ODPORNOŚĆ SZYB CZOŁOWYCH SZYBKICH POJAZDÓW SZYNOWYCH NA ZDERZENIA Z TZW. CIAŁAMI OBCYMI



Podobne dokumenty
ZAKŁAD NAPĘDÓW LOTNICZYCH

POMIAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW ŚMIGŁOWYCH WG PRZEPISÓW FAR 36 APPENDIX G I ROZDZ. 10 ZAŁ. 16 KONWENCJI ICAO

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

Zasady dynamiki Newtona

Test powtórzeniowy nr 1

prędkości przy przepływie przez kanał

Test powtórzeniowy nr 1

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Hamulce pneumatyczne PN oraz hamulce elektropneumatyczne EP

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Test powtórzeniowy nr 1

POMiAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW WEdŁUG PRZEPiSÓW FAR 36 APPENdiX G i ROZdZiAŁU 10 ZAŁOżEń 16 KONWENCJi icao

LABORATORIUM MECHANIKI PŁYNÓW

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

Hamulce pojazdów szynowych / Tadeusz Piechowiak. Poznań, Spis treści

4. Jeżeli obiekt waży 1 kg i porusza się z prędkością 1 m/s, to jaka jest jego energia kinetyczna? A. ½ B. 1 C. 2 D. 2

Ćwiczenie: "Kinematyka"

KARTY POMIAROWE DO BADAŃ DROGOWYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

Wpływ zanieczyszczenia torowiska na drogę hamowania tramwaju

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Siłowniki. Konstrukcja siłownika. pokrywa tylna. tylne przyłącze zasilania. cylinder (profil) przednie przyłącze zasilania. tuleja tylnej amortyzacji

Analiza zderzeń dwóch ciał sprężystych

WYZNACZANIE CHARAKTERYSTYK SIŁOWNIKÓW UDAROWYCH Z NASTAWIANĄ OBJĘTOŚCIĄ KOMORY

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

BADANiA SPRĘŻAREK SiLNiKÓW TURBiNOWYCH

Lekcja 6. Rodzaje sprężarek. Parametry siłowników

Dobór silnika serwonapędu. (silnik krokowy)

I. DYNAMIKA PUNKTU MATERIALNEGO

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

DYNAMIKA SIŁA I JEJ CECHY

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

LABORATORIUM MECHANIKI PŁYNÓW

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Materiał powtórzeniowy dla klas pierwszych

LABORATORIUM MECHANIKI PŁYNÓW

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Regulator ciśnienia ERPA

Zad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

FRAGMENT DOKUMENTACJI PRĘDKOŚCIOMIERZA PR-50-AB km/h węzłów ±5 km/h w zakresie do 400 km/h ±8 km/h w zakresie km/h. 80 mm.

Zastosowania Równania Bernoullego - zadania

FIZYKA Kolokwium nr 3 (e-test)

PRACA. MOC. ENERGIA. 1/20

BADANIA UKŁADÓW HAMULCOWYCH POJAZDÓW SZYNOWYCH W ZAKRESIE ODPORNOŚCI NA OBCIĄŻENIE CIEPLNE TESTING THE BRAKE SYSTEM ENERGY LIMITS OF RAIL VEHICLES

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

Numeryczna symulacja rozpływu płynu w węźle

Analiza zderzeń dwóch ciał sprężystych

Problemy związane z oceną skuteczności hamulca zespołów trakcyjnych w badaniach i eksploatacji

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

AUTOBUS SZYNOWY TESTY NA PRZEBICIE SZYBY CZOŁOWEJ

PROJEKT PNEUMATYCZNEGO MODUŁU NAPĘDOWEGO JAKO ZADAJNIKA PRĘDKOŚCI POCZĄTKOWEJ W HYBRYDOWEJ WYRZUTNI ELEKTROMAGNETYCZNEJ

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Szczegółowy Opis Przedmiotu Zamówienia 18/D/ApBad/2016. Projekt, wykonanie oraz dostawa komory do pomiaru przepływu w uszczelnieniu labiryntowym.

Praca i energia Mechanika: praca i energia, zasada zachowania energii; GLX plik: work energy

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

WYMAGANIA EDUKACYJNE Z FIZYKI

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

Pomiar prędkości i natęŝenia przepływu za pomocą rurek spiętrzających

Doświadczalne badanie drugiej zasady dynamiki Newtona

ROZWIĄZUJEMY ZADANIA Z FIZYKI

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki k. Warszawy, PL BUP 20/10

KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II

Doświadczenia w eksploatacji gazomierzy ultradźwiękowych

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

Pomiar zadymienia spalin

1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM

FMDRU. Przepustnica z miernikiem przepływu. Wymiary. Opis. Przykładowe zamówienie. Ød i. Ød 1

BiRD STRiKE, CzYLi zderzenie z PTAKiEm

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

Regulator różnicy ciśnienia z ograniczeniem przepływu maksymalnego

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ

dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 6!!!

