FIZYCZNE WŁAŚCIWOŚCI GLEB

Podobne dokumenty
Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej

Frakcje i grupy granulometryczne- stosowane podziały

Ćwiczenie 8. Oznaczanie sumy zasad i obliczanie pojemności sorpcyjnej gleby 8.1. Wprowadzenie. Faza stała gleby ma zdolność zatrzymywania par, gazów,

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

TRÓJFAZOWY UKŁAD GLEBY

Laboratoryjne badania gruntów i gleb / Elżbieta Myślińska. Wyd. 3. Warszawa, Spis treści. Przedmowa 13

Klasyfikacja uziarnienia gleb i utworów mineralnych

Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem

Prof. dr hab. Anna Miechówka. Faza stała gleby

UKŁADY DYSPERSYJNE GLEB KOLOIDY GLEBOWE

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

SKUTKI SUSZY W GLEBIE

Klasyfikacja uziarnienia gleb i utworów mineralnych

Ćwiczenie 9. Oznaczanie potrzeb wapnowania gleb Wprowadzenie. Odczyn gleby jest jednym z podstawowych wskaźników jej Ŝyzności.

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

( ) ( ) Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: - piaskowa: f ' 100 f π π. - pyłowa: - iłowa: Rodzaj gruntu:...

Opracowała: mgr inż. Ewelina Nowak

Ćw.1 ph-metryczne oznaczanie kwasowości gleby.

TEST NA EGZAMIN POPRAWKOWY Z CHEMII DLA UCZNIA KLASY II GIMNAZJUM

ANALIZA MAKROSKOPOWA

Ćwiczenie 5: Sorpcyjne właściwości gleb

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów. 07 marca 2019 r. zawody III stopnia (wojewódzkie) Schemat punktowania zadań

Wodorotlenki O O O O. I n. I. Wiadomości ogólne o wodorotlenkach.

Repetytorium z wybranych zagadnień z chemii

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW

INNOWACYJNY SPOSÓB WAPNOWANIA PÓL

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Związki nieorganiczne

WYMAGANIA EDUKACYJNE

Wymagania programowe na poszczególne oceny. Chemia Kl.2. I. Kwasy

Chemia Nowej Ery Wymagania programowe na poszczególne oceny dla klasy II

Wymagania programowe na poszczególne oceny. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń: Ocena dostateczna [1 + 2]

Wilgotność gleby podczas zabiegów agrotechnicznych

CHEMIA KLASA II I PÓŁROCZE

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

PROCESY GLEBOTWÓRCZE EUROPY ŚRODKOWEJ

Część I. TEST WYBORU 18 punktów

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I czas trwania: 90 min Nazwa szkoły

Kryteria oceniania z chemii kl VII

Wymagania programowe na poszczególne oceny chemia kl. II Gimnazjum Rok szkolny 2015/2016 Wewnętrzna budowa materii

PROCESY BIOGEOCHEMICZNE NA LĄDACH

MARATON WIEDZY CHEMIA CZ. II

Wymagania programowe na poszczególne oceny. IV. Kwasy. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca. Ocena dobra [1] [ ]

Wymagania programowe na poszczególne oceny CHEMII kl. II 2017/2018. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń:

FIZYKA I CHEMIA GLEB. Bilans wodny i cieplny gleb Woda w glebie

HYDROLIZA SOLI. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

Właściwości chemiczne gleby. Do koloidów glebowych zalicza się cząstki, o średnicy mniejszej od (0.002) mm.

You created this PDF from an application that is not licensed to print to novapdf printer (

OZNACZANIE ODCZYNU GLEBY

Chemia - B udownictwo WS TiP

Wymagania z chemii na poszczególne oceny Klasa 2 gimnazjum. Kwasy.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 432

NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. CHEMIA klasa II.

- w nawiasach kwadratowych stężenia molowe.

I Etap szkolny 16 listopada Imię i nazwisko ucznia: Arkusz zawiera 19 zadań. Liczba punktów możliwych do uzyskania: 39 pkt.

