symetrycznie, zamocowane w połowie górnej sekcji. W górnej części masztu na różnej wysokości rozmieszczono siedemnaście anten telefonii komórkowej. Wśród anten przeważają anteny sektorowe o masie około 30 kg. W środkowej części wieży zamocowano również trzy anteny paraboliczne. a) c) b) Rys.1. Model MES masztu telekomunikacyjnego Do obliczeń numerycznych wykorzystano pakiet Ansys Multiphisics. Korzystając z dostępnej dokumentacji masztu, zdefiniowano punkty bazowe oraz linie reprezentujące kształtowniki wchodzące w skład kratownicy. Do modelowania ożebrowania wybrano belkowy element trójwymiarowy BEAM4. Wprowadzono prosty model anten, wykorzystując element MASS1 []. Do modelowania odciągów zastosowano elementy LINK8, uwzględniając naciąg lin. Model uzupełniono, wprowadzając odpowiednie warunki zamocowania konstrukcji. Widok modelu MES badanego masztu telekomunikacyjnego przedstawiono na rys.1c.

SYMULACJA NUMERYCZNA DRGAŃ MASZTU TELEKOMUNIKACYJNEGO 179 3. ANALIZA DRGAŃ MASZTU 3.1. Analiza modalna Analizę modalną wykonano, stosując metodę Lanczosa. Wyznaczono podstawowe formy drgań oraz odpowiadające im częstotliwości. Wyniki obliczeń przedstawiono w tabeli 1 oraz na rys. i 3. Tabela 1. Częstotliwości drgań własnych masztu Częstotliwość drgań własnych Nr formy [Hz] 1.19 3.15 3 7.03 Analizując otrzymane wyniki obliczeń, określono dla każdej formy punkty, w których elementy masztu są szczególnie narażone na zmęczenie materiału. Zakładając że ruch konstrukcji jest związany przede wszystkim z dwoma pierwszymi formami drgań, wyznaczono dwa przekroje wieży, w których powinny zostać umieszczone układy redukcji drgań. Pierwszą platformę z układem redukcji drgań przewidziano na szczycie masztu, drugą w przekroju łączącym opisane wcześniej sekcje wieży. W bezpośrednim otoczeniu tego przekroju występują maksymalne przemieszczenia dla drugiej formy drgań konstrukcji. Rys.. Pierwsza forma drgań własnych masztu Rys.3. Druga forma drgań własnych masztu Przeprowadzona analiza pozwoliła na podział wieży na trzy podstawowe części: pierwsza część to opisana dolna sekcja wieży, druga część obejmuje dolny fragment sekcji drugiej do wysokości zamocowań odciągów, trzecią część stanowi górny fragment sekcji drugiej powyżej zamocowania odciągów.

180 J. KOWAL, J. SNAMINA, P. ORKISZ 3.. Analiza drgań masztu wywołanych ruchem podłoża Drgania konstrukcji związane ze zjawiskami sejsmicznymi oszacowano, wykorzystując analizę PSD dostępną w pakiecie Ansys Multiphisics. Wymuszenie określono, uwzględniając dostępne w literaturze [3] informacje na temat trzęsień ziemi występujących na terenach Polski w okresie ostatnich 100 lat. W zdecydowanej większości przypadków projektowane konstrukcje mogą być narażone na trzęsienia nieprzekraczające pięciu stopni w skali Richtera. Uwzględniając średnie przyspieszenie fali trzęsienia ziemi równe 0.04 m s [4] oraz zakres częstotliwości 0. 5 Hz, przyjęto, w pierwszym przybliżeniu, stałą wartość gęstości 4 1 widmowej mocy przyspieszenia równą 0. 0003 m s Hz w rozważanym przedziale częstotliwości. Założono taki sam ruch podłoża we wszystkich punktach zamocowania wieży i odciągów oraz przyjęto, że odbywa się on wzdłuż osi x. Dla konstrukcji spawanych na ogół przyjmuje się bezwymiarowe modalne współczynniki tłumienia równe 0.0. Wyznaczono gęstości widmowe mocy przemieszczeń wybranych punktów masztu. Przykładowe wyniki obliczeń gęstości widmowej mocy dla przemieszczenia górnej platformy przedstawiono na rys.4a i 4b. a) b) Rys.4. Wykres PSD przemieszczenia a) w kierunku osi x, b) w kierunku osi y dla górnej platformy Korzystając z własności gęstości widmowej mocy, obliczono odchylenia standardowe przemieszczenia σ x = 8. 3 mm i σ y = 1. mm. Odchylenie standardowe jest podstawą do probabilistycznej oceny przemieszczenia wybranego punktu konstrukcji. Analizując wyniki obliczeń, stwierdzamy, że ruch górnej platformy jest bardziej związany z drugą formą drgań konstrukcji niż z pierwszą formą. 3.3. Analiza drgań masztu wywołanych wiatrem Najczęściej spotykany w literaturze opis prędkości wiatru zakłada, że prędkość ma składową stałą i składową zmienną. Przyjmuje się, że składowa zmienna jest procesem stochastycznym, którego gęstość widmowa, zgodnie z modelem Davenporta [5], jest opisana zależnością: 1 ψ Sv ( f ) = 4vs f (1) 4 3 (1 + ψ )

