Ćwiczenie 1 AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI Część doświadczalna obejmuje: rozdział aminokwasów metodą chromatografii podziałowej (technika chromatografii bibułowej wstępującej) wykonanie reakcji charakterystycznych dla wybranych aminokwasów WPROWADZENIE Budowa i właściwości ogólne aminokwasów Aminokwasy są kwasami organicznymi zawierającymi wolną grupą karboksylową oraz wolną grupą aminową, położoną przy α-atomie węgla. Poza tymi dwoma grupami, każdy aminokwas ma charakterystyczny dla siebie łańcuch boczny R (Ryc. 1 i 2). Ryc. 1. Schemat budowy i zróżnicowanie funkcjonalne aminokwasów (Koolman i Röhm 2005) Aminokwasy są składnikami budulcowymi peptydów i białek (aminokwasy proteinogenne). Niektóre aminokwasy wchodzą w skład lipidów, np. seryna występuje w fosfolipidach, a glicyna w solach żółciowych. Glutaminian, asparaginian oraz glicyna odgrywają rolę neuroprzekaźników. Wszystkie aminokwasy, za wyjątkiem lizyny i leucyny, mogą być metaboli- 1
tami pośrednimi szlaku glukoneogenezy (aminokwasy glukogenne), tzn. mogą posłużyć do biosyntezy glukozy. Niektóre aminokwasy są wykorzystywane do syntezy zasad purynowych i pirymidynowych (asparaginian, glutaminian), hemu (glicyna), amin biogennych (np. seryna, glutaminian) (Ryc. 3). Aminokwasy są też donorami grup aminowych przenoszonych na ketokwasy lub funkcjonują w cyklu mocznikowym (ornityna, cytrulina) (Ryc. 4). Ryc. 2. Łańcuchy boczne aminokwasów proteinogennych (Koolman i Röhm 2005) 2
Ryc. 3. Aminy biogenne wywodzące się z aminokwasów (Koolman i Röhm 2005) Ryc. 4. Aminokwasy rzadkie (Koolman i Röhm 2005) Na Ryc. 2 przedstawiono łańcuchy boczne dwudziestu aminokwasów budujących białka (aminokwasy proteinogenne), które ze względu na budowę chemiczną oraz polarność łańcuchów bocznych podzielono na siedem klas. Wartości podane na dole po lewej przedstawiają stopień polarności danego łańcucha bocznego (najmniejszy dla Phe, Cys, Met, Ala, a największy dla Arg, Lys). Przy łańcuchach bocznych zdolnych do jonizacji podane są także wartości pk (czerwone liczby). Szczególną pozycję wśród aminokwasów zajmuje prolina (Pro). Jej łańcuch boczny wraz z węglem α i grupą aminową przy tym węglu tworzą 5-członowy pierścień. Atom azotu w pierścieniu jest słabo zasadowy i w warunkach fizjologicznych nie jest uprotonowany. Aminokwasy, które nie mogą być syntetyzowane w organizmach ludzkich (aminokwasy egzogenne) oznaczone są czerwoną gwiazdką. Właściwości amfoteryczne aminokwasów Obecność w aminokwasach grupy karboksylowej i grupy aminowej powoduje, że są one związkami amfoterycznymi. W roztworach wodnych występują głównie w formie jonów. W zależności od ph środowiska jony te mogą mieć charakter kwasowy bądź zasadowy (patrz: równanie reakcji, poniżej). 3
Zmiany stanu jonizacji aminokwasów w zależności od ph W środowisku kwasowym aminokwas przyłącza proton, staje się kationem i zachowuje jak + kwas, gdyż występujące w cząsteczce grupa karboksylowa COOH i grupa amoniowa NH 3 mogą być donorami protonów. W środowisku zasadowym aminokwas oddając proton staje się anionem i zachowuje się jak zasada, ponieważ zdysocjowana grupa karboksylowa COO - i grupa aminowa NH 2 mogą przyłączać protony. Jest taka wartość ph roztworu, przy której cząsteczki aminokwasów występują w formie jonu obojnaczego, w którym liczba ładunków ujemnych jest równa liczbie ładunków dodatnich, czyli sumarycznie ładunek równy jest zeru. Taka wartość ph nosi nazwę punktu izoelektrycznego (pi). Charakter amfoteryczny aminokwasów ujmuje graficznie krzywa miareczkowania