Filtracja prowadzona pod stałą różnicą ciśnień Cel ćwiczenia Celem ćwiczenia jest: 1. Zapoznanie się z aparaturą do procesu filtracji plackowej prowadzonej przy stałej różnicy ciśnień. Opis procesu filtracji zawiesiny białek serwatkowych, torfu lub otrąb pszennych i wyznaczenie wielkości opisujących proces filtracji. Wstęp Filtracja jest procesem rozdzielania układu ciało stałe płyn oraz przy użyciu przegrody porowatej. Rozróżnia się: filtrację objętościową, gdzie rozdzielanie ma miejsce na usypanej warstwie filtrującej (żwiru, żużla czy piasku) i powierzchniową przez tkaniny filtrujące (wykonanych głównie z wełny, bawełny, włókien syntetycznych lub mineralnych). Innej klasyfikacją filtracji dokonuje się na podstawie zawartości ciała stałego w zawiesinie, tj.: Rozdzielająca stosowana do separowania zawiesin o stężeniu fazy stałej większej niż 1% w celu uzyskania filtratu lub cennego osadu (jest to filtracja głównie powierzchniowa) Oczyszczająca stosowana do klarowania zawiesin o zawartości fazy stałej <0.1% w celu uzyskania filtratu (najczęściej filtracja objętościowa). Specjalnym (najpopularniejszym, najczęstszym) rodzajem filtracji powierzchniowej jest tzw. filtracja plackowa. W takim przypadku rolę przegrody filtracyjnej przejmuje zatrzymany na powierzchni osad (tzw. placek filtracyjny). Siłą napędową wymuszającą przepływ cieczy przez przegrodę filtracyjną jest różnica ciśnień. Wyróżnia się filtrację: 1) Grawitacyjną (ciśnienie hydrostatyczne)
) Ciśnieniową (nadciśnienie przed przegrodą) 3) Próżniową (podciśnienie za przegrodą) Na skutek procesu filtracji zatrzymywane medium tworzy warstwę (filtracja powierzchniowa) lub wypełnia objętość (filtracja objętościowa). Osady ściśliwe w skutek małej przepuszczalności gwałtownie zmniejszają szybkość filtracji. Przeciwdziała temu dodanie do zawiesiny pomocy filtracyjnej, która tworzy w placku nieściśliwy szkielet. Jako pomoce filtracyjne stosuje się ziemię okrzemkową, wełnę szklaną, węgiel aktywny czy trociny. Innym sposobem jest naniesienie pomocy filtracyjnej na przegrodę o grubości kilku mm jeszcze przed wprowadzeniem zawiesiny. Równanie filtracji plackowej z powstawaniem osadu (nieściśliwego) ma postać: dv Adt 0 c p V C A s r (1) gdzie: V objętość filtratu [m 3 ] A powierzchnia przegrody filtracyjnej [m ] t czas trwania filtracji [s] p różnica ciśnieni przed i za przegrodą [Pa] 0 opór właściwy osadu wydzielonego na przegrodzie [m kg -1 ], który jest funkcją porowatości, rozmiaru cząstek itp. η c lepkość cieczy [Pa s] C s stężenie ciała stałego w filtrowanej zawiesinie [kg m -3 ] r jednostkowa ilość wydzielonego osadu, zapewniająca opór przepływu filtratu przez ten osad, równoważny z oporem przepływu filtratu przez samą przegrodę filtracyjną [kg m -3 ] W rzeczywistych układach placek filtracyjny jest ściśliwy i zmienia swoją porowatość (założenie, że placek jest nieściśliwy można przyjąć jedynie w przypadku filtrowania materiałów twardych, np. kryształów). W przypadku filtrowania zawiesin, gdzie rozkład rozmiarów cząstek jest szeroki i udział cząstek drobnych jest znaczny, to nawet w układach
t/v [s/m 3 ] nieściśliwych następuje zmiana porowatości placka na skutek osadzania się małych cząstek w głębi porów. A więc dla osadu ściśliwego: 0 = p s () gdzie: s współczynnik ściśliwości opór właściwy osadu ściśliwego [(m kg -1 ) (m s kg -1 )s] Dla osadu nieściśliwego s=0, natomiast dla nieściśliwego s[0,1]. Linearyzując równanie 1 uzyskuje się równanie opisujące przebieg filtracji z wydzieleniem osadu ściśliwego przy założeniu, iż różnica ciśnień jest stała i z którego w prosty sposób można obliczyć stałą filtracji K niezbędną do wyznaczenia współczynnika ściśliwości. dt C V (3) dv K K Gdzie stałe K oraz C kryją w sobie wszystkie trudne do wyznaczania parametry równania 1: K C c s p 1s (4) r C (5) C s Graficzne wyznaczenie stałej filtracji izobarycznej t/v=/k+c/k tg=/k V[m 3 ]
Wyznaczenie współczynnika ściśliwości osadu ze wzoru: log( K1 / K ) s 1 (6) log( p1 p ) K stała filtracji (odczytana z równania prostej, odpowiednio K 1 przy p 1 ) W celu wyznaczenia współczynnika ściśliwości osadu należy przeprowadzić min. dwie filtrację w identycznych warunkach (stężenie filtrowanej zawiesiny, taka sama tkanina filtracyjna, ilość pomocy itd.), natomiast przy różnych ciśnieniach. Dla obu wartości ciśnienia wyznaczyć stałe K oraz C (graficznie), które niezbędne są do wyznaczania s. Wyznaczanie przepustowości jednostkowej filtra Objętościowe natężenie przepływu filtratu wyraża się za pomocą wzoru: dv dt 0 A p V C c A s r A p R (7) A powierzchnia filtracji [m ] p ciśnienie podczas filtracji [Pa] R opór wytwarzany przez przegrodę filtracyjną w skład której wchodzi opór przegrody filtracyjnej, pomocy oraz placka filtracyjnego (zmienny w czasie). Koncentracja zawiesiny przed przegrodą w trakcie filtracji rośnie, stąd odnotowuje się ciągły spadek strumienia filtratu (na podstawie wzoru 1). Przepustowość filtra () jest odwrotnością oporu, czyli: V F A p (8) Strumień filtratu jest zmienny w czasie, tak więc zmienna jest również przepustowość.
