Bioinformatyka Wykład 4 Wrocław, 17 października 2011
Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych.
Model 3. Porównanie średnich w dwóch rozkładach normalnych. Niech X 1,..., X n będzie próbą statystyczną z rozkładu normalnego N(μ 1, σ1 2), a Y 1,..., Y m będzie próbą statystyczną z rozkładu normalnego N(μ 2, σ2 2). Zakładamy, że σ2 1 oraz σ2 2 są nieznane, ale są sobie równe σ1 2 = σ2. 2
Testujemy hipotezę H 0 : μ 1 = μ 2 przeciwko jednej z następujących hipotez alternatywnych H 1 : μ 1 < μ 2, H 2 : μ 1 > μ 2, H 3 : μ 1 = μ 2.
Testujemy hipotezę H 0 : μ 1 = μ 2 przeciwko jednej z następujących hipotez alternatywnych H 1 : μ 1 < μ 2, H 2 : μ 1 > μ 2, H 3 : μ 1 = μ 2.
Testujemy hipotezę H 0 : μ 1 = μ 2 przeciwko jednej z następujących hipotez alternatywnych H 1 : μ 1 < μ 2, H 2 : μ 1 > μ 2, H 3 : μ 1 = μ 2.
Ponieważ wariancja jest nieznana wiec przy konstrukcji statystyki testowej użyjemy nieobciążonego estymatora wariancji S 2 S 2 X = 1 n 1 n (X i X n ) 2. i=1
Jako statystyki testowej użyjemy T = X n Y m nm (n + m 2), nsx 2 + ms Y 2 n + m gdzie X n i Y m oznaczają odpowiednie średnie próbkowe, a S 2 X i S 2 Y oznaczają wariancje próbkowe S 2 X = 1 n 1 S 2 Y = 1 m 1 n (X i X n ) 2, i=1 m (Y i Y m ) 2. Statystyka T ma rozkład t Studenta o (n + m 2) stopniach swobody, gdy hipoteza H 0 jest prawdziwa. i=1
Niech t p (n) będzie kwantylem rzędu p rozkładu t Studenta o n stopniach swobody. Na poziomie istotności α zbiory krytyczne testów dla poszczególnych alternatyw mają odpowiednio postać: 1) C = (, t 1 α (n + m 2)] dla alternatywy H 1 2) C = [t 1 α (n + m 2), ) dla alternatywy H 2 3) C = (, t 1 α/2 (n + m 2)] [t 1 α/2 (n + m 2), ) dla alternatywy H 3
Model 3 cd. Porównanie wartości oczekiwanych zależnych par obserwacji. Niech (X 1, Y 1 ), (X 2, Y 2 ),..., (X n, Y n ) będzie próbą losową złożona z par wzajemnie niezależnych zmiennych losowych które w parze mogą być zależne. tego typu obserwacje pojawiają się w sposób naturalny w sytuacji dwukrotnego mierzenia wartości pewnej cech tego samego obiektu.
Model 3 (zależne pary obserwacji). Oznaczmy przez D i = X i Y i, i przyjmijmy założenie, że (D 1,..., D n ) tworzą próbę niezależnych zmiennych losowych o rozkładzie normalnym N(μ D, σ 2 D ) z nieznaną średnia μ D. Hipoteza zerowa przyjmuje postać H 0 : μ D = 0 natomiast hipotezy alternatywne postać H 1 : μ D < 0, H 2 : μ D > 0, H 3 : μ D = 0.
Model 3 (zależne pary obserwacji). Oznaczmy przez D i = X i Y i, i przyjmijmy założenie, że (D 1,..., D n ) tworzą próbę niezależnych zmiennych losowych o rozkładzie normalnym N(μ D, σ 2 D ) z nieznaną średnia μ D. Hipoteza zerowa przyjmuje postać H 0 : μ D = 0 natomiast hipotezy alternatywne postać H 1 : μ D < 0, H 2 : μ D > 0, H 3 : μ D = 0.
Statystyka testowa gdzie T = D S D / n, a D = 1 n n (X i Y i ) i=1 S D = 1 n 1 n ( (Xi Y i ) D ) 2, i=1 ma rozkład t Studenta z (n 1) stopniami swobody.
W ten sposób zadanie konstrukcji testu dla porównania wartości średnich par obserwacji sprowadza się do analogicznego zadania dla pojedynczej próby i pojedynczej wartości średniej (wartości średniej różnic D i przy nieznajomości ich odchylenia standardowego).
Przykład Jednym z testów, którym rozpoczęto analizę nowego leku na nadciśnienie tętnicze było zaaplikowanie go próbie 22 chorych pacjentów, u których ciśnienie skurczowe było bliskie wartości 144 mmhg. Górna granica normy tego ciśnienia wynosi 140 mmhg. Chcemy sprawdzić czy zastosowanie terapii nowym lekiem daje obniżenie ciśnienia o 5 mmhg. Takie postępowanie testowe wynika ze sposobu prowadzenia terapii w leczeniu nadciśnienia - przy zadanej wartości ciśnienia, ustalona dawka leku powinna spowodować jego obniżenie mniej więcej do górnej granicy normy.