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

OPIS PRZEDMIOTU ZAMÓWIENIA WYMAGANIA TECHNICZNE

BADANIA WIRNIKA TURBINY WIATRROWEJ O REGULOWANYM POŁOŻENIU ŁOPAT ROBOCZYCH. Zbigniew Czyż, Zdzisław Kamiński

KTCM 512. Zawory równoważące i regulacyjne do małych odbiorników Niezależny od ciśnienia zawór równoważący i regulacyjny (PIBCV)

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL

SPIS TREŚCI WPROWADZENIE... 9

Regulator przepływu ERVA do systemów VAV do kanałów prostokątnych

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

Laboratorium LAB1. Moduł małej energetyki wiatrowej

Transkrypt:

ODPORNOŚĆ SZYB CZOŁOWYCH SZYBKICH POJAZDÓW SZYNOWYCH NA ZDERZENIA Z TZW. CIAŁAMI OBCYMI Paweł Boguszewicz, Piotr Wodyński Instytut Lotnictwa Streszczenie W pracy przedstawiono warunki powstawania zderzeń, wynikające z nich zagrożenia dla bezpieczeństwa kierujących pojazdami, pasażerów i współużytkowników dróg. Wskazano sposoby ograniczania obszarów uszkodzeń oraz konieczność prowadzenia odpowiednich badań eksperymentalnych. Opisano stanowisko badawcze i jego cechy. 1. WPROWADZENIE Pierwsze przypadki, w których zetknięto się ze skutkami zderzeń z ciałami obcymi, stwarzające zagrożenie w transporcie dla ludzi odnotowano najprawdopodobniej w lotnictwie. W połowie ubiegłego stulecia powstał masowy transport ludzi i towarów samolotami odrzutowymi. Silniki turbinowe ww. samolotów często ulegały awariom (a nawet całkowitemu zniszczeniu) spowodowanym zassaniem poprzez silnik ciał obcych takich jak: ptactwo, kawałki pokrycia płyt lotniskowych, żwir, kamyki, a nawet piasek. Przedmioty z nawierzchni lotniska są zasysane poprzez powstający spontanicznie wir wlotowy podczas pracy silnika na ziemi. W lotnictwie cywilnym, każdy nowopowstały silnik turbinowy musi przeżyć próbę wstrzelonego do jego wlotu, ciała ptaka, o określonej odpowiednimi normami, masie i prędkości. Do takich badań zbudowano w ILot odpowiednie działko pneumatyczne i przeprowadzono próby ptaka silników u siebie skonstruowanych. Stąd, gdy zaistniała potrzeba zbadania odporności na przebicie szyb czołowych pojazdów szynowych (zgodnie z obecnie obowiązującymi normami) ILot dysponował odpowiednim (wzorcowym) stanowiskiem i specjalistami. 2. UZASADNIENIE WYKONYWANIA TESTÓW Testy wytrzymałościowe szyb czołowych pojazdów szynowych są wykonywane w celu sprawdzenia możliwości przebicia przez ciała stałe takie jak: duże kawałki lodu, odłamki minerałów spadające z wagonów towarowych, ptaki, butelki lub inne przedmioty wyrzucane z mijających pociągów. Wykonanie testu pozwala stwierdzić czy ciało stałe (pocisk na rys. 1) w określonych przez normę warunkach przebija szybę oraz pozwala oszacować obrażenia poniesione przez maszynistę. ODPORNOść SZYB CZOŁOWYCH SZYBKICH POJAZDóW SZYNOWYCH... 5