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

Księgarnia PWN: Renata Bednarek, Helena Dziadowiec, Urszula Pokojska, Zbigniew Prusinkiewicz Badania ekologiczno-gleboznawcze

XI Ogólnopolski Podkarpacki Konkurs Chemiczny 2018/2019. ETAP I r. Godz Zadanie 1 (10 pkt)

ANEKS 5 Ocena poprawności analiz próbek wody

VI Podkarpacki Konkurs Chemiczny 2013/2014

WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 432

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019

Wewnętrzna budowa materii

Zasady oceniania z chemii w klasie II w roku szkolnym 2015/2016. Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.

Chemia nieorganiczna Zadanie Poziom: podstawowy

CHEMIA - wymagania edukacyjne

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Podział gruntów ze względu na uziarnienie.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

BIOTECHNOLOGIA OGÓLNA

XV Wojewódzki Konkurs z Chemii

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej

Spis treści. Przedmowa 15

Określenie wpływu dodatku bentonitu na polepszenie właściwości geotechnicznych osadów dennych Zbiornika Rzeszowskiego.

2.4. ZADANIA STECHIOMETRIA. 1. Ile moli stanowi:

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

SORPCJA WILGOCI SORPCJA WILGOCI

Reakcje utleniania i redukcji Reakcje metali z wodorotlenkiem sodu (6 mol/dm 3 )

nr tel. kontaktowego Urząd Gminy w Osiecznej WNIOSEK

Podział gruntów budowlanych 1/7

Inżynieria Środowiska

TYPY REAKCJI CHEMICZNYCH

a) Sole kwasu chlorowodorowego (solnego) to... b) Sole kwasu siarkowego (VI) to... c) Sole kwasu azotowego (V) to... d) Sole kwasu węglowego to...

Nazwy pierwiastków: ...

Sole. 2. Zaznacz reszty kwasowe w poniższych solach oraz wartościowości reszt kwasowych: CaBr 2 Na 2 SO 4

Ćwiczenie 1. Oznaczanie składu granulometrycznego gleb metodą Bouyoucsa-Casagrande w modyfikacji Prószyńskiego.

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej

PN-EN ISO :2006/Ap1

VIII Podkarpacki Konkurs Chemiczny 2015/2016

Wykorzystanie archiwalnej mapy glebowo-rolniczej w analizach przestrzennych. Jan Jadczyszyn

KONKURS CHEMICZNY ROK PRZED MATURĄ

Transkrypt:

FIZYCZNE WŁAŚCIWOŚCI GLEB

Główne składniki gleb substancja mineralna 45% powietrze 25% substancja organiczna 5% woda 25%

Trójfazowy układ gleby Faza stała składniki mineralne, składniki organiczne, związki mineralno-organiczne Faza ciekła roztwór glebowy, czyli woda z rozpuszczonymi w niej związkami mineralnymi i organicznymi Faza gazowa powietrze glebowe, czyli mieszanina gazów i pary wodnej

Faza stała gleby Składniki mineralne okruchy skał, minerały, substancje mineralne Składniki organiczne próchnica, resztki roślinne, zwierzęce, organizmy glebowe Związki mineralno-organiczne

WŁAŚCIWOŚCI FIZYCZNE GLEB Skład mechaniczny (granulometryczny) Gęstość: właściwa, objętościowa Porowatość Zwięzłość Plastyczność Lepkość Pęcznienie i kurczenie się gleb

Skład granulometryczny gleb (tekstura gleb) Frakcja zbiór ziaren (cząstek) o określonych średnicach, mieszczących się w przedziale liczb granicznych, które wyznaczają największą i najmniejszą średnicę zastępczą określonej frakcji, np. 1,0-0,1 mm. Części szkieletowe ziarna o średnicy > 1,0 mm Części ziemiste ziarna o średnicy < 1,0 mm

Podział fazy stałe na frakcje granulometryczne (wg. BN-78/9180-11) Grupa frakcji Frakcja Podfrakcja Średnica [mm] kamienie > 20 Części szkieletowe grube średnie drobne > 200 200-100 100-20 Ŝwir 20-1 gruby 20-10 drobny 10-1 piasek 1,0-0,1 gruby 1,0-0,5 średni 0,5-0,25 drobny 0,25-0,1 Części ziemiste pył gruby drobny 0,1-0,02 0,1-0,05 0,05-0,02 części iłowe < 0,02 ił pyłowy gruby 0,02-0,006 ił pyłowy drobny 0,006-0,002 ił koloidalny < 0,002