SYMULACJA NUMERYCZNA DRGAŃ MASZTU TELEKOMUNIKACYJNEGO 181 gdzie f jest częstotliwością, a ψ bezwymiarową zmienną opisaną zależnością ψ = 1. f / v. m Składową stałą prędkości wiatru na wysokości z10 = 10 m oznaczono przez v m i przyjęto jej wartość v m = 15 m s. Parametr v s, mający wymiar prędkości, wyznaczono z zależności v s = k v m, gdzie k jest bezwymiarowym współczynnikiem zależnym od wysokości oraz parametru z 0 związanego z powierzchnią terenu. Współczynnik k oblicza się ze wzoru: 1 k = () z.5ln 10 z0 Wartość występującego we wzorze parametru z 0 przyjęto na podstawie [6], dla terenu otaczającego wieżę, z0 = 0. 05 m. Wykres gęstości widmowej mocy składowej zmiennej prędkości przy założonych wartościach składowej stałej prędkości i wysokości nad powierzchnią gruntu przedstawiono na rys.5. Składowa stała prędkości wiatru powoduje powstanie składowej stałej parcia wiatru F m związanego z ciśnieniem p m strumienia opływającego konstrukcję powietrza. Wartość tego ciśnienia można obliczyć ze wzoru: vm pm = cxρ p (3) 3 gdzie współczynnik oporu c x =. 6, gęstość powietrza ρ p = 1.9 kg / m. Składowa zmienna siły jest procesem stochastycznym, którego gęstość widmowa jest związana z gęstością widmową składowej zmiennej prędkości wiatru [6] następującą zależnością: S f ( f ) = (Fm / vm ) S v ( f ) (4) Wykres PSD siły działającej na pojedynczy pręt kratownicy na wysokości przedstawiony na rys.6. 10 m został Rys.5. PSD prędkości na wysokości 10 m nad poziomem gruntu Rys.6. PSD siły na wysokości 10 m nad poziomem gruntu W związku ze znaczną wysokością masztu uwzględniono zależność prędkości wiatru od wysokości nad powierzchnią gruntu. Najczęściej przyjmuje się pionowy profil rozkładu prędkości wiatru [7] opisany równaniem:

18 J. KOWAL, J. SNAMINA, P. ORKISZ vm z vz ( z) = ln (5) z10 k ln p k p Wartość parametru szorstkości powierzchni k p = 0. 4 m przyjęto, wykorzystując dane zawarte w [8]. W obliczeniach przyjęto, że kąty pomiędzy wektorem prędkości wiatru a przyjętymi osiami X, Y są sobie równe. Dokonano obciążenia elementów wchodzących w skład modelowanego masztu. Pionowy profil gęstości widmowej obciążenia masztu przedstawiono na rys.7. Rys.7. Pionowy rozkład obciążenia konstrukcji wiatrem Jako wynik obliczeń otrzymano gęstości widmowe mocy przemieszczeń wybranych punktów konstrukcji. Przedstawione na rys.8 gęstości widmowe przemieszczenia górnej platformy pozwoliły oszacować odchylenia standardowe przemieszczeń σ x = 14 mm i σ y = 7 mm. Ruch górnej platformy spowodowany wiatrem jest przede wszystkim związany z pierwszą formą drgań masztu. a) b) Rys.8. Wykres PSD przemieszczenia a) w kierunku osi x, b) w kierunku osi y dla górnej platformy