3. NORMY OPISUJĄCE PRZEBIEG PRÓB Istnieje kilka norm według których mogą być wykonywane ww. testy: UIC 651, PN-EN 15152, BR 566 1986, NF F 15-818. Polskie przepisy wymagają, aby szyby czołowe nowych pojazdów szynowych spełniały wymagania Karty UIC-651 (International Union of Railways): Prędkość pocisku: obliczana wg wzoru Vp = Vmax + 160[km/h]; gdzie: Vp prędkość pocisku, Vmax prędkość maksymalna pojazdu szynowego. Rodzaj i kształt pocisku: aluminiowy walec z półkulistym czołem, drążony, średnica zewnętrzna 94mm, długość całkowita 97mm. Masa pocisku: 1kg. Kierunek strzału: prostopadle do szyby albo zgodnie z kierunkiem jazdy. Miejsce uderzenia: możliwie środek szyby. Temperatura szyby: 15-35 [ C]. 4. OPIS DZIAŁA PNEUMATYCZNEGO Rys. 1. Widok pocisku wykonanego zgodnie z karta UIC651 Działo pneumatyczne (przedstawione na rys. 2) jest przeznaczone do wykonywania prób odporności szyb czołowych na przebicie zgodnie z wymaganiami karty UIC 651. Działo składa się ze zbiornika powietrza, nad którym zamontowana jest lufa. Na zbiorniku zainstalowany jest manometr, a całość jest zamontowana na wózku, który umożliwia regulację odległości osi lufy od podłoża w zakresie od 1,5m do 2,5m oraz zmianę kąta pochylenia osi lufy w granicach -30 do +30. Rys. 2. Widok działa pneumatycznego, gdzie: 1 zbiornik; 2 lufa; 3 hamulec gilzy; 4 układ pomiaru prędkości pocisku; 5 wózek; 6 manometr;7 bolec blokując gilzę; 8 siłownik pneumatyczny; 9 elektrozawór 6 PRACE INSTYTUTU LOTNICTWA Nr 206

Pocisk umieszczony jest na początku lufy oraz blokowany w tym położeniu przez bolec przymocowany do dźwigni układu zwalniania. Na końcu lufy montowany jest hamulec gilzy. Pocisk jest zwalniany poprzez podniesienie dźwigni przez siłownik pneumatyczny sterowany elektrozaworem. Po zwolnieniu pocisku odpowiednie ciśnienie w zbiorniku przyspiesza go do żądanej prędkości wylotowej. Jej zależność od ciśnienia w zbiorniku przedstawiono na rys. 3. Gilza, zapewniająca szczelność między ściankami lufy i pociskiem, jest zatrzymywana przez hamulec, a pocisk przelatuje przez bramki układu pomiaru prędkości i uderza w testowaną szybę. Temperatura szyby mierzona jest cyfrowym wskaźnikiem temperatury firmy Sensirion z dokładnością ±1 C. Sprawdzanie wskaźnika temperatury przeprowadzane jest raz w roku metodą porównawczą w odniesieniu do wzorca państwowego. Rys. 3. Przebieg zmierzonych prędkości pocisku w funkcji ciśnienia w zbiorniku Pomiar prędkości odbywa się w odległości około 2m od testowanej szyby. Prędkość pocisku jest wyznaczana na podstawie pomiaru czasu przebycia przez pocisk drogi miedzy bramkami optycznymi, które są rozmieszczone w odległości jednego metra. Układ pomiarowy jest wyposażony w dwa identyczne tory pomiarowe, w celu zwiększenia kontroli poprawności pomiaru prędkości. Przed strzałem do testowanej szyby wykonuje się kilka strzałów testowych do kulochwytu w celu maksymalnego zbliżenia się do żądanej prędkości strzału. 5. HAMOWANIE GILZY Na rys. 4 przedstawiono schemat konstrukcji wyloty lufy umożliwiający hamowanie gilzy pocisku. Hamulec gilzy składa się z stalowego kołnierza (1), gum (2) (od 5 do 8), trzech śrub z nakrętkami klasy 12,9 (3), trzech sprężyn (4) oraz trzech tulejek oporowych (5). Całość zamontowano na kołnierzu lufy (6), który dodatkowo przymocowano do stojaka (7) w celu usztywnienia całości konstrukcji w momencie uderzenia gilzy (8) w hamulec. Gilza uderzając w hamulec ściska sprężyny, a następnie przecina gumy. Większość energii kinetycznej gilzy pochłaniana jest poprzez cięcie gumy. Sprężyny służą jedynie do zmniejszenia wartości maksymalnej siły. Po uderzeniu gilzy w hamulec, pocisk (9), który środkowany jest w gilzie poprzez wkładkę styropianowa (10), opuszcza lufę. ODPORNOść SZYB CZOŁOWYCH SZYBKICH POJAZDóW SZYNOWYCH... 7