Krzywa uziarnienia

Podział utworów glebowych na grupy i podgrupy granulometryczne

Podział utworów glebowych na grupy i podgrupy granulometryczne wg. BN-78/9180-11 Grupy podgrupy granulometryczne (symbol) Piasek 1-0,1 mm Zawartość frakcji [%] Pył 0,1-0,02 mm Części iłowe < 0,02 mm Piaski -piasek luźny (pl) -piasek luźny pylasty (plp) -piasek słabo gliniasty (ps) -piasek słabo gliniasty pylasty (psp) -piasek gliniasty lekki (pgl) -piasek gliniasty lekki pylasty (pglp) -piasek gliniasty mocny (pgm) -piasek gliniasty mocny pylasty (pgmp) 70-100 55-74 65-94 50-68 60-89 45-63 55-84 40-58 0-25 26-40 0-25 26-40 0-25 26-40 0-25 26-40 0-5 0-5 6-10 6-10 11-15 11-15 16-20 16-20 Gliny -glina piaszczysta (gp) -glina piaszczysta pylasta (gpp) -glina lekka (gl) -glina lekka pylasta (glp) -glina średnia (gs) -glina średnia pylasta (gsp) -glina cięŝka (gc) -glina cięŝka pylasta (gcp) -glina bardzo cięŝka (gbc) 50-79 35-53 40-74 25-48 25-64 10-38 10-49 10-24 10-24 0-25 26-40 0-25 26-40 0-25 26-40 0-24 25-39 0-14 21-25 21-25 26-35 26-35 36-50 36-50 51-75 51-65 76-90 Iły -ił pylasty (ip) -ił (i) 0-9 0-9 25-49 0-24 51-75 67-100 Pyły -pył piaszczysty (płp) -pył zwykły (płz) -pył gliniasty (płg) -pył ilasty (płi) 25-59 0-24 0-38 0-23 41-75 56-100 41-79 41-64 0-20 0-20 21-35 36-50

GĘSTOŚĆ GLEBY Gęstość właściwa (fazy stałej) γ = Ms / Vs [g/cm 3 ] Ms masa próbki suchej Vs objętość próbki suchej Wartość γ zaleŝy od składu mineralnego i zawartości próchnicy: - gleby mineralne: 2,65 2,80 - gleby organiczne: 1,40 2,00 Gęstość właściwą wyznacza się za pomocą piknometru

Gęstość objętościowa w układzie naturalnym γ o = M / V [g/cm 3 ] M masa próbki o nienaruszonej strukturze (Ms, Ms+Mw) V objętość próbki (Vs + Vw + Vg) Gęstość γ o rzeczywista gleby wysuszonej w temp. 100 C Gęstość γ o chwilowa gleby z zawartą w niej wodą γ o gleb gliniastych i ilastych 1,00 1,60 g/cm 3 γ o gleb piaszczystych 1,20 1,80 g/cm3

Gęstość gleby - wyznaczanie Gęstość objętościowa = Masa / Objętość całości Gęstość właściwa = Masa / Objętość fazy stałej Gęstość objętościowa Gęstość właściwa 1.1-1.9 g/cm 3 2.6 g/cm 3

Gęstość objętościowa - przykład Masa próbki naturalnej (wilgotnej) = 50 gramów Objętość próbki = 40 cm 3 Gęstość objętościowa = 50 g / 40 cm 3 = 1.25 g/cm 3

POROWATOŚĆ GLEBY Po = (Vp / V)*100% [%] Vp objętość przestrzeni wolnych w glebie zajętych przez powietrze i wodę V całkowita objętość gleby Porowatość ogólna gleby ogólna objętość porów: - makropory φ> 8,5 µm - mezopory φ0,2-8,5 µm - mikropory φ< 0,2 µm - gleby piaszczyste 35-45% - gleby gliniaste i lessy 40-50% - iły i gleby wysoko próchnicze 50-60% - gleby organiczne (torfy) 80-90%

Porowatość gleby zaleŝy od: czynników wewnętrznych: skład ziarnowy, zawartość próchnicy, tekstura i struktura gleby, fauna glebowa, ilość korzeni czynników zewnętrznych: klimat (wilgotność, temperatura), zabiegi agrotechniczne Porowatość ogólną oblicza się według wzoru: Po = (γ -γ o )/γ * 100% γ gęstość właściwa gleby γ o gęstość objętościowa gleby Lub przy uŝyciu aparatury (porometr Loebella, piknometr powietrzny Nietscha w modyfikacji Święcickiego)

Porowatość gleby - obliczanie Gęstość właściwa gleby = 2.5 g/cm 3 Gęstość objętościowa gleby = 1.2 g/cm 3 Porowatość gleby (2.5 1,2) / 2.5 =.52 albo inaczej 52 % powietrza i/lub wody Czyli, Ŝe 52% objętości naturalnej próbki gleby zajmuje powietrze i/lub woda, a 48% cząstki stałe.