roztworów aminokwasów mocnymi kwasami lub zasadami (Ryc. 5). Krzywa przedstawia zależność wartości ph miareczkowanego roztworu od liczby dodanych moli kwasu lub zasady. Zależność między wartością ph a stanem dysocjacji opisano równaniem Hendersona- Hasselbalcha, gdzie K a = stała kwasowa, a pk a = ujemny logarytm stałej kwasowej: Z powyższego równania wynika, iż w warunkach, gdy formy zdysocjowana i niezdysocjowana są w stężeniach równowagowych, to pk a = ph. Miareczkowanie roztworu aminokwasu połączone z jednoczesnym pomiarem ph roztworu pozwala na doświadczalne wyznaczenie krzywej dysocjacji aminokwasu, określenie jego wartości pi oraz wyznaczenie wartości pk a jego grup funkcyjnych. 4
Ryc. 5. Krzywa miareczkowania histydyny (Karlson 1987) Rozdział aminokwasów Jedną z metod rozdziału aminokwasów pozwalającą izolować z mieszaniny pojedyncze aminokwasy jest chromatografia podziałowa. Opiera się ona na prawie podziału solutu (substancji rozpuszczonej) między dwie fazy ciekłe ruchomą i stacjonarną. Faza stacjonarna utrzymywana jest przez porowaty nośnik słabo adsorbujący składniki solutu. Porowatym nośnikiem może być bibuła albo żel ułożony w kolumnie chromatograficznej lub wylany na płytkę. Warunkiem decydującym o rozdziale substancji są różnice w ich rozpuszczalności w fazie ruchomej i nieruchomej, tj. różnice we współczynnikach podziału między dwie nie mieszające się ze sobą fazy ciekłe. Chromatografia podziałowa opiera się więc na prawie Nernsta, które mówi, iż w układzie utworzonym przez dwie nie mieszające się ze sobą fazy ciekłe i wspólny dla nich solut, stosunek stężenia tego solutu w fazie 1 (c1) do jego stężenia w fazie 2 (c2) jest w stanie równowagi wielkością stałą zależną od temperatury i właściwości substancji tworzących roztwory, a niezależną od ilości substancji rozpuszczonej: c1/c2 = k. Miarą selektywności rozdziału dwóch substancji A i B w danym układzie jest stopień rozdziału, którego wartość określa wzór: β = KA/KB gdzie KA określa stosunek podziału substancji A, KB stosunek podziału substancji B między fazę ruchomą i nieruchomą. Technika chromatografii bibułowej. W chromatografii bibułowej nośnikiem fazy stacjonarnej, najczęściej polarnej, jest odpowiednio spreparowana bibuła filtracyjna. Bibuła jest zbudowana z włókien celulozowych ułożonych w porowatą, żelową strukturę stanowiącą fazę 5
nieruchomą. Cząsteczki wody zaadsorbowane na bibule łączą się z włóknami celulozy wiązaniami wodorowymi. Fazę ruchomą w chromatografii bibułowej stanowią odpowiednie rozpuszczalniki organiczne pojedyncze lub zmieszane. Rozpuszczalniki muszą się częściowo mieszać z wodą, np. szeroko rozpowszechnionym układem jest mieszanina n-butanolu/kwasu octowego/wody, w zmiennych proporcjach. Szybkość wędrowania danego związku w określonych warunkach jest wartością stałą. Jej miarą jest wartość R f : R f = x/y, gdzie x oznacza odległość od linii startowej do środka plamy aminokwasu, a y odległość od linii startowej do czoła rozpuszczalnika. W Tabeli 1 podane są wartości R f dla większości aminokwasów rozdzielanych w warunkach zbliżonych do tych, w jakich będzie wykonywane ćwiczenie. Tabela 1. Wartości R f aminokwasów (faza ruchoma: n-butanol/kwas octowy/woda, 4:1:1) Lp. Nazwa aminokwasu Symbol aminokwasu Wartości R f x 100 w układzie rozpuszczalników: n-butanol/ch 3 COOH/H 2 O 1. alanina Ala A 30 2. arginina Arg R 15 3. kwas asparaginowy Asp D 22 4. asparagina Asn N 12 5. cystyna 5 6. cysteina Cys C 8 7. kwas cysteinowy CysSO 3 H 7 8. fenyloalanina Phe F 60 9. glicyna Gly G 23 10. kwas glutaminowy Glu E 28 11. glutamina Gln Q 17 12. histydyna His H 11 13. leucyna Leu L 70 14. izoleucyna Ile I 67 15. lizyna Lys K 12 16. metionina Met M 50 17. sulfonian metioniny MetSO 3 H 22 18. prolina Pro P 34 19. hydroksyprolina ProOH 22 20. seryna Ser S 22 21. treonina Thr T 26 22. tryptofan Trp W 50 23. tyrozyna Tyr Y 45 24. walina Val V 51 25. ornityna Orn 12 26. cytrulina Cytr 18 6