Wyznaczanie zależności oporu właściwego placka filtracyjnego od przyłożonego ciśnienia Opór powstającego placka filtracyjnego (osadu) powoduje, że opór hydrauliczny podczas procesu rośnie. W celu wyznaczania zależność oporu od czasu filtracji niezbędna jest znajomość oporu wytwarzanego przez przegrodę filtracyjną wraz z pomocą filtracyjną. W tym celu należy wykonać pomiar strumienia filtratu (w tym przypadku używając do tego wody) dla kilku ciśnień V ( p) i obliczyć opór przekształcając odpowiednio równanie 7. Tworząc wykres zależności strumienia filtratu od przyłożonego ciśnienia możemy odczytać wartość strumienia dla każdego ciśnienia roboczego a tym samym z zależności 7 wyznaczyć opór przegrody filtracyjnej wraz z pomocą filtracyjną. Dla pomocy filtracyjnej (nieściśliwej, ponieważ tym charakteryzować powinna się dobrze dobrana pomoc filtracyjna) wartość oporu powinna być stała niezależna od przyłożonego ciśnienia. Tak więc, zmiana oporu warstwy filtrującej (na którą składa się: przegroda filtracyjna, pomoc filtracyjna oraz osad) wynika jedynie z faktu gromadzenia się na niej osadu w postaci cząstek zawiesiny filtrowanej. Przebieg doświadczenia Podczas zajęć laboratoryjnych filtracja będzie prowadzona na trzech typach filtrów: 1) Filtr ciśnieniowy (nadciśnieniowa nucza filtracyjna) ) Filtr próżniowy (próżniowa nucza filtracyjna) Nucze filtracyjne stanowią najprostszy typ filtra. Jest to zbiornik, zwykle cylindryczny z perforowanym dnem, na którym znajduje się przegroda filtracyjna w postaci warstwy ziarnistej lub tkaniny. Filtracja może zachodzić pod ciśnieniem słupa cieczy, przy nadciśnieniu lub próżnią. Z racji małych objętości aparatów są stosowane do filtracji małych ilości zawiesin.
Instalacja laboratoryjna Filtry ciśnieniowe (nucza nadciśnieniowa) połączone są ze zbiornikiem (zaopatrzonym w mieszadło łopatkowe lub prostym) (Z1) (Rys. 1), w którym znajduje się zawiesina i który w przypadku filtrowania zawiesin o bardzo dużych rozmiarach cząstek należy poddawać ciągłemu mieszaniu. Zbiornik Z1 pełni również funkcję zbiornika wyporowego, stąd połączony jest ze sprężarką (S1), która wytwarzając ciśnienie nad zawiesiną znajdującą się w zbiorniku powoduje jej przemieszczanie nad przegrodę filtracyjną (i wywieranie na nią niezbędnego ciśnienia). Filtrat zbierany jest do zbiornika Z. Układy wyposażone są w punkty pomiarowe (manometry) P1 i P, które wskazuję ciśnienie robocze. S1 SPRĘŻONE POWIETRZE 1 ZAWIESINA 4 5 P1 P 6 FILTRAT Z1 3 F1 Z Rys. 1. Instalacja do filtracji nadciśnieniowej W stanie wyjściowym wszystkie zawory (od 1 do 6) powinny być odkręcone instalacja powinna pozostawać ROZSZCZELNIONA. Filtrację rozpoczynamy od zakręceniu zaworu 1 (!!!) i 3 i wlania zawiesiny do zbiornika Z1. Rozpoczęcie filtracji ma miejsce po dokładnym uszczelnieniu zbiornika Z1 oraz zbiornika zawierającego filtr (F1), poprzez dokładne zakręcenie pokryw i wszystkich zaworów wylotowych (1 oraz 5), a także odkręceniu zaworów przepływowych 3, 4 oraz 6. Po uruchomieniu sprężarki zawiesina kierowana jest do F1, a pod wpływem nadciśnienia ciecz zaczyna przechodzić przez filtr i pojawiać się w zbiorniku filtratu Z.