KONSYSTENCJA GLEBY W zaleŝności od stopnia uwilgotnienia gleb w odniesieniu do gleb spoistych (np. gliny, iły) wyróŝnia się trzy konsystencje: - zwarta - ma ją gleba sucha, która podczas działania na nią nacisku nie zmienia swego kształtu, a po przekroczeniu pewnej granicy ulega rozkruszeniu, - plastyczna - ma ją gleba wilgotna, która pod działaniem siły zewnętrznej odkształca się, a po ustąpieniu jej działania zachowuje nadany kształt, - płynna - ma ją gleba mokra, której pod wpływem siły zewnętrznej nie moŝna nadać kształtu, poniewaŝ rozpływa się Gleby niespoiste (np. piaski) na skutek wzrostu wilgotności stają się płynne bez przechodzenia w stan plastyczny.

Wilgotność na granicach konsystencji określa się mianem granicy płynności, plastyczności i skurczu: - granica plastyczności (Lp) jest to wilgotność, przy której gleba przechodzi z konsystencji zwartej w plastyczną. - granica płynności (Ly) jest to wilgotność, przy której gleba z konsystencji plastycznej przechodzi w płynną, - granica skurczu (Ls) oznacza taką wilgotność, przy której próbka gleby w miarę dalszego suszenia przestaje zmieniać swoją objętość

PLASTYCZNOŚĆ GLEBY Jest to właściwość zmiany swego kształtu pod wpływem sił zewnętrznych i zachowania nadanych kształtów po ustaniu działania tych sił. Gleby bardzo plastyczne (gliny cięŝkie, iły) Gleby średnio plastyczne (gliny średnie i lekkie) Gleby mało plastyczne (piaski gliniaste i słabo gliniaste) Gleby nie plastyczne (piaski luźne i Ŝwiry)

PLASTYCZNOŚĆ GLEBY cd. Wskaźnik plastyczności W p = L y - L p Spoistość gleb Wskaźnik plastyczności spoiste Wp < l mało spoiste l < Wp < 10 średnio spoiste 10 < Wp < 20 spoiste cięŝkie 20 < Wp < 30 bardzo spoiste Wp > 30

ZWIĘZŁOŚĆ GLEBY Jest to siła z jaką gleba przeciwstawia się naciskowi mechanicznemu. Miarą zwięzłości jest spójność. Zwięzłość gleby zaleŝy od: składu granulometrycznego, struktury, wilgotności, zawartości koloidów i próchnicy Gleby zwięzłe (wytworzone z iłów i glin cięŝkich) Gleby średnio zwięzłe (wytworzone z glin lekkich, piasków gliniastych mocnych, utworów pyłowych) Gleby słabo zwięzłe (wytworzone z piasków gliniastych lekkich, słabo gliniastych piasków pylastych) Gleby luźne (wytworzone ze Ŝwirów i piasków)

LEPKOŚĆ GLEBY Jest to właściwość gleby w stanie wilgotnym polegająca na przyleganiu do róŝnych przedmiotów. ZaleŜy od składu granulometrycznego, wilgotności, struktury gleby i jej rodzaju. Gleba uzyskuje lepkość dopiero po osiągnięciu pewnego stanu uwilgotnienia. Gleby pozbawione lepkości gleby suche Gleby o maksymalnej lepkości zawierające max. 60% frakcji ilastej Gleby zwięzłe bezstrukturalne wykazują większą lepkość, niŝ gleby o dobrej strukturze