WYKONANIE Chromatografia bibułowa aminokwasów (wstępująca) Na arkusz bibuły o wymiarach 15 x 20 cm z zaznaczoną linią startową, nanieść w 2 cm odstępach po kilka µl roztworu wzorcowych aminokwasów (glicyna, alanina, tyrozyna, leucyna) oraz taką samą objętość roztworu zawierającego mieszaninę aminokwasów (próba badana). Każdy aminokwas wzorcowy oraz próbę badaną nanieść na bibułę dwukrotnie w celu wyeliminowania ewentualnych artefaktów. W czasie nanoszenia próbek miejsce nanoszenia należy suszyć suszarką do włosów, tak by wielkość plamek była możliwie jak najmniejsza. Arkusz bibuły z naniesionymi próbkami zwinąć w cylinder, spiąć zszywkami i umieścić do rozwinięcia w komorze chromatograficznej. Rozdział przerwać, gdy rozpuszczalnik dotrze na wysokość około 1,5 cm od górnego brzegu bibuły. Po wyjęciu bibuły z komory, zaznaczyć ołówkiem czoło rozpuszczalnika, bibułę wysuszyć w strumieniu ciepłego powietrza (ok. 50 0 C), spryskać roztworem ninhydryny, a następnie wysuszyć w suszarce w temperaturze 80 0 C w celu zlokalizowania miejsca położenia rozdzielonych aminokwasów. Pomierzyć odległości od linii startu do środka wybarwionych plamek oraz odległość do czoła rozpuszczalnika, a następnie obliczyć wartości współczynnika R f. Porównując wartości R f aminokwasów wzorcowych i aminokwasów zawartych w próbce zidentyfikować aminokwasy występujące w otrzymanej do analizy mieszaninie. Należy również porównać wyliczone wartości R f z wartościami zamieszczonymi w Tabeli 1. Reakcje charakterystyczne aminokwasów A. Reakcje ogólne: Reakcja z ninhydryną Do 0,1 ml 1% roztworu aminokwasu dodać 1 kroplę 0,1% roztworu ninhydryny i ogrzać do wrzenia. Pojawia się fioletowo-niebieskie zabarwienie. Aminokwasy pod wpływem ninhydryny ulegają utlenieniu do iminokwasów (reakcja poniżej). Kolejne etapy przemian to deaminacja i dekarboksylacja oraz wytworzenie aldehydu skróconego o 1 atom węgla. W wyniku kondensacji utlenionej i zredukowanej w powyższym procesie cząsteczki ninhydryny oraz amoniaku powstaje kompleks o fioletowo-niebieskiej barwie (maksimum absorpcji przy λ = 570 nm), którego natężenie jest proporcjonalne do zawartości azotu aminowego aminokwasu. Reakcja z ninhydryną może służyć do ilościowego oznaczania aminokwa- 7
sów metodą spektrofotometryczną. Dodatni odczyn ninhydrynowy dają obok aminokwasów, peptydów i białek także sole amonowe, aminocukry i amoniak. Reakcja aminokwasów z ninhydryną Reakcja z kwasem azotawym (kwasem azotowym(iii)) Do 1 ml ochłodzonego w lodzie, świeżo przyrządzonego 10% azotanu (III) sodu (azotyn sodu) dodać taką samą objętość 2M kwasu octowego. W wyniku reakcji powstaje kwas azotawy HNO 2. Po zmieszaniu obu roztworów zaczekać do momentu zakończenia wydzielania się pęcherzyków tlenków azotu, a następnie dodać 2 ml 1% roztworu aminokwasu. Wydziela się burzliwie azot. HOOC-CH 2 -NH 2 + O=N-OH HOOC-CH 2 OH + H 2 O + N 2 Reakcja z kwasem azotawym umożliwia manometryczne oznaczanie azotu grup aminowych polegające na mierzeniu objętości wydzielającego się azotu (reakcja Van Slyke a). 8