Instalacja służąca do filtracji próżniowej zaopatrzona jest pompkę wodną (VP) (Rys. ), która wytwarza niezbędne podciśnienie za przegrodą filtracyjną, która połączona jest bezpośrednio ze zbiornikiem filtratu (Z1). Zbiornik filtratu połączony jest z nuczą próżniową, która w trakcie trwania procesu może pozostać otwarta (szczelność wymagana jest za przegrodą filtracyjną, którą zapewnia właśnie filtrowana zawiesina). ZAWIESINA 1 FILTRAT P1 F1 Z1 3 VP Rys.. Instalacja do filtracji próżniowej Podobnie jak poprzednio pracę rozpoczynamy od odkręcenia wszystkich zaworów (1, i 3). Filtrację zaczynamy od zakręcenia zaworów 1 i 3. Następnie wlewamy zawiesinę do zbiornika F1. Po uruchomieniu pompki wodnej (VP) otwieramy zawór 3. W przypadku filtracji podciśnieniowej filtrat zbierany jest w szczelnym zbiorniku Z1, który jest niewidoczny. Przebieg doświadczenia W trakcie ćwiczeń laboratoryjnych należy przeprowadzić filtrację: 1) Zawiesiny serwatkowej, by uzyskać klarowny roztwór białek serwatkowych oddzielając od niego pozostałości skrzepu kazeinowego i tłuszczy przy pomocy nuczy nadciśnieniowej (proces wstępny do separacji membranowej)
) Zawiesiny torfu, powstającej w wyniku ekstrakcji składników aktywnych z tego medium, przy pomocy nuczy próżniowej (proces oddzielający ekstrakt produkt od substancji ekstrahowanej) 3) Zawiesiny otrąb pszennych, powstającej w wyniku ekstrakcji składników aktywnych z tego medium, przy pomocy nuczy nadciśnieniowej (proces oddzielający ekstrakt produkt od substancji ekstrahowanej) Ad. 1) Serwatka jest niejednorodnym roztworem białek, laktozy oraz tłuszczu. Posiada również znaczne ilości kazeiny w formie dużych agregatów (fragmentów sera), których można pozbyć się przy pomocy filtrów. Wykorzystując nylonową tkaninę filtracyjną o średnicy porów 50μm oraz pomoc filtracyjną (ilość zostanie podana przez prowadzącego) w postaci ziemi okrzemkowej należy przeprowadzić filtrację przy podanym przez prowadzącego nadciśnieniu. Serwatka jest zawiesiną, w której znajdują się cząstki o średnicy od kilku μm do kilku mm, dodatkowo posiada dużą ilość tłuszczu, który efektywnie zatyka pory filtra, co przyczynia się do powstawania wysoce ściśliwego placka filtracyjnego. Początkowo filtracja będzie nieefektywna, jednak od momentu utworzenia wspomnianego placka filtracyjnego powinno ulec to zmianie będzie pojawiał się klarowny filtrat. W trakcie każdej filtracji, mierzymy strumień filtratu co 15 minut oraz koncentrację ciała stałego (pomiar absorbancji przy długości fali λ=550, wg krzywej standardowej C[gL - 1 ]=0.389 A 550 ). Korzystając z informacji zawartych we wstępie instrukcji, obliczyć współczynnik ściśliwości osadu, jego opór hydrauliczny oraz przepustowość, a także krotność oczyszczenia zawiesiny. Dodatkowo znając opór wytwarzany przez przegrodę filtracyjną wraz z pomocą filtarcyjną (patrz punkt Wyznaczanie zależności oporu placka filtracyjnego od przyłożonego ciśnienia ) obliczyć (i wykreślić) zmianę oporu hydraulicznego będącą konsekwencją powstawania placka filtracyjnego. Ad. ) Należy przygotować wodną zawiesinę torfu w stosunku 1:3 dokładnie wymieszać. Filtrację należy prowadzić w nuczy próżniowej, stąd wlewamy zawiesinę bezpośrednio na przegrodę filtracyjną (ponieważ różnica ciśnień wytwarzana jest poniżej jej poziomu filtr może pozostać otwarty w czasie trwania procesu). Filtrat pozostaje zamknięty w zbiorniku odbierającym, w
którym panuje próżnia tak więc, by oszacować strumień filtratu należy dolewać porcję o znanej objętości i mierzyć czas jej przefiltrowania (moment odsłonięcia placka filtracyjnego). Obliczenia przeprowadzić analogicznie do punktu 1. Ad. 3) Należy przygotować wodną zawiesinę otrąb pszennych w stosunku 1:0. Umieścić w zbiorniku wyporowym zaopatrzonym w mieszadło łopatkowe (mieszanina szybko sedymentuje). Filtrację oraz obliczenia przeprowadzić analogicznie do punktu 1 (przy użyciu nuczy nadciśnieniowej). Każda z grup wykonuje tylko jedną spośród trzech opisanych filtracji, jednak w sprawozdaniu powinna dodać krótki opis filtracji wykonywanych przez pozostałe grupy.