PĘCZNIENIE I KURCZLIWOŚĆ GLEBY Pęcznienie to zwiększanie objętości gleby pod wpływem pochłaniania wody. Kurczliwość to proces odwrotny. Procesy te obserwuje się tylko w glebach zwięzłych, plastycznych. Pęcznienie gleb P = (Pmax V) / V jest to stosunek przyrostu objętości gleby maksymalnie spęczniałej Pmax do jej początkowej objętości Kurczenie się gleb K = (V Vmin) / V Vmin oznacza minimalna objętość gleby uzyskiwaną wówczas, gdy osiąga ona wilgotność odpowiadającą granicy skurczu

PĘCZNIENIE I KURCZLIWOŚĆ GLEBY przykładowe wartości Rodzaj utworu Pęcznienie P [%] Pył ilasty Glina lekka Glina cięŝka Ił Bentonit 16 5 25 32 190

POWIERZCHNIA WŁAŚCIWA GLEBY Powierzchnia właściwa gleby jest to powierzchnia przypadająca na jednostkę jej masy, wyraŝana w metrach kwadratowych na gram

Faza ciekła gleby Woda w postaci pary wodnej Woda molekularna - woda higroskopowa - woda błonkowata Woda kapilarna - woda kapilarna właściwa - woda kapilarna przywierająca (zawieszona) Woda wolna - woda infiltracyjna (przesiąkająca) - woda gruntowo-glebowa

Udział głównych form wody w glebach w zaleŝności od składu granulometrycznego Forma wody Gruboziarniste (Ŝwiry, piaski) Utwory glebowe Średnioziarniste (piaski gliniaste, pyły, gliny) Drobnoziarniste (gliny cięŝkie, iły) Wolna Kapilarna Molekularna

RUCH WODY W GLEBIE Przemieszczanie się wody w glebie charakteryzuje przepuszczalność wodna gleb. Określa ona ruch wody podczas: wchłaniania wody opadowej przez glebę przesiąkania, czyli filtracji wody gruntowej Wchłanianie następuje w dwóch etapach: nasiąkanie gleby wodą pionowe przesiąkanie wody wolnej (infiltracyjnej) Podczas przesiąkania (filtracji) ruch wody odbywa się głównie w kierunku poziomym i przebiega w porach w pełni nasyconych wodą.

Wartości współczynnika filtracji róŝnych utworów glebowych Rodzaj utworu świr drobny Piasek drobnoziarnisty Pył Glina Ił Współczynnik filtracji k [cm/s] 10 10-1 10-2 10-3 10-4 10-6 10-6 10-8 10-9 10-10

CHEMIZM ROZTWORU GLEBOWEGO W roztworze glebowym występują przede wszystkim jony: H +, Na +, K +, NH 4+, Ca 2+, Mg 2+, Fe 2+, Fe 3+, HCO 3-, Cl -, NO 3-, CO 3 2-, SO 4 2- i niektóre metale przejściowe oraz róŝne rozpuszczalne substancje organiczne i gazy: O 2, CO 2, CH 4, N 2, H 2 S Mineralizacja polskich wód glebowych kapilarnych = 100-3000 mg/l. Mineralizacja wody gruntowej-glebowej jest zazwyczaj znacznie niŝsza.

POWIETRZE GLEBOWE

POWIETRZE GLEBOWE Pierwiastek Forma występowania w glebach O dobrych stosunkach powietrznych (formy utlenione) O złych stosunkach powietrznych (formy zredukowane) Węgiel (C) CO 2 CH 4, C 2 H 4 Azot (N) NO 3 - N 2, NH 3, N 2 O, NO 2 - Siarka (S) SO 4 2- H 2 S, SO 3

FIZYKOCHEMICZNE WŁAŚCIWOŚCI GLEB

ODCZYN GLEB Odczyn jest określany przez stosunek jonów wodorowych, H +, do jonów wodorotlenowych OH -, na które dysocjuje woda: H 2 O = H + + OH - W wodzie destylowanej [H + ] = [OH - ] = 10-7 mol/dm 3. Odpowiada to odczynowi obojętnemu. Wzrost stęŝenia jonów [H + ] (spadek [OH - ]) powoduje, Ŝe roztwór staje się kwaśny. Wzrost stęŝenia jonów [OH - ] (spadek [H+]) powoduje, Ŝe roztwór staje się zasadowy. Odczyn gleby wyraŝa się wartością ph ph = -log [H+] roztwory kwaśne ph < 7 roztwory obojętne ph = 7 roztwory zasadowe ph > 7

Zakres ph spotykany w większości gleb mineralnych

ODCZYN GLEB cd. W Polsce przewaŝają gleby o odczynie kwaśnym; gleby kwaśne i bardzo kwaśne zajmują 50% powierzchni kraju, gleby słabo kwaśne 30%, gleby obojętne i zasadowe 20%.