Przykład Jednym z testów, którym rozpoczęto analizę nowego leku na nadciśnienie tętnicze było zaaplikowanie go próbie 22 chorych pacjentów, u których ciśnienie skurczowe było bliskie wartości 144 mmhg. Górna granica normy tego ciśnienia wynosi 140 mmhg. Chcemy sprawdzić czy zastosowanie terapii nowym lekiem daje obniżenie ciśnienia o 5 mmhg. Takie postępowanie testowe wynika ze sposobu prowadzenia terapii w leczeniu nadciśnienia - przy zadanej wartości ciśnienia, ustalona dawka leku powinna spowodować jego obniżenie mniej więcej do górnej granicy normy.
Przykład Jednym z testów, którym rozpoczęto analizę nowego leku na nadciśnienie tętnicze było zaaplikowanie go próbie 22 chorych pacjentów, u których ciśnienie skurczowe było bliskie wartości 144 mmhg. Górna granica normy tego ciśnienia wynosi 140 mmhg. Chcemy sprawdzić czy zastosowanie terapii nowym lekiem daje obniżenie ciśnienia o 5 mmhg. Takie postępowanie testowe wynika ze sposobu prowadzenia terapii w leczeniu nadciśnienia - przy zadanej wartości ciśnienia, ustalona dawka leku powinna spowodować jego obniżenie mniej więcej do górnej granicy normy.
Przykład cd. Każdemu pacjentowi zmierzono ciśnienie skurczowe przed rozpoczęciem terapii oraz po jej zakończeniu. W ten sposób dla i tego pacjenta i = 1, 2,..., 22 dysponowano para wyników (x i, y i ) przed i po terapii. Naszym celem jest poddanie testowi hipotezy H 0 : μ D = 5 przy hipotezie alternatywnej H 0 : μ D = 5.
Przykład cd. Każdemu pacjentowi zmierzono ciśnienie skurczowe przed rozpoczęciem terapii oraz po jej zakończeniu. W ten sposób dla i tego pacjenta i = 1, 2,..., 22 dysponowano para wyników (x i, y i ) przed i po terapii. Naszym celem jest poddanie testowi hipotezy H 0 : μ D = 5 przy hipotezie alternatywnej H 0 : μ D = 5.
Przykład cd. Każdemu pacjentowi zmierzono ciśnienie skurczowe przed rozpoczęciem terapii oraz po jej zakończeniu. W ten sposób dla i tego pacjenta i = 1, 2,..., 22 dysponowano para wyników (x i, y i ) przed i po terapii. Naszym celem jest poddanie testowi hipotezy H 0 : μ D = 5 przy hipotezie alternatywnej H 0 : μ D = 5.
Interesuje nas hipoteza zerowa, która jest modyfikacją hipotezy H 0 : μ D = 0. Aby otrzymać test dla naszego przypadku trzeba zmodyfikować statystykę testową i rozważać statystykę T = D S D n, W naszym przypadku d 0 = 5. T = D d 0 S D / n.
Dla próby 22 pacjentów otrzymano średnią wartość różnicy d = 5, 3 oraz d D = 0, 4. Przy takich wartościach statystyka T przyjmuje wartość t = 3, 518. Dla testu z dwustronna alternatywą na poziomie istotności α = 0, 01 poziom krytyczny dla rozkładu t Studenta z 21 stopniami swobody wynosi 2,831356. Decyzja: hipotezę zerową należy zatem odrzucić. Terapia nowym lekiem nie spełnia nałożonych na nią wymagań.
Dla próby 22 pacjentów otrzymano średnią wartość różnicy d = 5, 3 oraz d D = 0, 4. Przy takich wartościach statystyka T przyjmuje wartość t = 3, 518. Dla testu z dwustronna alternatywą na poziomie istotności α = 0, 01 poziom krytyczny dla rozkładu t Studenta z 21 stopniami swobody wynosi 2,831356. Decyzja: hipotezę zerową należy zatem odrzucić. Terapia nowym lekiem nie spełnia nałożonych na nią wymagań.
Dla próby 22 pacjentów otrzymano średnią wartość różnicy d = 5, 3 oraz d D = 0, 4. Przy takich wartościach statystyka T przyjmuje wartość t = 3, 518. Dla testu z dwustronna alternatywą na poziomie istotności α = 0, 01 poziom krytyczny dla rozkładu t Studenta z 21 stopniami swobody wynosi 2,831356. Decyzja: hipotezę zerową należy zatem odrzucić. Terapia nowym lekiem nie spełnia nałożonych na nią wymagań.
Literatura. Lektura po wykładzie. J. Koronacki i J. Mielniczuk, STATYSTYKA, dla studentów kierunków technicznych i przyrodniczych. WNT 2001 Uprzejmie proszę zapoznać się z materiałem zawartym od strony 226 do strony 233
Literatura. Lektura po wykładzie. J. Koronacki i J. Mielniczuk, STATYSTYKA, dla studentów kierunków technicznych i przyrodniczych. WNT 2001 Uprzejmie proszę zapoznać się z materiałem zawartym od strony 226 do strony 233
Literatura. Lektura po wykładzie. J. Koronacki i J. Mielniczuk, STATYSTYKA, dla studentów kierunków technicznych i przyrodniczych. WNT 2001 Uprzejmie proszę zapoznać się z materiałem zawartym od strony 226 do strony 233