Tworzenie związków chelatowych Do 3 ml 1% roztworu aminokwasu dodać szczyptę węglanu miedzi (II). Ogrzać próby do wrzenia. Po minucie, intensywnie niebieski roztwór przesączyć na gorąco. Po ochłodzeniu przesączu wykrystalizowuje kompleks aminokwasu z miedzią w postaci delikatnych igieł. 2 H 2 N-CH 2 -COOH + CuCO 3 Cu(OOC-CH 2 -NH 2 ) 2 + CO 2 + H 2 O COO H 2 N Kompleks glicyna miedź H 2 C Cu CH 2 NH 2 OOC B. Reakcje charakterystyczne dla wybranych aminokwasów Reakcja ksantoproteinowa Do 0,5 ml 1% roztworu aminokwasu dodać 0,25 ml stężonego HNO 3 i kroplę stężonego H 2 SO 4. Roztwór barwi się na żółto. Po zalkalizowaniu 30% roztworem NaOH, zabarwienie przechodzi w pomarańczowe. Reakcja ta jest charakterystyczna dla aminokwasów aromatycznych i fenoli. W wyniku działania stężonego HNO 3 pierścień benzenowy ulega nitrowaniu, a powstałe żółte pochodne wielonitrowe dają w roztworze zasadowym pomarańczowe aniony nitrofenolanowe. Reakcja na tyrozynę reakcja Millona Do 0,5 ml 1% roztworu aminokwasu dodać kilka kropel odczynnika Millona (10 g azotanu (V) rtęci (I) rozpuścić w 100 ml 3,6 M kwasu azotowego (V), uzupełnić wodą destylowaną do 200 ml i lekko podgrzać (do 40 0 C). Roztwór barwi się na kolor ceglasto różowy, następnie na czerwony. Reakcja ta jest charakterystyczna dla monofenoli, a więc z aminokwasów tylko dla tyrozyny. Służy ona do ilościowego oznaczania tyrozyny metodą kolorymetryczną. 9
Reakcja na tryptofan reakcja Cole-Hopkinsa Do 0,5 ml 1% roztworu aminokwasu dodać kilka kropel kwasu glioksalowego. Po wymieszaniu, roztwór należy ostrożnie podwarstwić stężonym roztworem H 2 SO 4. Na granicy cieczy powstaje fioletowy pierścień. Jest to reakcja charakterystyczna dla tryptofanu, aminokwasu zawierającego pierścień indolowy. W obecności kwasu siarkowego (VI) i aldehydu (kwas glioksalowy), dwa ugrupowania indolowe ulegają kondensacji tworząc barwny fioletowy związek. tryptofan kwas glioksalowy związek barwny Reakcja na argininę reakcja Sakaguchi Do 1 ml 1% roztworu aminokwasu dodać 0,25 ml 5% roztworu NaOH, 2 krople 1% roztworu α-naftolu i jedną kroplę roztworu chloranu (I) sodu. Po wymieszaniu pojawia się powoli czerwone zabarwienie. Pochodne guanidyny, takie jak metyloguanidyna i arginina z 10
utlenionym przez chloran (I) α-naftolem dają barwny związek i amoniak. Amoniak pod wpływem chloranu (I) utlenia się. Z jednego mola guanidyny uwalnia się 1/2 mola N 2. α naftol arginina związek barwny + 3 NaClO 2 NH 3 N 2 + 3 H 2 O + 3 NaCl Reakcja cystynowa Do 0,5 ml 1% roztworu aminokwasu dodać 0,5 ml 10% roztworu NaOH i kilka kropel nasyconego roztworu octanu ołowiu. Podczas ogrzewania ze stężonym NaOH, z cystyny i cysteiny wydziela się siarkowodór, który w reakcji z Pb 2+ daje siarczek ołowiu. Po dłuższym gotowaniu roztwór staje się brunatny, a następnie wytrąca się osad PbS. NaOH NaOH Pb(OOC-CH 3 ) 2 Pb(OH) 2 Pb(OH) 3- H 2 S PbS Zagadnienia do przygotowania: wzory, symbole trzy- i jednoliterowe aminokwasów proteinogennych oraz aminokwasów cyklu mocznikowego (ornityna, cytrulina) klasyfikacja aminokwasów oparta na budowie chemicznej łańcucha bocznego oraz jego polarności podstawowe funkcje aminokwasów (przykłady) ogólne zasady chromatografii podziałowej; technika chromatografii bibułowej wstępującej reakcje ogólne na aminokwasy (znajomość reakcji z ninhydryną) wybrane reakcje charakterystyczne dla aminokwasów 11
Literatura: Biochemia JM Berg, JL Tymoczko, L Stryer PWN, Warszawa, 2005 Zarys biochemii P Karlson PWN, Warszawa, 1987 Ćwiczenia z biochemii pod redakcją L. Kłyszejko-Stefanowicz PWN, Warszawa, 2005 Biochemia. Ilustrowany przewodnik J Koolman, K-H Röhm, PZWL, Warszawa 2005 12