KWASOWOŚĆ I ZASADOWOŚĆ GLEB Kwasowość stan gleby, w którym jej odczyn jest kwaśny 1. Kwasowość czynna pochodzi od jonów H + roztworu glebowego 2. Kwasowość potencjalna pochodzi od jonów H + i Al 3+ zaadsorbowanych przez koloidy glebowe kwasowość wymienna ujawnia się w glebach po potraktowaniu ich roztworami soli obojętnych - KCl kwasowość hydrolityczna - ujawnia się w glebach po potraktowaniu ich roztworami soli hydrolizujących zasadowo (CH 3 COO) 2 Ca

KWASOWOŚĆ I ZASADOWOŚĆ GLEB cd. Gleba Al 3+ Al 3+ H + H + + 8KCl K + K + K + K + K+ Gleba K + K + K + +2AlCl 3 + 2HCl H + Gleba + (CH 3 COO) 2 Ca Ca 2+ Gleba + 2CH 3 COOH H +

BUFOROWE WŁAŚCIWOŚCI GLEBY Właściwości buforowe gleby - zdolność gleby do przeciwstawiania się zmianie odczynu

SORPCYJNE WŁAŚCIWOŚCI GLEB Sorpcja powierzchnia ciała stałego (gleby) przyciąga i zatrzymuje warstwę jonów, atomów lub molekuł. Za zdolności sorpcyjne gleby odpowiada kompleks sorpcyjny zbudowany z koloidów glebowych: minerały ilaste (smektyty, wermikulit, illit, kaolinit) krystaliczne i amorficzne tlenki Ŝelaza i glinu minerały bezpostaciowe próchnica kompleksy ilasto-próchnicze

Dzięki właściwościom sorpcyjnym gleby moŝliwe jest: regulacja w nich odczynu magazynowanie dostarczanych w nawozach składników pokarmowych roślin neutralizacja szkodliwych dla organizmów Ŝywych substancji, które dostają się do gleby

Rodzaje sorpcji w glebie: Wymiana jonowa jon z roztworu wymienia (zastępuje) jon z powierzchni lub struktury ciała stałego Sorpcja chemiczna powstawanie na powierzchni gleby trwałych wiązań chemicznych (kompleksów) między sorbentem a sorbatem Sorpcja fizyczna zagęszczanie na powierzchni cząstek gleby molekuł innych ciał (cieczy, gazów) wskutek działania sił van der Waalsa Sorpcja biologiczna Sorpcja biologiczna pobieranie i zatrzymywanie jonów z roztworu przez organizmy Ŝywe

Przyczyną wymiany jonowej i sorpcji chemicznej są nie skompensowane ładunki elektryczne występujące na powierzchni koloidów glebowych. Źródłem tych ładunków są: Niewysycone wiązania (wartościowości) występujące na krawędziach i zewnętrznych płaszczyznach minerałów ilastych (pakietów) oraz cząstkach próchnicy. Są to ładunki zmienne poniewaŝ ich wielkość zmienia się wraz z odczynem gleby. Wewnątrzwarstwowa wymiana w kryształach minerałów ilastych. Są to ładunki trwałe poniewaŝ ich wielkość nie zaleŝy od ph. Zmienne ph roztworów glebowych (ph ZPC ) w przypadku koloidów glebowych z grupy wodorotlenków Fe i Al

Ładunki zmienne minerały ilaste Ładunki trwałe minerały ilaste

Ładunki zmienne próchnica

phzpc

Jednym z najwaŝniejszych rodzajów sorpcji na koloidach glebowych jest wymiana jonowa. Polega ona na tym, Ŝe jon z roztworu glebowego wymienia (zastępuje) jon z powierzchni lub struktury koloidu glebowego. Wymianie jonowej ulegają przede wszystkim kationy sorpcja wymienna kationów (cation exchange) a zdecydowanie w mniejszym stopniu aniony sorpcja wymienna anionów (anion exchange). Najczęściej spotykanymi kationami w glebach są: Ca 2+, Mg 2+, K +, Na +, NH 4+ - kationy o charakterze zasadowym H +, Al 3+ - kationy o charakterze kwasowym