Rys. 4. Schemat hamulca gilzy 6. MODEL MATEMATYCZNY ROZPĘDZANIA POCISKU Stworzono model matematyczny, w środowisku Mathcad, umożliwiający szacowanie prędkości wylotowej pocisku dla różnych ciśnień w zbiorniku. Algorytm uwzględnia spadek ciśnienia w zbiorniku zasilającym, sprężanie powietrza w lufie przez gilzę z pociskiem oraz tarcie gilzy o ściankę wewnętrzną lufy. Algorytm oparto na dwóch pętlach: zewnętrznej i wewnętrznej. W pętli zewnętrznej, o zadanym kroku ds, jest obliczana prędkość pocisku, a w pętli wewnętrznej szacowany jest opór powietrza sprężanego w lufie przed gilzą z pociskiem. Dane: P0 := 410 5 Pa Ciśnienie początkowe w zbiorniku V0 := 0.28m 3 Objętość początkowa Tot := 293K Temperatura otoczenie Patm := 100000Pa Ciśnienie otoczenia Dg := 124.5mm Średnica gilzy Lg :=192mm Długość gilzy Mg := 1.5kg Masa pocisku z gilzą Dl := 125mm Średnica lufy Ll := 2.100m Długość lufy μ := 0.2 Wsp. tarcia Uniwersalna stała gazowa dla powietrza κ := 1.4 Powierzchnia denka gilzy 8 PRACE INSTYTUTU LOTNICTWA Nr 206

ODPORNOść SZYB CZOŁOWYCH SZYBKICH POJAZDóW SZYNOWYCH... 9

Rys. 5. Przebieg prędkości pocisku oraz ciśnienia w zbiorniku w funkcji położenia w lufie pocisku dla nadciśnienia w zbiorniku 3 bar 7. WERYFIKACJA MODELU Rys. 6. Przebieg przyśpieszenia pocisku w lufie w funkcji położenia pocisku w lufie dla nadciśnienia w zbiorniku 3 bar Na rys. 7 przedstawiono porównanie wyników otrzymanych podczas wykonywania strzałów z działa pneumatycznego i otrzymanych z obliczeń za pomocą modelu. Wyniki obliczeń zawsze są większe od zmierzonych prędkości strzałów o około 10-12% (na wykresie del ). 10 PRACE INSTYTUTU LOTNICTWA Nr 206

Rys. 7. Porównanie prędkości zmierzonych oraz obliczonych według modelu inne zastosowania Tak jak wspomniano we wstępie podobne działa pneumatyczne są wykorzystywane do wykonywania tzw. prób ptaka na silnikach turbinowych. Silniki turbinowe, zwłaszcza w oddzielnych gondolach są narażone na zdarzenia bezpośrednie z ptactwem. Wewnętrzne silniki samolotów bojowych maja ukształtowane kanały antyradarowo i w tym przypadku zderzenia ptaków ze ścianami ochronią łopatki pierwszych stopni wentylatora przed zderzeniem z całym ptakiem. Prędkość przepływu w kanale wlotowym jest rzędu 200m/s. Ta prędkość jest przyjmowana do badań silników. Struktura konstrukcyjna stanowiska badawczego powinna umożliwić zderzenie obiektu badanego (silnika) z ptakiem lecącym w całości z prędkością 200m/s. Przyspieszenie podczas rozpędzania ciała ptaka nie może być większe niż naruszające strukturę kostną ptaka. BIBLIOGRAFIA [1] Ptaszyński M.: Badania urządzenia miotającego, Opracowanie wewnętrzne ILot, nr arch. K.15.9.23, grudzień 1990. [2] Balicki W.: Wybrane zagadnienia dotyczące prób turbinowych silników lotniczych w hamowniach stacjonarnych. Turbinowe silniki lotnicze w ujęciu problemowym pod red. Orkisza M., Polskie Wydawnictwo Naukowo-Techniczne, Towarzystwo Eksploatacyjne, Lublin, 2000. [3] Szczeciński S., Balicki W., Głowacki P.: Uszkodzenia silników turbinowych wywołane zderzeniami z ptakami, Przegląd Sił Powietrznych, nr 2/2009. ODPORNOść SZYB CZOŁOWYCH SZYBKICH POJAZDóW SZYNOWYCH... 11

Paweł Boguszewicz, Piotr Wodyński FAST RAIL vehicles WINDSHIELD RESISTANCE TO IMPACTS WITH ExTRANEOUS BODIES Abstract This paper presents conditions of occur impacts, the resulting threats drivers and passengers. It shows ways of reducing area of damage and points to the need for experimental research. The test stand and its characteristics are described. 12 PRACE INSTYTUTU LOTNICTWA Nr 206