4. PODSUMOWANIE SYMULACJA NUMERYCZNA DRGAŃ MASZTU TELEKOMUNIKACYJNEGO 183 Przeprowadzone obliczenia drgań masztu telekomunikacyjnego są podstawą do oceny wpływu oddziaływania wybranych czynników zewnętrznych. Konstrukcja masztu, ze względu na rozkład częstości własnych, jest podatna na wymuszenia zewnętrzne. Przedstawiona analiza PSD wykazała znaczący wpływ oddziaływania wiatru na konstrukcję. Wpływ oddziaływania wiatru na drgania masztu był znaczny, nawet przy założonej w obliczeniach składowej stałej prędkości równej 60 km h. Mimo niewielkiej ilości trzęsień ziemi rejestrowanych w skali rocznej na terenie Polski, wyniki obliczeń pokazują, że w przy projektowaniu masztów należy uwzględniać możliwość ruchu podłoża, wynikającego ze zjawisk sejsmicznych oraz parasejsmicznych. Bardzo istotnym zagadnieniem z zakresu projektowania i eksploatacji masztów jest konieczność zapewnienia stateczności położenia pionowego całego masztu oraz poszczególnych ściskanych prętów będących elementami konstrukcji masztu. Utrata stateczności występuje wówczas, gdy stosunkowo dużej sile ciężkości, która po wychyleniu masztu z położenia pionowego powoduje dalsze jego odchylanie się, nie przeciwstawia się dostatecznie duża siła sprężystości. W przypadku krytycznym siły sprężystości nie są w stanie zapewnić siły zwrotnej i pionowe położenie nie jest stateczne. Uogólnione siły zwrotne związane z poszczególnymi formami drgań są, w przybliżeniu liniowym, proporcjonalne do wychylenia masztu, a współczynniki proporcjonalności można przedstawić jako różnice współczynników wynikających ze sprężystości konstrukcji oraz współczynników wynikających z oddziaływania sił ciężkości. Wyniki analiz przedstawionych w pracy zostały wykorzystane przy projektowaniu stanowiska laboratoryjnego (rys.9). e d c b a Rys.9. Model laboratoryjny masztu Rys.10. Model MES masztu z podziałem na części Wyodrębniono trzy części masztu, które odwzorowano w modelu laboratoryjnym. Poszczególne części oznaczono literami b, c, d na rys.9 i 10. Do wymuszenia wykorzystano

184 J. KOWAL, J. SNAMINA, P. ORKISZ dwuosiowy wzbudnik drgań oznaczony literą a na rys.9. Układ do redukcji drgań umieszczono na górnej platformie. Został on zrealizowany przy użyciu silników liniowych. Stanowisko do badań zostało wykonane w Katedrze Automatyzacji Procesów Akademii Górniczo Hutniczej w Krakowie. Praca została wykonana w ramach projektu badawczego nr 4-T07A-005-30. LITERATURA 1. Kowal J.: Sterowanie drganiami. Kraków : Gutenberg, 1996.. Łaczek S. :Wprowadzenie do systemów elementów skończonych ANSYS. Kraków 1999. 3. Zwoliński. Z: Trzęsienia ziemi w Polsce. Poznań : Instytut Paleogeografii i Geoekologii UAM, 1997. 4. Prototype International Data Centre (http://www.pidc.org) 5. Levy. R. :Wind power predictions model. California 1976. 6. Gawroński W., Bieńkiewicz B., Hill R. E.:Pointing-error simulations of the DSS-13 Antenna Due to wind disturbances. TDA progress report 4-108 199 7. Sockel H.: Wind-excited vibrations of structures. Vienna: Springer-Verlag, 1994. 8. Businger J.A., Wyngaard J.C., Bradley E.F.: Flux-profile relationship in the atmospheric surface layer. J.Alinos Sei. 1971, 8, p. 181-189. NUMERICAL SIMULATION OF ANTENNA MAST VIBRATIONS Summary. In the paper, a finite element model of telecommunications mast is presented. Basic analyses, available in ANSYS, were used in calculations. Natural frequencies and mode shapes of the structure were determined. The assessment of mast response due wind and seismic excitations was done using power spectral density analysis. Results of calculations are helpful to build a scale model of the mast.