SORPCJA WYMIENNA KATIONÓW Ca +2 Mg +2 K + Al +3 Mg +2 Ca +2 - - - - K Ca H +2 + Ca +2 Ca +2 K + Ca +2 - O - - - L - O - - - I - - D - - - Kationy wymienne Ca +2 Al +3 Mg +2 K + H + H + K + Al +3 Ca +2 Ca +2 Mg +2 H +

Miarą pojemności wymiany kationów (CEC) i anionów (AEC) jest mm/kg Inne, stosowane, jednostki pojemności wymiany jonów: cmol(+)/kg = 0,01 M/kg = 10mM/kg mval/kg = mm/kg wartościowość pierwiastka

Rozmiary wymiany kationów w glebie zaleŝą od: składu mineralnego sorbentu i wielkości jego ziaren, rodzaju sorbowanego kationu i jego stęŝenia, rodzaju towarzyszącego anionu, ph roztworu, temperatury,

Wpływ składu mineralnego gleby na wielkość jej pojemności sorpcyjnej Pojemność sorpcyjna niektórych składników gleb [cmol(+)/kg] Składnik CEC Składnik CEC kaolinit 3-15 chloryt 10-40 haloizyt 5-10 alofan 100 montmorillonit 80-120 uwod. tl. Fe i Al 4 wermikulit 100-200 illit 20-50 próchnica 150-250

Wpływ rodzaju kationu na sorpcję wymienną zaleŝy od wartościowości, wielkości i stopnia uwodnienia kationów Wraz ze wzrostem wartościowości kationów wzrasta ich zdolność wymienna. Generalnie zgodnie ze schematem: Li + < Na + < NH 4+ = K + < Mg 2+ < Ca 2+ < Al 3+ < Fe 3+ < H + Zdolność wymienna jonów o tej samej wartościowości zaleŝy od wielkości ich średnic. Kation tym chętniej wchodzi do kompleksu sorpcyjnego, im większa jest jego średnica. Im większa jest średnica jonów, tym słabsze jest pole elektryczne przez nie wytwarzane - mniejszy stopień ich uwodnienia. Wraz ze wzrostem średnicy jonów uwodnionych mniej chętnie wchodzą one do kompleksu sorpcyjnego gleby.

Wpływ rodzaju towarzyszącego anionu na wielkość wymiany kationu Sorpcja niektórych kationów wielowartościowych moŝe zaleŝeć od rodzaju towarzyszących anionów. Kationy te zachowują się jak jednowartościowe, przy czym nadmiar ładunku jest neutralizowany przez towarzyszące aniony, takie jak: OH -, Cl - i NO 3-. W ten sposób są sorbowane kationy: CuCl +, ZnCl +, FeOH 2+, Fe(OH) 2 i Al(OH 2 ) 2+.

100 Wpływ ph na wielkość sorpcji Cr(III) Sorpcja Cr(III) [%] 90 80 70 60 50 40 30 20 10 0 hydroliza Cr(III) darniowa ruda Ŝelaza torf iłowiec smektytowy iłowiec smektyt.-zeolitowy kaolin szlamowany popiół lotny 0 1 2 3 4 5 6 7 8 9 10 11 12 ph

Pojemność sorpcyjną gleby (CEC) oblicza się wyznaczając sumę kationów metali o charakterze zasadowym (Ca, Mg, Na, K) i jonów wodoru znajdujących się w kompleksie sorpcyjnym gleby. Dokonuje się tego poprzez potraktowanie próbki gleby roztworem zawierającym 1M NH 4+ i oznaczenie w roztworze po reakcji zawartości Ca, Mg, Na i K oraz ph, które jest miarą zawartości jonów H +. Wyznaczona w ten sposób wartość CEC nazywana jest pojemnością całkowitą. Pojemność potencjalną Pojemność potencjalną wyznacza się traktując próbkę na przykład roztworem zawierającym 1M Mg 2+ w celu wysycenia wszystkich potencjalnych pozycji wymiennych a następnie desorbuje się magnez roztworem zawierającym 1M Ba 2+ lub 1M NH 4+.

Przykłady wartości CEC Bielica Gleba brunatna Rędzina 50 mm / kg 120 mm / kg 240 mm / kg